
AN ANALYSIS OF DATA QUALITY DEFECTS IN

PODCASTING SYSTEMS

THOMAS MIS

Bachelor of Science in Computer Science

John Carroll University

May, 1999

submitted in partial fulfillment of the requirements for the degree

MASTERS OF SCIENCE IN SOFTWARE ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

December 2012

This thesis has been approved for the

Department of ELECTRICAL AND COMPUTER ENGINEERING

and the College of Graduate Studies by

Thesis Committee Chairperson, Dr. Nigamanth Sridhar

Department/Date

Dr. Yongjian Fu

Department/Date

Dr. Wenbing Zhao

Department/Date

To my parents...

ACKNOWLEDGMENTS

First and foremost I would like to thank Dr. Nigamanth Sridhar for his will-

ingness to work with me across oceans and times zones. Without his guidance and

seemingly infinite amount of patience this thesis would never have become a reality.

Thank you to Scott Darpel, Maciej Zborowski and all of the students of the Industrial

Space Systems Lab for making my time at Cleveland State memorable. Thank you

Chris Paladino for starting a Podcast that turned into something truly special, and

allowing me to become a part of it. Thank you to Mitch Gitelman for plucking me

out of obscurity and providing me the chance to build a career at Microsoft. Thank

you to Jon McCoy for the opportunities to grow as a software professional, and for

encouraging me to take the time necessary to complete this thesis. Thank you to

Sean Neumann and Adam Mollis for providing both motivation and distraction when

I needed them most. Thank you to Chad Hantak, Chris Ivan, Keith Paladino, Bob

Kopinsky and Phil Lock for being not necessarily the worst co-hosts in all of Pod-

casting. Finally I would like to thank both Phil LeMay and Heather Paladino for the

graciousness and generosity they showed me while I completed my graduate course-

work and started my professional career. Without their help, and the help of so many

others, I would not have been able to accomplish any of my academic or career goals.

iv

AN ANALYSIS OF DATA QUALITY DEFECTS IN

PODCASTING SYSTEMS

THOMAS MIS

ABSTRACT

Podcasting has emerged as an asynchronous delay-tolerant method for the dis-

tribution of multimedia files through a network. Although podcasting has become a

popular Internet application, users encounter frequent information quality problems

in podcasting systems. To better understand the severity of these quality problems,

we have applied the Total Data Quality Management methodology to podcasting.

Through the application of this methodology we have quantified the data quality

problems inherent within podcasting metadata, and performed an analysis that maps

specific metadata defects to failures in popular commercial podcasting platforms. Fur-

thermore, we extracted the Really Simple Syndication (RSS) feeds from the iTunes

catalog for the purpose of performing the most comprehensive measurement of pod-

casting metadata to date. From these findings we attempted to improve the quality of

podcasting data through the creation of a metadata validation tool — PodCop. Pod-

Cop extends existing RSS validation tools and encapsulates validation rules specific

to the context of podcasting. We believe PodCop is the first attempt at improving

the overall health of the podcasting ecosystem.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . xii

CHAPTER

I. INTRODUCTION . 1

1.1 The Problem . 2

1.2 The Thesis . 4

1.3 The Solution Approach . 5

1.4 The Contributions . 6

II. DEFINE PODCASTING . 8

2.1 Podcast Characteristics . 9

2.2 Podcast Architecture . 11

2.2.1 Media Production . 11

2.2.2 Publishing . 13

2.2.3 Cataloging . 15

2.2.4 Consumption . 17

2.3 Quality Requirements . 20

2.3.1 Correctness . 20

2.3.2 Uniqueness . 21

2.3.3 Platform Adherence . 22

2.3.4 Chronology . 22

vi

2.3.5 Performance . 22

III. MEASURE PODCASTING . 24

3.1 Validation Service . 24

3.2 Validator Project . 27

3.3 PodBot . 28

3.3.1 Invoking Feed Validator 30

3.3.2 SyndicationFeed Class 30

3.3.3 Design Pitfalls . 31

3.4 Measurements . 32

3.4.1 The Data Set . 34

3.4.2 Categories . 34

3.4.3 Popularity . 36

3.4.4 Metrics . 38

IV. ANALYZE PODCASTING . 46

4.1 Quality Problems . 46

4.1.1 Correctness Problem . 47

4.1.2 Uniqueness Problem . 49

4.1.3 Platform Adherence Problems 52

4.1.4 Chronology Problems . 54

4.1.5 Performance Problems . 55

4.2 Analysis Conclusions . 56

V. IMPROVE PODCASTING . 57

5.1 PodCop Overview . 58

5.1.1 Enforcing Correctness . 59

5.1.2 Enforcing Uniqueness . 61

5.1.3 Enforcing Chronology . 61

vii

5.2 PodCop Results . 61

5.2.1 Random Podcasts . 63

5.2.2 Popular Podcasts . 63

VI. RELATED WORK . 66

6.1 Podcasting in Education . 66

6.2 Podcasting in Mobile Networks 67

6.3 Podcast Metrics . 69

6.4 Podcast Search . 69

6.5 Podcast Consumption . 70

6.6 Podcast Applications . 71

VII. CONCLUSION AND FUTURE WORK 72

7.1 Future Work . 74

BIBLIOGRAPHY . 76

APPENDIX . 83

viii

LIST OF TABLES

Table Page

1 Example encoding guidelines from Apple 13

2 Example encoding guidelines from Microsoft 14

3 The top domains for feed hosting . 16

4 The iTunes namespace . 17

5 Exceptions thrown from SyndicationFeed 33

6 The iTunes inputs to PodBot . 34

7 Number of feeds in each iTunes All Subcategories 36

8 Duplicate feeds discovered in iTunes 37

9 Example of a Duplicate feed . 38

10 Top 10 Most Popular Feeds in Arts 39

11 Validation Results for All podcasts 40

12 Valid Feeds by Category . 40

13 Invalid Feeds by Category . 41

14 Invalid Feeds by Popularity . 41

15 Size of podcast Feeds in Bytes . 43

16 Size of RSS Elements in Characters 43

17 Length of podcast Episodes (hh:mm:ss) 44

18 Size of podcast Episodes (Bytes) . 44

19 Number of Episodes per podcast Series 44

20 Top 5 Episode Format Types . 44

21 Episode Sizes by Format . 44

22 Top 5 XML Namespaces . 44

ix

23 Top 5 Languages . 45

24 Top 5 RSS Authoring Tools . 45

25 The Top 10 RSS 2.0 Errors . 48

26 Examples of GUIDs Discovered by PodBot 50

27 Top Unsupported Formats Found by PodBot 53

28 PodCop Runtimes . 59

29 PodCop Failure Rate for Individual Rules 62

30 Overall Failure Rate for All Podcasts 62

31 PodCop Results from Random Podcast Feed Sets 64

32 PodCop Results from Popular Podcast Feed Set 65

33 RSS 2.0 Channel Elements . 92

34 The Top 50 RSS 2.0 Violations in Podcast Feeds 95

35 The RSS 2.0 Item Elements . 96

36 The Top 30 Domains Hosting Podcast Feeds 97

37 The Top 10 Most Popular Arts Podcasts 98

38 The Top 10 Most Popular Business Podcasts 98

39 The Top 10 Most Popular Comedy Podcasts 99

40 The Top 10 Most Popular Education Podcasts 99

41 The Top 10 Most Popular Games & Hobbies Podcasts 99

42 The Top 10 Most Popular Government & Organizations Podcasts . . 100

43 The Top 10 Most Popular Health Podcasts 100

44 The Top 10 Most Popular Kids & Family Podcasts 101

45 The Top 10 Most Popular Music Podcasts 101

46 The Top 10 Most Popular News & Politics Podcasts 102

47 The Top 10 Most Popular Religion & Spirituality Podcasts 102

x

48 The Top 10 Most Popular Science & Medicine Podcasts 103

49 The Top 10 Most Popular Society & Culture Podcasts 103

50 The Top 10 Most Popular Sports & Recreation Podcasts 104

51 The Top 10 Most Popular Technology Podcasts 104

52 The Top 10 Most Popular TV & Film Podcasts 105

53 The Top 30 Podcast Episode Formats 106

54 Sizes of the Top 30 Podcast Formats 107

55 The Top 40 Podcast XML Namespaces 108

56 The Top 40 Podcast Languages . 109

57 The Top 40 RSS 2.0 Authoring Tools 110

xi

LIST OF FIGURES

Figure Page

1 Viewing audio in Adobe Audition . 12

2 Example of an RSS 2.0 Feed . 15

3 The iTunes podcast catalog . 16

4 The Zune podcast marketplace . 18

5 The Zune podcast collection . 19

6 The W3C Feed Validation Service . 25

7 Example of Validation Failure . 26

8 Invoking the Feed Validator . 27

9 The PodBot Flowchart . 29

10 SyndicationFeed Example . 31

11 SyndicationLink Example . 31

12 Example iTunes Catalog Entry . 35

13 Example of Unresolved URI in Zune 48

14 Example of Uniqueness Bug in Zune 51

15 Example of Platform Adherence Bug in Zune 53

16 Example of Chronology Problem in Zune 54

xii

CHAPTER I

INTRODUCTION

Podcasting has emerged as an asynchronous delay-tolerant method for the dis-

tribution of multimedia files through a network. Although podcasting has found wide

adoption on mobile entertainment and phone platforms, it is not a technology intro-

duced or supported by a single commercial software vendor, nor is it a technology

standard governed by a standardization body such as the W3C or IETF. Further-

more, from a data quality perspective, podcasting can be viewed as a heterogeneous

distributed database of multimedia files and the metadata that describes the various

attributes of each file. Despite such complexity, and without the benefit of a formal

governing organization, podcasting has grown to become a staple Internet technology

used by nearly 70 million Americans in 2010 [16].

From the perspective of an end user, podcasting is an alternative to streaming

media that allows for the consumption of audio and video files while disconnected from

the Internet [14]. Users have access to a diverse set of entertainment and informa-

tional content provided by a wide variety of academic, governmental, and commercial

organizations [37] such as Stanford University, Walt Disney, and the United States

1

Department of State. However it is the amateur user generated content community

that first adopted podcasting, and the majority of multimedia content distributed

through podcasting channels has been created by non-professional broadcasters. Fur-

thermore, these collections of amateur produced content are not maintained by com-

puter scientists or professional software engineers, hence the quality of these data sets

is potentially problematic.

The research community has begun investigating aspects of podcasting and the

utility of the podcasting distribution model in various contexts. Attempts have been

made to model podcasting traffic through the Internet [4], and investigate the feasi-

bility of distributing podcasts through ad hoc mobile networks [2,17,24,28,46]. There

has been a desire to understand what makes a podcast popular, and to build systems

that predict popularity based on programmatic inspection of podcasting data [42,43].

Network models have used popularity to help optimize passing podcasts through

ad hoc mobile networks where nodes may not be in contact for prolong periods of

time [20]. The research community has shown much interest in measuring the ef-

fectiveness of podcasting as both a replacement for and a supplement to traditional

classroom lectures [6,22,27,35]. Finally researchers who have experimented with pro-

ducing educational podcasts have shared their experiences and provided guidelines for

other Computer Scientists who wish to develop their own podcast series [13,45,48].

1.1 The Problem

Software engineering practitioners employ a variety of techniques and strate-

gies for reducing the number of software failures that occur within software systems.

A well- established practice such as group code reviews and white box testing can be

used to validate a software system conforms to a functional specification. Black box

testing is a software quality assurance strategy used to validate whether a software

2

system conforms to a functional specification by exercising features without knowl-

edge of its actual implementation. Conversely white box testing uses knowledge of

the implementation, often the source code itself, to create tests to validate a system.

Development methods by which software engineers author code can also be employed

to reduce the rate of software failures. Agile processes such as test driven develop-

ment promote early testing of software components. This development methodology

requires test cases to be authored before coding begins, and any newly coded software

components are not considered complete until these test cases can be successfully ex-

ercised. Scrum and Extreme Programming encourage high quality by emphasizing

the importance of testing throughout the software lifecycle rather than a process that

only happens at the end, such as it would in the waterfall model.

These testing techniques and development processes focus on code. These

evaluations are performed against static source code, or against code at runtime.

Certainly architectural or syntactic defects in code can cause software to fail for a

given purpose. However, code that could somehow be determined to be completely

free of defects could still produce unacceptable outcomes if the inputs into the system

contain defects. Reliable source code is insufficient to guarantee reliable outcomes for

end users of software systems. Software can only produce error free output if the data

into a system is itself free of defects. That is to say, reliable software will produce

meaningful output for a user given a reliable set of data.

Zune is a brand of digital entertainment software and services from Microsoft.

During the development of the Zune project this author employed the aforementioned

techniques to validate the behavior of the Zune podcasting software. Functional test-

ing was performed with sample podcast feeds that conformed to the Really Simple

Syndication 2.0 standard (commonly referred to as RSS). Furthermore, negative test-

ing was employed to validate error handling using podcast feeds that did not conform

3

to this standard. Although thorough code reviews and testing was performed against

the podcast components, failures still emerged when real users consumed real podcast

feeds. Similarly the iTunes entertainment client, the podcasting software from Apple,

exhibited many of the exact same failures the Zune development team encountered

when using real world feeds.

Analyzing the failures that occurred within both Zune and iTunes uncovered

data quality problems that originated with the RSS feeds created by podcast pro-

ducers. Given that podcasting is a multi-tiered Internet scale system, with no single

governing organization, with tens of thousands of individual podcast producers con-

tributing a constant stream of new media into the ecosystem, neither of these software

development organization alone can impact the quality of the podcast data being pro-

duced. The World Wide Web Consortium has attempted to increase the quality of

RSS by providing a validation service for statically analyzing an RSS feed for scheme

violations. This service provided by the W3C is the only validation service available

to podcast producers. However, it is now clear that passing RSS validation alone does

not guarantee that a podcast feed is free of defects that can cause poor experiences

for the end user. This is a significant problem facing the podcasting community. A

better validation service is needed.

1.2 The Thesis

Although podcasting has become a popular Internet application, users en-

counter frequent information quality problems in podcasting systems. The existing

validation tools available to podcast producers have not yielded a decrease in the

number of defects encountered. Applying established data quality methodologies to

podcasting will identify the source of many types of failures, and motivate a new set

of data validation rules for podcasting feeds. These data validation rules are encap-

4

sulated in a next generation podcast validation tool. Use of this tool will decrease

the number of software failures experienced by podcast consumers.

1.3 The Solution Approach

Data quality methodologies provide a framework for researchers and infor-

mation professionals to investigate, understand, and improve the quality of data in

complex information systems. Data quality processes in the context of software can

be analogous to quality processes applied to physical materials in product manufac-

turing. In the context of manufacturing, engineers and quality professionals monitor

and ensure raw materials are free of defects that could cause the end product to have

flaws that are unacceptable to the customer. A key difference in this analogy however

is that physical materials are consumed in the manufacturing process and provide a

limit on the amount of low quality products produced, whereas low quality data will

continuously impact the quality of the information systems consuming such data.

Data quality methodologies provide a framework for defining, measuring, ana-

lyzing, and improving data in information processing and database systems [26]. The

research community has developed data quality methodologies where data serves as

the raw materials into information processing systems [5]. A variety of data quality

methodologies have been defined, many specific to a particular context or technology,

such as biometrics [10] or relational databases [12]. Total Data Quality Management

is a generalized data quality methodology that is designed to be applicable to a vari-

ety of contexts and systems [47]. Given this general purpose utility, TDQM will be

applied to podcasting on the Internet for the purpose of understanding information

quality defects and to identify opportunities for improvement. The podcast end user

experience will be improved through the reduction of failures encountered by adhering

to this formal data quality process to improve podcasting data.

5

Improving data requires an understanding of how the data is produced and

distributed through the system. Therefore, the data quality approach will first define

the components and stakeholders of the Internet wide podcasting ecosystem. Each

data component will be inspected and documented in isolation and in relation to how

it is consumed for the benefit of the end user. At the end of this phase podcasting will

be a well understood and documented process. Furthermore, the quality requirements

for each component will be defined.

Next the components of the podcasting system will be programmatically mea-

sured and analyzed. These phases will provide insight into the quantitative qualities

of the podcasting ecosystem. Specifically, an automated system will be introduced

to measure the quality of the distributed podcasting database. This system will or-

ganize the measurements and allow for researchers to analyze the data for trends.

These trends will inform the creation of a podcast static analyzer for the purpose of

evaluating podcast components for data quality failures.

1.4 The Contributions

This work provides value to a variety of stakeholders in the podcasting com-

munity. The net benefit of each of these contributions is to improve the quality of the

user experience, such that podcast consumers can enjoy entertainment and informa-

tional content without encountering failures introduced from data quality problems.

Podcast producers benefit from being able to easily identify potential quality defects

that existing validation tools miss. And finally, the research community benefits from

the most comprehensive modeling of the largest podcast sample set to date.

Specifically this work produced the following tangible contributions:

• The design and implementation of an automated web crawler for acquiring

quality metrics on podcast feeds and media.

6

• The design and implementation of a validation tool for discovering podcasting

specific quality defects in valid RSS feeds.

• The creation of a comprehensive model of podcasting characteristics to inform

future research.

7

CHAPTER II

DEFINE PODCASTING

This project borrows upon the principles defined by the Total Data Quality

Management methodology [47] for the purpose of improving the quality of podcast-

ing. The TDQM methodology prescribes four activities an organization must perform

to improve the information product produced by any given information system. The

first of these activities is to rigorously define the various aspects of an information

product, how the information product is produced, and the people involved in the

consumption and production. This definition phase forces data quality professionals

to systematically gain an understanding of the data to be improved. Therefore, in

order to understand the aspects of podcasting that are to be improved, this chapter

will define in detail the various characteristics of podcasting data, explore the archi-

tecture of podcasting systems, and identify the quality requirements that determine

whether podcasting data can be considered “fit for use.”

It should be noted that this phase focuses on podcasts as data into an infor-

mation manufacturing system, with particular focus on the quality attributes viewed

as important to the end podcast consumer. The novelty of this project, and where

8

this project contributes value back to the podcasting community, comes from this

focus on data rather than on software. That is to say, traditionally quality assurance

professionals employed at software vendors that distribute podcasting systems apply

various software testing techniques such as black box testing, white box testing, and

fuzz testing to ensure software systems are of a particular quality [36]. The quality

aspects of software is a well-researched area, and vendors such as Microsoft apply

software testing techniques to ensure software systems are secure, accurate, and re-

sistant to failure from poorly curated data [36]. As we shall see, although podcasting

software systems may be well tested, podcasts distributed to users can be of low qual-

ity due to low quality inputs. podcasting suffers from a classic “garbage-in-garbage

out” problem. Therefore, this project is the first of its kind that attempts to improve

the data that serves as input into podcasting systems.

2.1 Podcast Characteristics

From the perspective of the consumer, podcasting is yet another form of seri-

alized media. One could argue that podcasting has seen a degree of popularity due

to the fact that many media consumers are already comfortable with the concept of

media being distributed in a periodic manner. For example, those with a subscription

to the newspaper The New York Times already expect a physical copy to be delivered

to their doorstep each morning. The subscriber can read the newspaper as soon as

they receive it, or they can read the newspaper at a later time, perhaps while riding

the subway on their way to work during their morning commute. Similarly, digital

media consumers can receive podcasts on regular intervals but can consume the pod-

casts at a later time. The newspaper analogy remains applicable with the advent of

smart phones and portable media devices, as the podcast subscriber can consume the

podcasts on the very same subway car as the New York Times subscriber. Later in

9

this chapter we will formally define the podcasting terms and concepts that will be

referred to throughout this thesis. For now, let us continue to view podcasting from

the perspective of a non-computer scientist in order to build an understanding of how

podcasts are typically discovered and consumed.

A vernacular has evolved to describe the various attributes and characteris-

tics of podcasting. Unfortunately, many of these terms contain the word podcast

which itself has become a context dependent term. The term podcast can refer to

an individual episode within a series, or it can refer to an entire series. Furthermore,

podcasting is used to refer to the action of recording a podcast, or it can be used as

a universal term to describe the entire collection of content and software that exists

to build and distribute media. A list of terms is provided for reference.

• Podcaster is a human who publishes a podcast series. Hobbyist podcast pro-

ducers generally managed the entire range of responsibilities necessary for pub-

lishing a podcast onto the Internet. These tasks can include: audio recording,

media encoding, RSS authoring, and web hosting.

• Podcast Feed is an RSS 2.0 file hosted on a web server that is regularly

updated by a podcast producer and consumed by podcasting systems.

• Podcast Aggregator is a software client that consumes multiple podcast feeds.

Examples of popular commercial podcast aggregators include iTunes and Zune.

• Podcast Series is a general term used to describe the collection of podcast

episode files listed within a podcast feed. However, it is often the case that only

the most recent subset of episodes is actually enumerated within a feed.

• Podcast Catalog is an Internet service that contains a curated collection of

links to podcast feeds. Examples of popular commercial podcast catalogs are

the iTunes Store and Zune Marketplace.

10

2.2 Podcast Architecture

In the physical world manufacturing systems consume raw materials to pro-

duce finished products. In the context of Ford Motor Company, steel enters the

manufacturing plant on one end, and a finished automobile is produced on the other.

Industrial Engineers at Ford follow quality processes such as Six Sigma to reduce

defects in automobiles by increasing the quality of raw materials entering the man-

ufacturing plant. The TDQM methodology prescribes that software professionals

identify their own information manufacturing systems. Therefore, this section will

document the podcast manufacturing system. Digital audio and video are the raw

materials that will be operated upon to produce a finished podcast.

2.2.1 Media Production

Instructional guidelines for producing podcasts in an academic context have

been published [1, 13, 23, 41, 45, 48]. These guidelines focus on capturing university

lectures into digital audio and video files. The systems range from elaborate auto-

mated lecture recording system that are integrated directly into the classroom, to cost

conscious guidelines for purchasing off-the-shelf recording equipment for home use.

Regardless of budget, the podcast information manufacturing system begins with the

recording of audio or video.

Professionally produced shows have emerged in the podcasting space, examples

of such shows are those produced by This Week In Tech and the Revision3 networks.

These podcasting networks hire professional audio and video engineers to record and

edit media for the purpose of achieving production values that equal traditional broad-

cast television. This author’s own personal podcast [19] however is representative of

the opposite end of the podcasting spectrum where the “on-air” personalities also

serve as producers and audio engineers. In this scenario it is common to use widely

11

Figure 1: Viewing audio in Adobe Audition

available software such as Skype for facilitating the recording of multiple co-hosts

residing in different geographies, and Adobe Audition (see Figure 1) to capture each

audio stream for easy post-production editing and encoding.

It is at this point that the individual podcasters must encode their recorded

media into a file appropriate for distribution through the Internet. As we shall see

in Chapter 3, audio remains the predominate media type for podcasting content.

It is also here where the first kinds of data defects are entered into the podcast

information manufacturing system as not all podcasters have a good understanding

of the tradeoffs between the various media encoding formats. Software vendors such

as Microsoft and Apple provide podcasters with guidelines [3,29] for how to optimize

encoding for playback on their platforms. Unfortunately platforms provided by these

two companies often support a different set of codecs, thus confusing the matter

further for both podcasters and podcast subscribers. Tables 1 and 2 provide examples

of video encoding guidelines from Apple and Microsoft for a few select devices. Notice

12

Device Encoding Guideline

iPod Touch “H.264 video up to 720p, 30 frames per second, Main Profile level 3.1
with AAC-LC audio up to 160 Kbps, 48kHz, stereo audio in .m4v,
.mp4, and .mov file formats.”

iPod Touch “MPEG-4 video, up to 2.5 Mbps, 640 by 480 pixels, 30 frames per
second, Simple Profile with AAC-LC audio up to 160 Kbps per chan-
nel, 48kHz, stereo audio in .m4v, .mp4, and .mov file formats.”

iPod Touch “Motion JPEG (M-JPEG) up to 35 Mbps, 1280 by 720 pixels, 30
frames per second, audio in ulaw, PCM stereo audio in .avi file for-
mat.”

iPhone 3GS “H.264 video, up to 1.5 Mbps, 640 x 480, 30 frames per sec., Low-
Complexity version of the Baseline Profile with AAC-LC audio up to
160 kbps, 48 Khz, stereo audio in .m4v, .mp4, and .mov file formats.”

iPhone 3GS “H.264 video, up to 768 kbps, 320 x 240, 30 frames per sec., Baseline
Profile up to Level 1.3 with AAC-LC audio up to 160 kbps, 48 Khz,
stereo audio in .m4v, .mp4, and .mov file formats.”

iPhone 3GS “MPEG-4 video, up to 2.5 Mbps, 640 x 480, 30 frames per sec.,
Simple Profile with AAC-LC audio up to 160 kbps, 48 Khz, stereo
audio in .m4v, .mp4, and .mov file formats.”

Table 1: Example encoding guidelines from Apple

that encoding H.264 video at a resolution of 720x480 will allow for playback on the

Zune and iPod Touch, but that resolution is not supported on the iPhone 3GS.

Podcast producers must be aware of these discrepancies.

2.2.2 Publishing

Once media files are edited and encoded into the desired format, the individ-

ual podcasters are responsible for hosting the media files on a web server. Podcast-

ers within academic departments may seek hosting from their university resources,

but independent podcasters generally must purchase web hosting from a commercial

hosting company. Given that media files are larger than HTML content, the cost of

purchasing hosting from a commercial company increases at a faster rate as a pod-

cast series becomes popular as compared to a web site distributing text. The media

files that have been uploaded onto the World Wide Web are now accessible through

13

Device Encoding Guideline

Zune 8GB Windows Media Video Simple Profile (.wmv) - up to 320x240, 10fps
and 1.5 Mbps.

Zune 8GB Windows Media Video Main Profile (.wmv) - up to 720x480, 30fps
and 3 Mbps.

Zune 8GB H.264 baseline profile video with AAC audio (.mv4, .mp4) - up to
720x480, 30fps and 2.5 Mbps.

Zune 8GB MPEG4 Part 2 simple profile video with AAC audio (.mv4, .mp4) -
up to 720x480, 30fps and 2.5 Mbps

Table 2: Example encoding guidelines from Microsoft

hyperlinking. In fact, it is common for these shows to be linked to from an HTML

file.

What makes a media file a podcast however is when it is listed as an entry in

an RSS 2.0 feed. When an RSS 2.0 feed contains media content we generally refer to

it as a podcast feed. Creating and hosting the podcast feed is also the responsibility

of the individual podcasters. Figure 2 contains an example of a podcast feed from

National Public Radio [33]. Extraneous namespace elements have been removed to

simplify the example.

The RSS 2.0 documentation is maintained by the Berkman Center for Internet

& Society at Harvard Law School [8]. A description of each element in the RSS

scheme is provided by the Berkman Center, along with usage examples. Tables 33

and 35 contain a complete copy of these descriptions and example element values.

Commercial feed hosting services have emerged to provide podcasters with free

RSS hosting. Table 3 lists the most popular hosting services discovered during our

investigation that is described in the next chapter. For now, note that Feedburner (a

Google subsidiary) is by far the most popular feed host with 24% of all feeds, followed

by Libsyn at 5%. Both of these companies publically market themselves as services

to help independent content creators monetize the media they produce. Feedburner

and Libsyn attempt to act as intermediaries between agencies seeking to advertise

14

16

independent Podcasters generally must purchase web hosting from a commercial hosting

company such as GoDaddy.com. Given that media files are larger than HTML content,

the cost of purchasing hosting from a commercial company increases at a faster rate as a

Podcast series becomes popular as compared to a web site distributing text. The media

files that have been uploaded onto the World Wide Web are now accessible through

hyperlinking. In fact, it is common for these shows to be linked to from an HTML file.

What makes a media file a Podcast however is when it is listed as an entry in an

RSS 2.0 feed. When an RSS 2.0 feed contains media content we generally refer to it as a

Podcast feed. Creating and hosting the Podcast feed is also the responsibility of the

individual Podcasters. Figure 2 contains an example of a Podcast feed from National

Public Radio [32]. Extraneous namespace elements have been removed to simplify the

example.

FIGURE 2: EXAMPLE OF AN RSS 2.0 FEED.
Figure 2: Example of an RSS 2.0 Feed

and independent podcasters. It is not clear how successful these efforts to monetize

podcasting have been.

2.2.3 Cataloging

The creation of media and the hosting of media files are the responsibility of

the individual podcast producers. This thesis has discovered 19,849 unique domains

hosting podcast feeds (Table 36 lists the top domains). With 72,786 unique podcast

feeds spread across these nineteen thousand hosts, finding an appealing show can

be a difficult problem for users. Attempts have been made to provide web based

directories of podcast feeds. A web portal cited in the existing podcast researcher [4]

is Odeo.com. However, as of this writing, Odeo.com no longer functions as a podcast

directory. Fortunately podcast cataloging services have emerged from Microsoft and

Apple.

Microsoft and Apple provide cataloging services to ease the podcast discovery

15

Category Domain Feed count Feed %

.com feedburner.com 17616 24.25%
libsyn.com 3753 5.17%
podbean.com 2481 3.42%
podomatic.com 1898 2.61%
blip.tv 1583 2.18%

.gov nasa.gov 50
nps.gov 39
cdc.gov 30
senate.gov 22
nih.gov 14

.edu wisc.edu 24
si.edu 20
ufl.edu 19
umich.edu 17
umn.edu 16

Table 3: The top domains for feed hosting

Figure 3: The iTunes podcast catalog

16

Element Description

itunes:author Artist column in iTunes.
itunes:block Prevent an episode or podcast from appearing in

iTunes.
itunes:category Category column and in iTunes Store Browse.
itunes:image Album art displayed in iTunes.
itunes:duration Time column in iTunes.
itunes:explicit Parental advisory graphic in iTunes.
itunes:isClosedCaptioned Closed Caption graphic in iTunes.
itunes:order Override the order of episodes in the store.
itunes:complete Indicates completion of podcasts; no more

episodes.
itunes:keywords Not visible but can be searched.
itunes:new-feed-url Not visible, used to inform iTunes of new feed

URL.
itunes:owner Not visible, used for contact only.
itunes:subtitle Description column in iTunes.
itunes:summary The More Info field in iTunes.

Table 4: The iTunes namespace

process for consumers of their Zune and iPod portable digital media devices. The data

set for this work was acquired from the Apple iTunes catalog service (see Figure 3).

An overview of the findings from an automated inspection of the iTunes podcast

catalog is described in Chapter 3.

As a prerequisite for inclusion into the iTunes catalog, Apple mandates that

podcasters adopt the iTunes namespace [3]. The iTunes namespace extends the RSS

2.0 specification with elements and attributes that describe attributes specific to

podcasting. A brief overview of the iTunes namespace elements is provided in Table

4. These elements were inspected as part of the TDQM measurement phase.

2.2.4 Consumption

Portal media devices and mobile phones enable users to subscribe to podcasts

from wireless networks. Although the portability of media devices provides for a

17

21

The Zune Podcast marketplace (see fig. 4) provides a graphical user interface

around the Podcast catalog web service. The marketplace organizes Podcasts into distinct

categories, such as: business, education, and travel. Viewing each category within the

user interface causes the Podcasts to be displayed in order of popularity. It is through this

interface that users discover new Podcasts series. Selecting a Podcast within the

marketplace displays a details page that exposes the metadata from the RSS feed for that

show. The details page also provides a graphical method for subscribing to the Podcast.

Subscribing to a Podcast causes the show to be added to the Podcast collection.

The Zune Podcast collection is a graphical user interface for managing Podcast

subscriptions and syncing Podcasts to portable media devices. The collection interface

(see fig. 5) provides a set of settings for creating rules that define the order a Podcast

FIGURE 4: THE ZUNE PODCAST MARKETPLACE.
Figure 4: The Zune podcast marketplace

variety of media consumption scenarios, it has been found that the majority of podcast

consumption occurs on personal computers. A survey of users found that 68% of audio

podcasts and 77% of video podcasts are consumed from a computer rather than a

portable device [16]. A survey of computer science students at Harvard University

revealed that 71% of the students consumed podcasts at personal computers (29% on

iPod devices) when lectures were made available in podcast form [27]. The PC is a

popular platform for consuming podcasting content.

Two commercially available podcast aggregators for the PC platform are Apple

iTunes and Microsoft Zune. To better understand podcast consumption scenarios on

the PC, the Zune software client was inspected. The podcast functionality built into

the Zune software enables podcast searching, subscribing, syncing to mobile device,

and playback.

The Zune podcast marketplace (see Figure 4) provides a graphical user inter-

18

22

series should be consumed, the rules for syncing new episodes to devices, and the amount

of content to download and stored on the personal computer. Podcast episodes that have

been downloaded and stored on the personal computer can be played back from the

collection view. Each time the Zune software is launched, it downloads the latest version

of the RSS feed for each of the shows in the Podcast collection. If new episodes are

available, they are downloaded according to the download rules. The download progress

is displayed in a graphical manner, and the download of Podcast episodes can be

manually paused or cancelled by the user.

2.3 Quality Requirements

FIGURE 5: THE ZUNE PODCAST COLLECTION. Figure 5: The Zune podcast collection

face around the podcast catalog web service. The marketplace organizes podcasts into

distinct categories, such as: business, education, and travel. Viewing each category

within the user interface causes the podcasts to be displayed in order of popularity.

It is through this interface that users discover new podcasts series. Selecting a pod-

cast within the marketplace displays a details page that exposes the metadata from

the RSS feed for that show. The details page also provides a graphical method for

subscribing to the podcast. Subscribing to a podcast causes the show to be added to

the podcast collection.

The Zune podcast collection is a graphical user interface for managing podcast

subscriptions and syncing podcasts to portable media devices. The collection inter-

face (see Figure 5) provides a set of settings for creating rules that define the order a

podcast series should be consumed, the rules for syncing new episodes to devices, and

the amount of content to download and stored on the personal computer. Podcast

19

episodes that have been downloaded and stored on the personal computer can be

played back from the collection view. Each time the Zune software is launched, it

downloads the latest version of the RSS feed for each of the shows in the podcast col-

lection. If new episodes are available, they are downloaded according to the download

rules. The download progress is displayed in a graphical manner, and the download

of podcast episodes can be manually paused or cancelled by the user.

2.3 Quality Requirements

Techniques have been developed [42, 43] to measure the quality of podcasts

from the perspective of what makes a podcast popular with consumers. The quality

requirements defined in this thesis however focus on reducing the source of information

quality problems in podcasting systems. That is, this thesis is not concerned with

the creation of professionally produced and entertaining media presentations. Rather

this thesis is focused on ensuring that the data entered into podcasting systems is

well-structured and free of defects that cause failures.

This project defines a collection of quality requirements that must be satisfied

for a podcast to be considered free of defects. In adherence with the TDQM method-

ology the quality requirements are defined during the Definition Phase and specific

examples of violating each of these requirements will be examined in the Analysis

Phase. Each of the requirements is described below.

2.3.1 Correctness

The correctness requirement can apply to both the structure and content of

podcasting data. A podcast feed that satisfies the correctness requirement must ad-

here to the RSS 2.0 specification and the values of the feed elements must be factually

correct. Some examples of violating the correctness requirement can include: invalid

20

XML markup, providing URI values that do not resolve, and factually incorrect meta-

data values.

Validating metadata values can be a difficult computer science problem. It may

not be possible to know whether a text field containing a description of a podcast

episode is associated with the correct audio file within a podcast feed. There have

been research efforts to programmatically analyze podcast episodes using speech-to-

text systems [34].

Even if a reliable solution was developed, it may not be impactful to reducing

quality problems. If the wrong text description is displayed within a podcast aggrega-

tor, it may lead the user to listen to an episode that they may not be interested in, but

an incorrect description most likely will not cause the user to perceive the software

system as being unreliable. Thus the fields that will be validated for correctness in

the Improvement Phase will be those that can cause more serious failures in podcast

aggregators. The size attribute of the enclosure element is one such field. If the actual

media file size is different than the size denoted in the feed metadata, then podcasting

systems may poor choices around file downloading and memory allocation.

2.3.2 Uniqueness

A podcast episode is unique if podcast aggregators are able to distinguish

an episode from all other previously and currently published episodes in the series.

Podcast aggregators regularly inspect podcast feeds for new episodes and changes to

metadata. If a podcast aggregator cannot determine a new episode has been added

to the feed, then the new episode will not be downloaded and the user will not

be able to consume the episode. During the development of Zune, it was observed

that changes were often made to the metadata that describes an existing podcast

episode. An example of this scenario is a podcast episode that was published with

21

a spelling mistake in the title element of the feed; often podcasters would republish

the feed with the corrected spelling. In this case, the podcast aggregators must be

able to distinguish between an updated existing episode, and an entirely new episode.

Failure to do so can cause the aggregators download the same show multiples time.

This may not be a bad problem for a personal computer on a high speed Internet

connection, but it can be a bad problem for a mobile phone on a data connection

that incurs fees for high usage.

2.3.3 Platform Adherence

Popular vendors such as Apple and Microsoft publish guides that provide plat-

form specific metadata format and media encoding recommendations to podcast pro-

ducers. Examples of violating the property of platform adherence can include: play-

back failures from incorrectly encoded media, download failures from linking to non-

acceptable content, and display failures from incorrectly formatted metadata.

2.3.4 Chronology

Each podcast episode has a temporal property that should reflect its proper

chronological order within a series. Failure to satisfy this property causes podcast

aggregators to display episodes in an unintended ordering.

2.3.5 Performance

This property can be platform specific. Users on a PC with a cable modem

may not be sensitive to large feeds or media files. Users on mobile phones with limited

or costly data plans may be very sensitive to large feeds and media files. Furthermore,

having extreme values in a feed may cause aggregators to ignore and stop processing a

feed. Violating this property may be considered a warning to borrow a concept from

22

language compilers. Examples of violating the performance property can include:

large numbers of item elements in a feed that are truncated by aggregators, and large

media files that may not be able to transfer over mobile data connection.

The initial phase performed by data quality professionals tasked with improv-

ing the quality of data manufacturing systems is to define the characteristics of the

system, and the requirements for determining data is of high quality. In fulfillment of

this phase, the characteristics of podcasting architecture and podcasting feeds have

been described. An exploration of the Zune podcast aggregator was conducted. And

the quality requirements of correctness, uniqueness, platform adherence, chronology,

and performance have been established. The next phase of the TDQM methodology

is to measure the data that is to be improved.

23

CHAPTER III

MEASURE PODCASTING

The TDQM methodology recommends that information quality metrics are

defined and measured. These findings help quality professionals understand how the

data into an information manufacturing system satisfies the data quality requirements

developed during the definition phase. This chapter measures the various dimensions

of podcast feeds. These measurements are the first to shine light on the scope of the

data quality problems that exist within the medium.

3.1 Validation Service

The World Wide Web Consortium is the international organization that pub-

lishes standards and guidelines for developing World Wide Web technologies [49].

Although the RSS 2.0 specification itself is not a W3C recommendation, the orga-

nization does host an RSS 2.0 validation service (see Figure 6) on the w3c.org web-

site [50]. This validation service can be used by authors of podcast feeds to identify

any markup that violates a rule of the RSS 2.0 specification. Adherence to web stan-

24

28

XHTML 1.0, ensures that web content is accessible to the widest variety of client

software such as Mozilla and Internet Explorer. Similarly, Podcast feeds that adhere to

the RSS 2.0 standard ensure they are accessible to a wide variety of Podcast aggregators

such as iTunes and Zune. However, passing RSS validation alone does not guarantee a

Podcast feed is free from defects that cause software failures.

With multiple versions (0.91, 0.92, and 2.0) [37] and with the acronym itself

having had multiple meanings (RDF Site Summary, Rich Site Summary, and Really

Simple Syndication), RSS has had something of a tumultuous history. The 2.0 version of

the standard is currently maintained by the Berkman Center for Internet & Society at

FIGURE 6: THE W3C FEED VALIDATION SERVICE.

Figure 6: The W3C Feed Validation Service

dards, such as HTML 4.0 or XHTML 1.0, ensures that web content is accessible to

the widest variety of client software such as Mozilla and Internet Explorer. Similarly,

podcast feeds that adhere to the RSS 2.0 standard ensure they are accessible to a

wide variety of podcast aggregators such as iTunes and Zune. However, passing RSS

validation alone does not guarantee a podcast feed is free from defects that cause

information quality problems.

With multiple versions (0.91, 0.92, and 2.0) [7] and with the acronym itself

having had multiple meanings (RDF Site Summary, Rich Site Summary, and Really

Simple Syndication), RSS has had something of a tumultuous history. The 2.0 ver-

sion of the standard is currently maintained by the Berkman Center for Internet &

Society at Harvard University [8] and the independent RSS Advisory Board [39]. The

25

29

Harvard University [33] and the independent RSS Advisory Board [38]. The significance

of the W3C providing a validation service for RSS 2.0 is that software developers and

Podcasters can have confidence that this version of RSS has been acknowledged by a

reputable Internet standards organization. Thus, Podcasting systems that support RSS 2.0

will not be vulnerable to rapid specification changes that cause compatibility failures for

end users.

The primary method for validating a Podcast feed is to submit the URI for the

feed under test into the appropriate field on the W3C website (see fig. 7). Much like

compiling C++ code, the amount of time necessary to complete the validation is a

FIGURE 7: EXAMPLE OF VALIDATION FAILURE.

Figure 7: Example of Validation Failure

significance of the W3C providing a validation service for RSS 2.0 is that software

developers and podcasters can have confidence that this version of RSS has been

acknowledged by a reputable Internet standards organization. Thus, podcasting sys-

tems that support RSS 2.0 will not be vulnerable to rapid specification changes that

cause compatibility failures for end users.

The primary method for validating a podcast feed is to submit the URI for the

feed under test into the appropriate field on the W3C website (see Figure 7). Much

like compiling C++ code, the amount of time necessary to complete the validation

is a function of the size of the source file; in general the validation runtime was on

the order of seconds. The result of performing the validation against a feed can

either be a congratulatory message for submitting markup that adheres to the RSS

26

30

function of the size of the source file; in general the validation runtime was on the order

of seconds. The result of performing the validation against a feed can either be a

congratulatory message for submitting markup that adheres to the RSS 2.0 standard or, a

set of error and warning messages. Error messages contain specific line numbers, and an

explanation of how the markup at the specified location in the source file violates an RSS

2.0 rule.

3.2 Validator Project

The actual feed parsing and rule validation logic for the W3C service is

performed remotely. This server side component is provided by the open source Feed

Validator project [39] which distributes the software under the MIT software license.

Both Apple and Microsoft refer content creators [31][40] to the Feed Validator project as

a prerequisite to catalog ingestion. The Feed Validator project makes a command line

version (see fig. 8) of this service available as a tool for validating feeds without the web

FIGURE 8: INVOKING THE FEED VALIDATOR.
Figure 8: Invoking the Feed Validator

2.0 standard or, a set of error and warning messages. Error messages contain specific

line numbers, and an explanation of how the markup at the specified location in the

source file violates an RSS 2.0 rule.

3.2 Validator Project

The actual feed parsing and rule validation logic for the W3C service is per-

formed remotely. This server side component is provided by the open source Feed

Validator project [38] which distributes the software under the MIT software license.

Both Apple and Microsoft refer content creators [3,30] to the Feed Validator project

as a prerequisite to catalog ingestion. The Feed Validator project makes a command

line version (see Figure 8) of this service available as a tool for validating feeds with-

out the web interface. A description of how this stand-alone version of the Feed

Validator was leveraged for this investigation into the data quality of podcasting will

be provided in the next section.

27

3.3 PodBot

PodBot is an Internet connected software agent responsible for finding and in-

specting publicly accessible podcast feeds. The data quality measurements discovered

during this thesis were acquired by unleashing these agents onto the Internet. De-

velopment of the PodBot software comprised a significant portion of the time budget

for this project. Therefore in order to reduce the cost of future research into the var-

ious aspects of podcasting, we now discuss the PodBot web crawler architecture and

design tradeoffs. Documenting the lessons learned during development and execution

can help future podcast researchers avoid the pitfalls encountered here.

PodBot is responsible for acquiring, validating, and parsing podcast feeds.

These activities are executed in a linear fashion for each feed. Execution of each

activity is predicated on the success of the previous activity. Therefore a feed will

only be validated if acquisition succeeded, and a feed will only be parsed is validation

succeeded. Any activity that failed was logged, and an investigation of these failures is

discussed in Section 4.1. Figure 9 provides a visual diagram of the PodBot discussion

making tree.

The PodBot crawler was implemented to be single threaded. To achieve par-

allelism and thus decrease total runtime, individual instances of the PodBot crawler

were run across multiple computers. To further simplify development, it was assumed

that each podcast feed will only be visited by an instance of the crawler at most one

time. The benefit of this assumption was that the PodBots themselves did not need

to manage the complexity of coordinating crawls amongst multiple instances, as each

instance was responsible for a unique subset of all podcast feeds. However, the draw-

back of this limitation is that this project will not benefit from leaning how a podcast

feed has changed over time.

28

32

were run across multiple computers. To further simplify development, it was assumed

FIGURE 9: THE PODBOT FLOW CHART. Figure 9: The PodBot Flowchart

29

3.3.1 Invoking Feed Validator

Each PodBot crawler spawns a separate process in order to perform the valida-

tion task. Rather than implement its own RSS 2.0 validation component, the crawler

invokes the open source Feed Validator project to provide this functionality. This

process separation was necessitated by the differing runtime dependences for each

project. The PodBot project is built upon the Microsoft .NET runtime, and the Feed

Validator project is built upon the Python runtime. Any validation failures discov-

ered by the Feed Validator are captured and logged by PodBot, an investigation of

these failures across all podcast feeds is discussed in Section 4.1.

3.3.2 SyndicationFeed Class

The Microsoft .NET framework was chosen as the platform for the crawler

due to the inclusion of the SyndicationFeed class. This class was introduced with

version 3.5 of the .NET framework [31]. An object of type SyndicationFeed represents

an Atom 1.0 (an alternative XML format for syndicating web content) or RSS 2.0

feed. These objects have the capability to parse existing feeds into internal data

structures, change the values in existing feeds, and create entirely new feeds. The

PodBot project makes extensive use of the SyndicationFeed class for its ability to

download and parse publicly available podcast feeds. Examples of instantiating the

SyndicationFeed object for inspecting each field of a podcast feed is listed in Figure 10.

The appendix contains a complete C# sample application that demonstrates using

each of the public SyndicationFeed methods.

Perhaps what most distinguishes a podcast feed from news feeds containing

only text data is the use of the optional enclosure element. It is the enclosure el-

ements that contain links to the digital media files that comprise the episodes of a

podcast series. Unfortunately parsing the enclosure elements of a podcast feed was

30

34

Podcast feeds. Examples of instantiating the SyndicationFeed object for inspecting each

field of a Podcast feed is listed in Figure 10. Appendix D contains a complete C# sample

application that demonstrates using each of the public SyndicationFeed methods.

Perhaps what most distinguishes a Podcast feed from news feeds containing only

text data is the use of the optional enclosure element. It is the enclosure elements that

contain links to the digital media files that comprise the episodes of a Podcast series.

Unfortunately parsing the enclosure elements of a Podcast feed was not necessarily an

intuitive operation. Discovering enclosure metadata required inspecting collections of

SyndicationLink objects. To help future Podcast researchers who may develop systems

on this Microsoft platform, an example of discovering Podcast episodes is listed in Figure

11.

Design Pitfalls

The benefit of adopting the Python and .NET dependencies was a reduced

development cost in terms of time. These design decisions did however introduce some

FIGURE 10: SYNDICATIONFEED EXAMPLE.
Figure 10: SyndicationFeed Example

35

unexpected problems that required special handling. For the benefit of future researchers

interested in adopting similar dependences, these problems and their mitigations are

discussed.

Of the 72,786 Podcast feeds processed by instances of PodBot, 99.7% completed

inspection without an error condition occurring within the crawlers themselves. It may

not seem justified to spend the additional development time to add robust error handling

into a research project to handle the failures introduced by only 0.3% of the inputs.

However, it turned out that the cost of software failures in the crawlers was very

expensive given the long runtimes required to process 6.15715 gigabytes of RSS. On

average an instance of PodBot was able to process 1039.5 Podcast feeds per hour, for a

total runtime of about 70 hours. The crawlers ran unattended; therefore any software

failure that caused execution to halt added even more time as the computer would sit idle

until the failure was noticed by a human.

96% of the software errors originated from unhandled exceptions being thrown

from the SyndicationFeed .NET framework object (see table 7). Exception handling was

FIGURE 11: SYNDICATIONLINK EXAMPLE.
Figure 11: SyndicationLink Example

not necessarily an intuitive operation. Discovering enclosure metadata required in-

specting collections of SyndicationLink objects. To help future podcast researchers

who may develop systems on this Microsoft platform, an example of discovering pod-

cast episodes is listed in Figure 11.

3.3.3 Design Pitfalls

The benefit of adopting the Python and .NET dependencies was a reduced

development cost in terms of time. These design decisions did however introduce

31

some unexpected problems that required special handling. For the benefit of fu-

ture researchers interested in adopting similar dependences, these problems and their

mitigations are discussed.

Of the 72,786 podcast feeds processed by instances of PodBot, 99.7% completed

inspection without an error condition occurring within the crawlers themselves. It

may not seem justified to spend the additional development time to add robust error

handling into a research project to handle the failures introduced by only 0.3% of the

inputs. However, it turned out that the cost of software failures in the crawlers was

very expensive given the long runtimes required to process 6.15715 gigabytes of RSS.

On average an instance of PodBot was able to process 1039.5 podcast feeds per hour,

for a total runtime of about 70 hours. The crawlers ran unattended; therefore any

software failure that caused execution to halt added even more time as the computer

would sit idle until the failure was noticed by a human.

96% of the software errors originated from unhandled exceptions being thrown

from the SyndicationFeed .NET framework object (see Table 5). Exception handling

was added to the PodBot for the purpose of logging each of these exceptions so

that a failure analysis could be performed. 4% of the software failures, caused by

only 9 individual podcast feeds, forced the Python runtime environment to enter

an unrecoverable state, whereas the spawned process required termination. Thus

crawlers must maintain a timer that will automatically kill the Feed Validator child

process after a timeout period. Log data suggests a timeout period of 10 minutes is

sufficient.

3.4 Measurements

Before the data quality of podcasting can be improved, the data in podcasting

systems must be measured and analyzed so as to build an understanding of where data

32

Exceptions .NET Framework Exception

85 An error was encountered when parsing a DateTime value in the
XML.

36 Text’ is an invalid XmlNodeType.
29 An error was encountered when parsing the item’s XML. Refer

to the inner exception for more details.
21 ’Element’ is an invalid XmlNodeType.
20 The feed being deserialized has non-contiguous sets

of items in it. This is not supported by ’Sys-
tem.ServiceModel.Syndication.Rss20FeedFormatter

5 Unexpected node type Comment. ReadElementString method
can only be called on elements with simple or empty content.

5 For security reasons DTD is prohibited in this XML document.
To enable DTD processing set the DtdProcessing property on
XmlReaderSettings to Parse and pass the settings into Xml-
Reader.Create method.

3 The element with name ’script’ and namespace ” is not an al-
lowed feed format.

3 The element with name ’br’ and namespace ” is not an allowed
feed format.

2 The remote server returned an error: (503) Server Unavailable.

Table 5: Exceptions thrown from SyndicationFeed

33

Field Description

feedURL The URI to the podcast feed hosted on the third party web server.
Popularity A value between 1 and 0 that provides a relative Popularity rating of

the series within a category.

Table 6: The iTunes inputs to PodBot

quality problems exist. The tool described in the previous section was tasked with

performing these measurements. The data set that was measured and the findings of

PodBot are described here.

3.4.1 The Data Set

The Apple iTunes catalog was chosen as the source of the data set for this

project. Exposed to users through the iTunes Store, this online catalog contains a

repository of podcast feeds. Each catalog entry (see Figure 12) contains a URI to a

podcast feed and a variety of attributes that Apple has associated with the feed. Some

of these attributes comes from the podcast feeds itself, such as a text description of

what the podcast series is about. It is understandable that Apple would essentially

store a duplicate of metadata already contained in the RSS feed in its own database as

this allows the iTunes software client to display metadata that describes a particular

show without having to make a request against a third party web server. However

some of these attributes are specific to iTunes such as an iTunes popularity value and

an iTunes category label. It is these iTunes specific attributes listed in Table 6 that

serve as the starting point for PodBot.

3.4.2 Categories

The iTunes podcast catalog is divided into 16 subject matter categories. Each

of these subject matter categories are further divided into subcategories that relate

to the parent in some way. An example of such an iTunes hierarchy is the Arts

34

37

3.4 Measurements

Before the data quality of Podcasting can be improved, the data in Podcasting

systems must be measured and analyzed so as to build an understanding of where data

quality problems exist. The tool described in the previous section was tasked with

performing these measurements. The data set that was measured and the findings of

PodBot are described here.

The Data Set

The Apple iTunes catalog was chosen as the source of the data set for this project.

Exposed to users through the iTunes Store, this online catalog contains a repository of

Podcast feeds. Each catalog entry (see fig. 12) contains a URI to a Podcast feed and a

variety of attributes that Apple has associated with the feed. Some of these attributes

FIGURE 12: EXAMPLE ITUNES CATALOG ENTRY.
Figure 12: Example iTunes Catalog Entry

category, which contains the following subcategories: All, Design, Fashion & Beauty,

Food, Literature, Performing Arts, and Visual Arts. The All subcategory is the

only subcategory common to all 16 parents. It was these All subcategories that

were queried for this project. Table 7 lists how many feeds were found in each All

subcategory. Together the 16 All subcategories yielded 95,502 entries, each containing

a podcast feed. It should be noted that this collection of entries does not represent the

entire iTunes podcast catalog, as it was found that there are some entries contained

in subcategories that were not included in the All subcategories. Inspecting a subset

of subcategories found that this number was small, and that the 95,502 feeds are

sufficiently representative of all feeds contained within the iTunes catalog.

Some feeds had more than one entry in the iTunes catalog. Mostly this oc-

curred when a series was included within multiple categories. However it was also

the case that a feed occurred within the same category multiples times. Interestingly

each of these entries had their own unique popularity value, which indicates that

these duplicates are being tracked as separate series from the perspective of iTunes.

35

iTunes Category # Feeds

Arts 6000
Business 6000
Comedy 6000
Education 6000
Games & Hobbies 6000
Government & Organizations 5502
Health 6000
Kids & Family 6000
Music 6000
News & Politics 6000
Religion & Spirituality 6000
Science & Medicine 6000
Society & Culture 6000
Sports & Recreation 6000
Technology 6000
TV & Film 6000

Table 7: Number of feeds in each iTunes All Subcategories

We consider this a defect of the iTunes catalog. Therefore PodBot removed 22,716

duplicate feeds from the sample set, so as to not skew the measurements. The table

below contains the number of duplicates discovered as the PodBot processed the raw

iTunes XML. The iTunes categories were processed in alphabetical order, therefore

the number of duplicates generally increased from Arts to TV & Film. Finally, after

having ingested the iTunes XML and removed duplicate entries, we discovered 72,786

unique feeds.

3.4.3 Popularity

Previous research into podcasting has used iTunes popularity as a dimension

in which to compare various podcasting attributes [18, 42]. These previous efforts

were somewhat simplistic in so far as they simply observed the ordered list of shows

displayed through the iTunes user interface. The implication is that the researchers

had no concept of the degree to which one show is more popular than another. An

36

iTunes Category Duplicates Discovered Feeds Ingested

Arts 27 5973
Business 181 5819
Comedy 486 5514
Education 1200 4800
Games & Hobbies 1198 4802
Government & Organizations 446 5056
Health 1098 4902
Kids & Family 1274 4726
Music 1210 4790
News & Politics 1757 4243
Religion & Spirituality 1218 4782
Science & Medicine 1742 4258
Society & Culture 3664 2336
Sports & Recreation 1398 4602
Technology 2844 3156
TV & Film 2973 3027

Table 8: Duplicate feeds discovered in iTunes

ordered list does not properly convey the change in the rate of popularity. This thesis

inspects the actual iTunes popularity value captured by making queries against the

iTunes cloud service. Given that there is interest in the research community in gaining

an understanding of iTunes popularity, a discussion of these values follows.

Each entry in the iTunes podcast catalog contains a popularity field. The

ranges of popularity values are specific to a category. It was observed that each

iTunes podcast category has its own range of popularity values. This range was a

real number between 1 and a small number approaching, but not equal to, zero (the

smallest popularity value was 0.0000016745482). It was found that individual shows

could be listed within the catalog multiples times. Multiple entries occurred when a

show was listed under different categories. For example, the show The Moth Podcast

(see Table 9) was listed under both the Comedy and the Arts categories. In these

cases, each entry had its own unique popularity value. That is, a single show could

have multiple popularity values that are specific to a category context. It can be

37

Feed iTunes Category Popularity

http://feeds.feedburner.com/themothpodcast Arts 0.2301070800
http://feeds.feedburner.com/themothpodcast Comedy 0.7939343000

Table 9: Example of a Duplicate feed

assumed then that a popularity value from one category does not have meaning when

compared to the popularity values of other categories.

Although Apple does not publish how the popularity values are calculated, we

can make a few observations through manual inspection. The show listed within the

iTunes user interface as being the most popular show per category has a popularity

value of 1. Furthermore, each category has one and only one show with a popularity

value of 1. Therefore, we can surmise that 1 indicates the show is the most popular

entry for that category. The rest of the shows within a category have values less than

1 but greater than 0. It is assumed that this represents the distance a given show

is from the most popular for that category. That is, it is assumed a show with a

popularity value of .5 is half as popular as the most popular show and that a show

with a value of .25 is only one fourth as popular as the top show. Unfortunately this

data does not provide guidance towards the actual number of subscribers per show.

But if we could learn the number of users that have subscribed to a show with value

of 1, we could then make estimations of subscribership by multiplying the popularly

values by the number of subscribers.

3.4.4 Metrics

As a team member at Microsoft during the development of Zune, it was ob-

served that podcast feeds that failed RSS 2.0 validation were the leading cause of user

experience failures occurring within the podcast functionality of the Zune software.

From the user perspective these failures often manifested themselves as feeds that

38

Feed Popularity

http://feeds.thisamericanlife.org/talpodcast 1.0000000000
http://feeds.feedburner.com/comedycentral/standup 0.2909667500
http://feeds.feedburner.com/themothpodcast 0.2301070800
http://americanpublicmedia.publicradio.org/podcasts/xml/
prairie home companion/news from lake wobegon.xml

0.1780055500

http://www.qdnow.com/grammar.xml 0.1394481800
http://feeds.feedburner.com/TEDTalks video 0.1343486000
http://selectedshortspri.pri.libsynpro.com/rss 0.1080078700
http://wtfpod.libsyn.com/rss 0.1031321360
http://feeds.newyorker.com/services/rss/feeds/fiction podcast.
xml

0.0986269040

http://www.gcast.com/u/dane cook/main.xml 0.0960611200

Table 10: Top 10 Most Popular Feeds in Arts

would simply not display within the client. Given that users do not often understand

the source of failures, it reflected poorly upon the client software itself rather than

the author of the invalid feed. However, even podcast feeds that passed validation

were found to cause failures.

To build an understanding of how dire the problem of invalid podcast feeds

is to the health of the podcasting ecosystems, the PodBot performed a validation

against every feed visited, the results are listed in Table 11. It was found that 30,580

or 42.01% of all podcast feeds in the data set failed RSS 2.0 validation. This is an

alarmingly large percentage. The crawlers encountered an HTTP request failure rate

of 13.28%. That is, some feeds were unreachable, and therefore a validation attempt

could not be made. Removing the unreachable feeds from the failure calculations,

the failure rate climbs to 48.63%. Table 12 and 13 list the number of valid and

invalid feeds discovered in each iTunes category. Table 14 compares the most popular

podcasts of each category against the least popular podcasts of each category.

Previous research projects have attempted to build a model of podcasting [4,

18]. This project contributes to this body of work. An accurate model of podcasting

will be particularly interesting from a software quality assurance perspective. Soft-

39

RSS 2.0 Validation # Feeds Feeds %

Valid 32308 44.39%
Invalid 30580 42.01%
HTTP Failure 9669 13.28%

Table 11: Validation Results for All podcasts

iTunes Category # Valid % Valid

Society & Culture 3083 51.3833%
Art 2991 49.8500%
Health 2901 48.3500%
Kids & Family 2896 48.2667%
Games & Hobbies 2895 48.2500%
Comedy 2854 47.5667%
Religion & Spirituality 2809 46.8167%
Technology 2797 46.6167%
TV & Film 2772 46.2000%
Music 2739 45.6500%
Science & Medicine 2721 45.3500%
Education 2625 43.7500%
Sports & Recreation 2582 43.0333%
Government & Organization 2252 40.9306%
Business 2396 39.9333%
News & Politics 2379 39.6500%

Table 12: Valid Feeds by Category

40

iTunes Category # Invalid % Invalid

Kids & Family 2098 34.9667%
Society & Culture 2276 37.9333%
Health 2285 38.0833%
Music 2342 39.0333%
Art 2369 39.4833%
Games & Hobbies 2373 39.5500%
Comedy 2392 39.8667%
TV & Film 2403 40.0500%
Sports & Recreation 2474 41.2333%
Science & Medicine 2485 41.4167%
Technology 2499 41.6500%
Education 2504 41.7333%
Government & Organization 2328 42.3119%
Religion & Spirituality 2550 42.5000%
Business 2747 45.7833%
News & Politics 2866 47.7667%

Table 13: Invalid Feeds by Category

iTunes Category # %Valid Top 50 % Valid Bottom 50

Art 44% 46%
Business 42% 42%
Comedy 58% 58%
Education 48% 46%
Games & Hobbies 32% 60%
Government & Organization 40% 42%
Health 72% 62%
Kids & Family 52% 52%
Music 40% 34%
News & Politics 30% 34%
Religion & Spirituality 62% 52%
Science & Medicine 42% 46%
Society & Culture 44% 54%
Sports & Recreation 28% 46%
Technology 50% 46%
TV & Film 42% 58%

Table 14: Invalid Feeds by Popularity

41

ware testing professionals often employ Boundary-Value analysis [36]. Given that

testing all possible inputs into a system is often not possible for any sufficiently com-

plex system, Boundary- Value analysis attempts to classify inputs into related sets

with the upper and lower bounds of the sets being values targeted for testing. The

data provided here will be valuable to software testing professionals responsible for

ensuring the quality of podcasting systems, as these measurements can be used to

identify boundary values.

Tables 15 and 16 list the size of the RSS feeds and various elements contained

within the feeds. We found the median valid podcast feed was around 40 KB, but

invalid podcast feeds came in around 25 KB. More investigation will be needed to

understand this size discrepancy. Tables 17 and 18 list the length and size of podcast

episodes. The median length of an episode is slightly longer than 33 minutes, and

comes in at a size of almost 17 MB. Table 19 shows that the median number of

episodes per series in 18. Therefore, we can estimate that an average feed hosts 306

MB worth of content. Tables 20 and 21 list the most popular media formats for a

podcast episode (see Table 53 in the appendix for a complete listing of media formats

found by PodBot). We found over 77% of all podcast episodes are audio. Table 22

lists the most popular XML namespace extensions used within podcast feeds. Not

surprisingly the iTunes namespace was found in 100% of the sample set. This is

understandable given that Apple requires this extension as a prerequisite for a feed

being included within its catalog (see Table 55 in the appendix for a complete listing

of namespaces found by PodBot). Table 23 lists of language of the podcast content

as specified by the human podcaster. Here we find that over 90% of the feeds are

some variant of English (see Table 56 in the appendix for a complete list of language

codes found by PodBot). Finally Table 24 lists the values found in the generator field.

Unfortunately the most popular value was the empty field at 25%. This suggests that

42

Feed Mean Median Min Max

Valid 110710.85 39838 234 8624999
Invalid 99700.59 24750 0 7190635

Table 15: Size of podcast Feeds in Bytes

Element Mean Median Min Max

title 27.81 24 0 315
description 216.87 123 0 6317
item title 39.46 35 0 1449
item summary 685.45 273 0 555990
item URI 72.25 71 0 504

Table 16: Size of RSS Elements in Characters

there are RSS authoring tools that do not identify themselves, or perhaps these are

feeds that were hand authored by the podcaster (see Table 57 in the appendix for a

complete listing of generators found by PodBot).

We have now discussed the measurement phase of our TDQM process. The

RSS 2.0 validation service hosted by the W3C and the open source Feed Validator

project were described. We provided an overview of the architecture and lessons

learned from the development of PodBot. PodBot discovered that 42% of all podcasts

founds within the iTunes catalog fail RSS 2.0 validation. And finally PodBot built a

model of an average podcast feed and episode.

43

Mean Median Min Max

00:40:21.68 00:33:38:00 0:00:00 23:48:54

Table 17: Length of podcast Episodes (hh:mm:ss)

Mean Median Min Max

90473163.66 16967345.00 0 9223372036854775807

Table 18: Size of podcast Episodes (Bytes)

Mean Median Min Max

42.85 18.00 0 3828

Table 19: Number of Episodes per podcast Series

MIME Type Episode %

audio/mpeg 77.10%
video/mp4 5.54%
video/x-m4v 4.31%
EMPTY FIELD 4.16%
audio/x-m4a 2.66%
video/quicktime 1.43%

Table 20: Top 5 Episode Format Types

MIME Type Mean Median Min Max

audio/mpeg 98121994.54483 17387947 0 9.22337E+18
video/mp4 142006132.98446 36610336 0 2.415E+11
video/x-m4v 80987019.15629 30209162 0 16388000000
audio/x-m4a 33270999.27017 19772035 0 32108669329
video/quicktime 71296570.38464 26035364 0 4294967295

Table 21: Episode Sizes by Format

Namespace Feeds %

http://www.itunes.com/dtds/podcast-1.0.dtd 100.000%
http://search.yahoo.com/mrss/ 43.917%
http://purl.org/dc/elements/1.1/ 37.027%
http://rssnamespace.org/feedburner/ext/1.0 32.931%
http://purl.org/rss/1.0/modules/content/ 27.861%

Table 22: Top 5 XML Namespaces

44

Language Feeds %

en 58.500%
en-us 31.945%
en-gb 1.993%
EMPTY FIELD 1.396%
de 1.192%

Table 23: Top 5 Languages

Language Feeds %

EMPTY FIELD 25.642%
Libsyn WebEngine 7.993%
http://podbean.com/?v=3.2 5.484%
podOmatic RSS Generator 4.852%
http://wordpress.org/?v=3.3.2 4.266%

Table 24: Top 5 RSS Authoring Tools

45

CHAPTER IV

ANALYZE PODCASTING

During the analysis phase of the TDQM methodology quality professionals

will evaluate actual data quality failures in the information manufacturing system

under inspection. Through this investigation the root cause of data quality failures

will emerge, and specific problems can be identified. It is only after the specific

instances of data quality problems are identified and understood, that specific actions

for improving data quality can be planned.

4.1 Quality Problems

Violations of the data quality requirements for podcasting are now examined.

How each violation causes failures in popular podcasting systems is demonstrated

and discussed. Through analysis of these data quality violations and the quantitative

measurements, an understanding of how podcasting data can be improved will be

built.

46

4.1.1 Correctness Problem

The most fundamental of the data quality requirements for podcasting, and

perhaps for any data manufacturing system, is the factual correctness and structure

of the data itself. This thesis focuses only on the metadata that describes a podcast

series and podcast episodes that are contained within a podcast feed. Metadata that

describes podcast episodes can also be found within the multimedia files themselves.

In the context of audio, metadata can be stored within the ID3 fields of an MP3 file.

However, neither this project, nor previous podcast research [4,18] have investigated

the metadata contained within multimedia files. We decided not to investigate due

to the size difference and thus the time necessary to capture multimedia. That is, the

mean podcast feed was found to be 110 KB whereas the mean podcast multimedia

file was found to be 90 MB. Furthermore, no authoritative organization has published

recommendations for podcasting metadata stored within media files. Thus it would

be difficult deciding which fields to inspect.

Internet data must be structured in a manner that is well understood so that

independent software systems are capable of processing content described by the

metadata. In the context of podcasting this well understood structure is the RSS

2.0 standard. Failure to conform to this standard is an example of violating the

correctness property of podcasting. It was observed during the measurement phase

that 42% of all podcast feeds violate at least one rule of the RSS 2.0 specification.

Each of these violations was captured and yielded 110,614 validation errors with

15,998 unique errors messages. Table 25 lists the most popular RSS 2.0 violations.

A complete listing of error messages generated from the set of iTunes feeds is listed

in Table 34 of the appendix.

Correctness can be violated even within valid RSS feeds. The values of the

various RSS fields could contain factually incorrect information. Some factual viola-

47

Feeds Error

2405 Undefined root element: xhtml:html
2084 Undefined root element: script
2024 XML parsing error: not well-formed (invalid token)
2012 link must be a full and valid URL
1897 Invalid email address
1480 Incorrect day of week
1394 pubDate must be an RFC-822 date-time
1254 Invalid character in a URI
1184 Undefined channel element: itunes:link
1097 Undefined root element: html

Table 25: The Top 10 RSS 2.0 Errors

54

service provider. In the next chapter, we show that our improved validator does indeed

check this metadata field, and found that 44.5% of feeds contain incorrect size data.

The most severe failure is a feed that contains an incorrect URI to a podcast

episode. Again in the next chapter we show that the improved validator attempts to

acquire episode in order to validate the URI values. It was found that 18.66% feeds

contained episodes that could not be downloaded. Figure 13 illustrates how an incorrect

URI is displayed within the Zune user interface.

Uniqueness Problem

Violations of the uniqueness data quality requirement cause podcasting systems to

fail at determining whether an episode of a podcast series is unique. The RSS

specification calls for a globally unique identifier (GUID) to be associated with each

podcast episode. This GUID field should be sufficient for helping podcasting systems to

distinguish between different episodes in a series. Unfortunately the existing feed

validator does not enforce any standards around the values that are used as identifiers.

FIGURE 13: EXAMPLE OF UNRESOLVED URI IN ZUNE.

Figure 13: Example of Unresolved URI in Zune

tions may not necessarily cause serious user experience failures in podcasting systems.

For example, the description field for a newly released podcast episode may mistak-

enly contain the description for a different previously released episode. In this case

the user may read this incorrect description value, and choose to not listen to the

episode. This is certainly a data failure, but it does not cause either iTunes or Zune

to improperly function.

A more severe example of factual violation is a feed that contains incorrect

episode size or duration information. Software clients may make decisions based on

48

the metadata contained within the feed. If software on a mobile phone attempts to

avoid downloading large podcast episodes, then the correctness of the size metadata is

important. A feed that contains a size value smaller than the actual size of the media

file could cause the mobile phone to exceed the bandwidth limitation imposed by the

mobile service provider. In the next chapter, we show that our improved validator

does indeed check this metadata field, and found that 44.5% of feeds contain incorrect

size data.

The most severe failure is a feed that contains an incorrect URI to a podcast

episode. Again in the next chapter we show that the improved validator attempts

to acquire episode in order to validate the URI values. It was found that 18.66%

feeds contained episodes that could not be downloaded. Figure 13 illustrates how an

incorrect URI is displayed within the Zune user interface.

4.1.2 Uniqueness Problem

Violations of the uniqueness data quality requirement cause podcasting systems

to fail at determining whether an episode of a podcast series is unique. The RSS

specification calls for a globally unique identifier (GUID) to be associated with each

podcast episode. This GUID field should be sufficient for helping podcasting systems

to distinguish between different episodes in a series. Unfortunately the existing feed

validator does not enforce any standards around the values that are used as identifiers.

Therefore, it was found during the measurement phase that all manner of string data

were being used as globally unique identifiers.

Of the 1,091,295 episode GUID values programmatically inspected, it was

found that 766,292 or 70.22% of the GUID values began with the substring http://.

We found that in these cases the GUID value generally matched the corresponding

enclosure value for the inspected podcast episode. Table 26 provides samples of the

49

GUID Example

5577 at http://www.thisamericanlife.org
http://download.publicradio.org/podcast/nflw/2012/04/28/nflw 20120428 64.mp3
77f68e0396964a0182915c0b99219f41
tag:blogger.com1999:blog-33028507.post-7703483890054156235
0455a25f-2398-429b-8961-7a0ad5f1eb73
4088
77D1E331-B835-4DDF-A81F-4A4CCEE3CE0B-233-00000C953049E486-FFA
sonibyte-18637.mp3
vineyard-development-napa-valley-wine-radio
S
http://cni.libsyn.com/index.php?post id=96127#
.CZiKZiuM5Q
/?p=63
??-????-????-??????-??????
00AA6082-2D5A-4ADB-B17F-84E01CC56FA6
021-10.25.09
hiphop-podcast-18

Table 26: Examples of GUIDs Discovered by PodBot

kinds of GUID values found during the measurement phase.

There is nothing that prevents podcasters from recycling these GUID values

as old episodes are removed, and new episodes are added to podcast feeds. Though

inspection, it was found that many podcast series only keep a subset of episodes

listed within a feed. Most often this is the most current set of episodes, such that

the number of episodes found within the feed is constant. In this example, the feed

can be described as a FIFO queue, where the episode being removed is the oldest

episode contained in the feed. The uniqueness data quality property is violated if the

GUID from the episode being removed is used for the episode being added. It can be

speculated that many podcasters are not computer scientists, and therefore do not

understand the purpose of the GUID field.

Given these reasons, the Zune software does not use the GUID field to de-

termine if a podcast episode is unique. Rather, the title and episode URI together

are considered sufficient to determine uniqueness. This heuristic assumes that the

50

56

There is nothing that prevents podcasters from recycling these GUID values as

old episodes are removed, and new episodes are added to podcast feeds. Though

inspection, it was found that many podcast series only keep a subset of episodes listed

within a feed. Most often this is the most current set of episodes, such that the number of

episodes found within the feed is constant. In this example, the feed can be described as

a FIFO queue, where the episode being removed is the oldest episode contained in the

feed. The uniqueness data quality property is violated if the GUID from the episode

being removed is used for the episode being added. It can be speculated that many

FIGURE 14: EXAMPLE OF UNIQUENESS BUG IN ZUNE.
Figure 14: Example of Uniqueness Bug in Zune

51

title and URI will not be changed after the feed is first aggregated by Zune. Soft-

ware failures thus manifest in Zune when podcasters find the need to edit an already

published episode. It was observed during maintenance of the Zune client that these

edits occurred most often when episodes were moved from one hosting provider to

another. The impact in software clients was the introduction of false episodes listed

in the client UI. Figure 14 illustrates the impact of changing the URL attribute of

the enclosure element from podtrac.com to thomasmis.com. Editing the XML in

this manner cause episodes to appear in triplicate within Zune and duplicate within

iTunes.

4.1.3 Platform Adherence Problems

The commercial podcast platforms publish guidelines that podcasters should

adhere to when producing digital media. These guidelines generally cover aspects of

media production that are not defined by the formal rules of RSS. These supplemental

guidelines are provided to ensure that the media produced by podcasters is compatible

with the software and devices sold by the commercial vendors. Examples of the rules

provided by Microsoft and Apple are listed in Table 2 and Table1. Unfortunately the

podcasting platforms from these vendors support divergent sets of media formats. An

episode encoded to the QuickTime specification may playback on an iPhone device,

but it may not playback on a Windows Phone device. Podcasters should use these

guidelines to choose media formats that support the widest possible set of platforms.

From the data collected during the measurement phase, we observed podcast

feeds that support non-compliant media types. Of the 30 most common media formats

discovered during the measurement phase (see Table 54), we found 6 type that are not

supported on either iPod or Zune devices. Table 27 lists these unsupported formats.

Figure 15 illustrates the Zune the user experiences when attempting to interact with

52

58

it may not playback on a Windows Phone device. Podcasters should use these guidelines

to choose media formats that support the widest possible set of platforms.

From the data collected during the measurement phase, we observed podcast

feeds that support non-compliant media types. Of the 30 most common media formats

discovered during the measurement phase (see Appendix F), we found 6 type that are not

supported on either iPod or Zune devices. Table 29 lists these unsupported formats.

Figure 15 illustrates the Zune the user experiences when attempting to interact with an

unsupported podcast episode.

TABLE 29: TOP UNSUPPORTED FORMATS FOUND BY PODBOT.

Rank Format

9 application/pdf

14 application/octet-stream

20 application/x-shockwave-flash

FIGURE 15: EXAMPLE OF PDF EPISODE IN ZUNE. Figure 15: Example of Platform Adherence Bug in Zune

Rank Format

9 application/pdf
14 application/octet-stream
20 application/x-shockwave-flash
22 test/plain
25 video/x-flv
28 text/html

Table 27: Top Unsupported Formats Found by PodBot

53

59

22 test/plain

25 video/x-flv

28 text/html

Chronology Problems

Podcast episodes within a series have a chronological ordering. Podcast

aggregators respect this ordering by listing episodes based on the item publication date.

This publication date is specified as part of the RSS standard. The podcast data quality

property of chronology therefore states that podcasting systems must be able to determine

the proper chronological ordering of a podcast series. Although the RSS validator does

check for the presence of a publication date, it does not validate the publication date is

unique or ordered properly within a feed. An example of violating the chronological

principle occurs when podcasters release multiple episodes

simultaneously.

FIGURE 16: EXAMPLE OF CHRONOLOGY PROBLEM IN ZUNE. Figure 16: Example of Chronology Problem in Zune

an unsupported podcast episode.

4.1.4 Chronology Problems

Podcast episodes within a series have a chronological ordering. Podcast aggre-

gators respect this ordering by listing episodes based on the item publication date.

This publication date is specified as part of the RSS standard. The podcast data

quality property of chronology therefore states that podcasting systems must be able

to determine the proper chronological ordering of a podcast series. Although the

RSS validator does check for the presence of a publication date, it does not validate

the publication date is unique or ordered properly within a feed. An example of vi-

olating the chronological principle occurs when podcasters release multiple episodes

simultaneously.

In the case of simultaneously published episodes, it was found that podcast

aggregators are unable to determine chronological ordering, and therefore the ordering

of episodes within the UI was not deterministic. This may be an inconsequential

54

behavior if the episodes within a podcast series contain content that is independent

of other content. This behavior becomes a software failure if the content is dependent

on ordering. This issue could be avoided if the podcasters simply increment the

minute or seconds value of the publication date for each episode. Figure 16 shows

four episodes published on the same feed, each with the exact same publication date.

Notice that the episodes are listed in alphabetical ordering, which in this case has

caused the fourth episode to be displayed second.

4.1.5 Performance Problems

The RSS specification does not define constraints around file sizes or episode

limits. Therefore violating the performance data quality principle can be platform

dependent. An example of such a platform dependent violation could be the publish-

ing of a multimedia file that is too large to be downloaded to a mobile phone that has

a data download limit. In this case the platform is the mobile telecommunications

network. A more specific example of a performance violation is a podcast feed that is

larger than 11 MB, as this will violate the file size limit imposed by the Zune software

client (in this case the client simply refuses to attempt to parse the feed). To circum-

navigate such performance failures, podcast publishers have released multiple feeds

for the same podcast series where each feed has different performance characteristics.

The American mobile telephone service provider AT&T currently limits its

customers to 3GB of data transfer per month. The show This Week in Tech is a weekly

podcast that provides video files on the order of 300 MB per episode. Therefore, an

AT&T customer who subscribes to this podcast will transfer 1.5 GB of data per

month for this series alone. If the user subscribes to a second show that contains

episodes of similar size, the data limit will be reached each month. A third show

would cause the data limit to be exceeded. We consider this to be a violation of the

55

Performance data quality requirement in the context of mobile telephones.

4.2 Analysis Conclusions

Based on analyzing examples of real world violations of the podcast data qual-

ity principles, it can be stated that valid RSS 2.0 podcast feeds can cause data quality

failures in popular podcasting software systems. Therefore RSS validation alone is

insufficient to prove that a podcast feed is free of data defects.

56

CHAPTER V

IMPROVE PODCASTING

The TDQM methodology provides a framework around which an organiza-

tion can improve the quality of data. The measurement and analysis phases of the

methodology serve to help information quality professionals understand data quality

problems, and identify areas for improvement. In this thesis, we have conducted an

extensive measurement of over seventy thousand podcasts, and have analyzed fail-

ures in popular commercial podcasting systems caused by defects in podcast data.

From this measurement and analysis we conclude that the existing data validation

service provided by the World Wide Consortium is insufficient at ensuring an RSS

2.0 complaint podcast feed is free of defects that cause failures. Thus, information

quality in podcasting will be increased and failures in podcasting systems will be

reduced through the use of an improved validation service. This chapter describes

the construction and use of this improved validation service.

57

5.1 PodCop Overview

The culmination of the measurement and analysis activities heretofore de-

scribed is the creation of an improved podcast validation service — PodCop. This

improved podcast validator understands the information quality requirements that

are unique to syndicating podcast episodes, whereas the existing validator hosted by

the W3C does not make a distinction between podcast syndication and plain text

syndication. A discussion of PodCop follows.

PodCop was created for this thesis in order to demonstrate how extending the

RSS specification with a small number of podcast specific rules can greatly impact

the quality of podcasting feeds. A sampling of RSS 2.0 compliant podcast feeds from

the measurement phase of the project were evaluated with the PodCop validator. It

was found that 66.5% of the valid feeds contained violations of the extended rules. To

encourage software engineers and academic researchers to further explore and improve

podcast validators, an overview of the PodCop architecture is provided.

The architecture of the improved validator is similar to that of the PodBot

crawler created for the measurement phase. PodCop was built upon the same code-

base and leverages the same SyndicationFeed Microsoft .NET class. The main differ-

entiator between the two projects is that in PodCop, the open source Feed Validator

component is replaced with a custom component that encapsulates the extended pod-

cast rules. This new component contains six simple rules that provide validation for

some of the podcast information quality requirements defined in Chapter 2. This

component is a proof of concept, and is intended to motivate the creation of a more

extensive podcast validator for podcast producers.

Although the architectures of the two systems created for this thesis are similar,

the performance characteristics of each of the systems are very different. A goal of

the measurement phase of was to capture metrics from the widest possible sample set

58

Set # Feeds Runtime (Hours: Minutes)

Random Set - A 100 18:08
Random Set - B 100 48:42
Random Set - C 100 21:40
Random Set - D 100 14:25
Random Set - E 1000 229:57
Random Set - F 1000 239:06
Popular Set - G 194 38:43

Table 28: PodCop Runtimes

of feeds. It was therefore decided that only the feed itself, and not the multimedia

files referenced from those feeds would be downloaded and inspected. The benefit of

this design decision was that the total runtime of the PodBot was around 70 hours,

or 3.46 seconds per podcast feed. However, in order to enforce some of the quality

requirements defined for podcasting data (such as the correctness requirement), the

PodCop validator must actually download each of the episodes in a podcast series.

This causes considerable performance degradation when compared to the crawler.

PodCop was only able to perform at the rate of 880.82 seconds per podcast feed

(14.68 minutes per feed). Given this long runtime PodCop was executed upon a

subset of the feeds from the measurement phase. We examined both a random subset

of RSS 2.0 compliant feeds and the set of most popular RSS 2.0 compliant feeds from

each iTunes category. Table 28 lists the execution time of PodCop for each set.

5.1.1 Enforcing Correctness

This information quality principles states that the metadata contained within a

podcast feed should be factually correct. Some fields of a podcast feed are difficult to

programmatically evaluate. An example of a difficult to evaluate field is the contact

information for the human responsible for maintaining a podcast feed. A system

could be devised such that the validator software attempts to contact the human

59

podcast producers through email, and withhold declaring a feed to be valid until

the human responds. However, even in this scenario, the software could not be

absolutely certain the email response still came for the correct human if the feed

has been compromised and the contact information falsified by a malicious person.

Furthermore, a design goal of PodCop is to have relatively similar performance to

the open source Feed Validator project which operates on RSS feeds on the order of

seconds. Therefore, validations that require human interaction are too slow for the

purposes of this project.

From the perspective of reducing software failures, a podcast feed containing

an incorrect email address may be deemed acceptable if the email address does not

cause unexpected operation of the podcasting client. The same can be said for the

text description field of an episode. If the podcast producer uploads text data that

contains grammatical errors, or even if the text describes the wrong show, the podcast

client will operate correctly and display the incorrect text. For this project, these

kinds of correctness failures are considered acceptable.

The PodCop validator attempts to identify three possible defects within pod-

casting feeds that can cause operational failures in podcasting software: URI to the

series image, URI to individual media files, and the size attribute of each media file.

Validating the URI involved verifying that the remote host returned the requested

file. Validating the size attribute involved comparing the value provided by the pod-

cast producer with the actual file size of the requested media file. File size failure was

called out by [18] as a common defect with podcasting metadata, with 35% of the file

size attributes containing incorrect values. PodCop confirms this high failure rate.

60

5.1.2 Enforcing Uniqueness

The uniqueness information quality principle is violated when the provided

metadata is insufficient in deterring that a podcast episode is unique. As mentioned

earlier the root cause of uniqueness defects comes from podcast client software that

does not trust the GUID values provided by feed authors. PodCop enforces the

uniqueness principle by checking that each episode URI and episode title fields are

unique to a series. Merging the URI and title field is a substitute for referencing the

GUID value in determining uniqueness in both of the popular podcast aggregators.

Therefore, it is the combination of these fields that must be deemed unique. However,

this project enforces a stricter rule that both the URI and title fields must be unique

independently.

5.1.3 Enforcing Chronology

The chronology podcast quality principle is violated when the publication dates

for Podcast episodes do not reflect the intended ordering of episodes within an ag-

gregator. As demonstrated in the previous chapter, this principle is often violated

when podcasters releases multiple episodes with the same publication date values.

Therefore, the PodCop validator checks the publication date element of each episode

for uniqueness.

5.2 PodCop Results

2,594 podcast feeds were evaluated with this improved validator. Only podcast

feeds that had passed RSS 2.0 validation with the W3C validation tool were considered

as candidates for inspection with PodCop. The measurement phase identified 32,308

feeds (44.39% of the iTunes catalog) that conformed to the RSS 2.0 specification.

61

Requirement Rule Failure %

Correctness Episode URI does Resolve 18.66%
Correctness Image URI does Resolve 7.48%
Correctness Episode Size is Correct 44.56%
Uniqueness Episode URI is Unique 15.84%
Uniqueness Episode Title is Unique 10.61%
Chronology Episode Publish Date is Unique 10.61%

Table 29: PodCop Failure Rate for Individual Rules

Defect Type # Feeds Feed %

RSS 2.0 30580 42.15%
PodCop 21339 29.41%
HTTP 9669 13.33%
No Defects 10969 15.12%

Table 30: Overall Failure Rate for All Podcasts

To reduce the PodCop execution time, a random set of feeds was generated. From

the RSS 2.0 compliant set 2,400 feeds were randomly selected. Furthermore, the

most popular 15 valid podcasts from each iTunes category were also selected. Some

podcasts are popular in more than one category. Removing the duplicate popular

feeds yielded 194 additional RSS 2.0 compliant podcasts for inspection. Together the

selected set of random and popular feeds represent 8% of the valid feeds and 3.6% of

all feeds captured from iTunes.

Overall 66.50% of the RSS 2.0 compliant podcast feeds evaluated with the

improved validator failed at least one of the quality requirements. Table 29 breaks

the failures down by individual rule. Given that the measurement phase discovered

a large number of feeds from the iTunes catalog could not be requested (13.33%)

or failed the W3C validation (42.15%), we can predict that 84.88% of all podcast

feeds from the iTunes catalog contain defects. Extrapolating the findings from the

improved validator over the set of iTunes feeds suggests the following distribution of

data defects listed in Table 30.

62

5.2.1 Random Podcasts

The set of random podcast feeds were evaluated in six separate batches (four

lots of 100 feeds and two lots of 1000 feeds). These batches were processed across

different computers and separate networks. No significant differences were detected

in the results based on computer or network used. Therefore we conclude that these

findings can be reproduced independent of the computers and networks used during

this thesis. Overall PodCop discovered defects in 66.07% of the randomly selected

feeds. The improved validator results for each lot of random feeds are reported in

Table 31.

5.2.2 Popular Podcasts

Surprisingly the set of popular podcasts had a higher failure rate when com-

pared to the set of random podcasts. The set of popular podcasts had a failure rate

of 71.58%. Table breaks the results down by individual rule. The most noticeable

quality difference between the two sets is in the higher occurrence of duplication of

episode titles and publication dates. A human inspection of the popular feeds revealed

that popular shows from American public radio networks publish multiple media files

on the same day with the same timestamps. Although these popular feeds contained

more duplication, the media files references from the popular feeds could be retrieved

with a higher success rate. This is somewhat understandable as we can expect the

popular shows to have more motivation for ensuring their episodes can be reliably

retrieved.

In this chapter we have created an improved feed validation service. We have

demonstrated that a small number of podcast specific rules can detect the defects

that are known to cause quality failures in commercial podcasting systems. Based

on the findings of this improved validation service, we predict that nearly 85% of

63

R
e
q
u
ir
e
m
e
n
t

R
u
le

(A
)

(B
)

(C
)

(D
)

(E
)

(F
)

C
or

re
ct

n
es

s
E

p
is

o
d
e

U
R

I
d
o
es

R
e-

so
lv

e
19

.5
7%

22
.9

2%
20

.4
3%

12
.6

3%
18

.5
4%

19
.9

1%

C
or

re
ct

n
es

s
Im

ag
e

U
R

I
d
o
es

R
es

ol
ve

10
.6

1%
8.

70
%

7.
46

%
7.

46
%

7.
46

%
7.

46
%

C
or

re
ct

n
es

s
E

p
is

o
d
e

S
iz

e
is

C
or

re
ct

45
.0

0%
45

.2
4%

25
.3

5%
21

.0
5%

46
.0

0%
42

.5
%

U
n
iq

u
en

es
s

E
p
is

o
d
e

U
R

I
is

U
n
iq

u
e

10
.8

7%
13

.5
4%

15
.0

5%
21

.0
5%

16
.6

8%
16

.7
9%

U
n
iq

u
en

es
s

E
p
is

o
d
e

T
it

le
is

U
n
iq

u
e

7.
61

%
15

.6
3%

16
.1

3%
6.

32
%

8.
83

%
8.

83
%

C
h
ro

n
ol

og
y

E
p
is

o
d
e

P
u
b
li
sh

D
at

e
is

U
n
iq

u
e

4.
35

%
11

.4
6%

11
.8

3%
11

.5
8%

10
.1

4%
10

.9
8%

Table 31: PodCop Results from Random Podcast Feed Sets

64

Requirement Rule Failure %

Correctness Episode URI does Resolve 12.63%
Correctness Image URI does Resolve 7.46%
Correctness Episode Size is Correct 55.91%
Uniqueness Episode URI is Unique 8.42%
Uniqueness Episode Title is Unique 20.00%
Chronology Episode Publish Date is Unique 18.95%

Table 32: PodCop Results from Popular Podcast Feed Set

podcast feeds contain some defect. The use of PodCop can help podcasters prevent

a poor user experience for their subscribers.

65

CHAPTER VI

RELATED WORK

From computer networking researchers to commercial media rating organiza-

tions, a variety of research communities have published works exploring the various

aspects of podcasting usage and production. We now review these works and where

appropriate discuss how this thesis contributes to and extends this body of work.

6.1 Podcasting in Education

The research community has shown a great deal of interest in incorporating

podcasting into higher education. This interest is expressed through the publication

of papers that examine the applicability of podcasting to the classroom and university

administration. Case studies of supplementing and replacing traditional lectures with

podcasting are shared, as well as lessons learned from the recording and publishing

of podcasts in an academic context.

To understand the attitudes of engineering and computer science students to-

wards podcasting as an education tool, surveys were conducted at a variety of univer-

66

sities [6, 21, 27, 35]. Students generally viewed podcasting favorably as a supplement

to lectures. [21] inverts a semester of his senior software engineering course, where

lectors are given outside of class time in the form of a podcast, and class time is used

for projects. The author found that the exam scores of students in the traditional

section of the class, and the inverted class were the same. However, the students in

the inverted class had project scores that were 10% higher than the traditional class.

Many guidelines have been published that outline recommendations for record-

ing podcast episodes [13, 23, 45, 48] and suggestions for creating engaging academic

content for distribution through podcasting. [27][26] attempts to automate the re-

coding process, and describe systems for automatically capturing and publishing aca-

demic lectures.

6.2 Podcasting in Mobile Networks

[24] describes a protocol for distributing podcast episodes through a wireless

ad- hoc network (such as mobile phones). The protocol calls for each node of the

network to maintain two caches of podcast episodes. One cache stores episodes for

shows the user has explicitly subscribed to (they call it the private cache), and the

second cache is for storing episodes for the purpose of redistributing them to other

nodes that may be interested in them (they call it the public cache). The protocol

has two phases, during the first phase each node simply asks the other if they have

any new episodes for shows that the user has a subscription for (from either cache).

The second phase is for populating the private cache in a manner that is healthy

for the network overall. The authors investigate which technique is most optimal to

ensuring nodes always receive episodes they want in a timely manner. They inves-

tigate 5 techniques: Most Solicited, Least Solicited, Uniform, Inverse Proportional,

and No Caching. After running each of these techniques through a simulation, it was

67

discovered that randomly selecting an episodes for propagation to the next node was

the most optimal. They revisit episode propagation in [28]. Here they implement

a Wireless Ad-hoc Podcasting peer-to-peer client, and measure the performance of

their system with mobile devices.

[2] describes yet another method for disseminating podcasts through a wire-

less ad hoc network. Unlike [24] and [28], this protocol also distributes the lists of

podcasts that are available to be subscribed to in the network. The authors present

two methods for how nodes in the network communicate and pass podcast data: a

P2P mode and a cluster mode. The cluster mode contains the concept of a cluster

head, which is a node that is the strongest (in terms of attributes such as power or

connectivity). The neighboring nodes only communicate with the cluster head rather

than with its other neighbors that are within communication range. This organization

reduces the amount of communication overhead in the network overall.

[46] investigates distributing podcast episodes to users in an urban environ-

ment. In this investigation, podcasts were either transmitted from a cellular tower

to a handset, or were sent from handset to handset in an ad-hoc manner. The con-

straints that were experimented with were the density of cell towers, the density of

users, the movement or users, and the number of users that had handsets that could

actually receive from a tower. Distributing multimedia content to mobile phones is

also investigated in [1].

[20] looks at the distribution of podcasts through a wireless ad hoc network of

mobile devices with a focus on discovering the best method for determine how popular

a podcast is within the network. It compares local knowledge (how many times

a series was requested from other nodes) with second hand knowledge (how popular

other nodes claim a podcast is). They created a simulator that took into consideration

that mobile nodes usually live in isolated communities, and isolated communities may

68

have different interests and hence have different podcast popularities.

6.3 Podcast Metrics

Microsoft Research [18] examined 8000 podcast feeds from the Zune ecosystem.

They examine three aspects of podcasting: the information found through the inspec-

tion of RSS feeds, the usage patterns of podcast consumers, and the dissemination

pattern of podcast data through a network. For inspecting RSS feeds the authors

created a crawler similar to this thesis. For inspecting usage patterns of consumers

the authors inspected the proprietary Zune usage data that is reported by the Zune

software to the Zune cloud service. Finally the authors consider whether or not P2P

sharing of podcasts through an ad hoc network is efficient. [25] performed a survey of

RSS similar to [18] but without the focus on podcasting. They provides data around

RSS size and update frequency.

[4] describes a model for generating synthetic podcast traffic through a net-

work. In order to understand the parameters that define the model, the authors

polled podcast feeds on twenty minute intervals over a thirty day period. The focus

of their findings was around file size and release frequency; however their sample set

was small (only 875 feeds collected from now defunct websites).

6.4 Podcast Search

The authors of [34] describe a Japanese language podcast search service they

created that has two innovations. First, it performs full speech recognition on each

episode, and indexes the words for text based searching. Second, it provides an easy

to use interface for users to fix recognition errors. These fixes are then used to improve

the speech recognition creating a positive feedback loop.

69

[9] seeks to gain an understand of how users currently search for podcasts, how

they perceive podcast search, and how they would like to search for podcasts. The

authors performed two rounds of user research. First they distributed an anonymous

survey, and second they performed in person interviews. Unsurprisingly, iTunes was

the most popular podcast search service used by the subjects. Emphasis was made

around the fact that most users thought that speech recognition of podcasts was not

possible, and therefore content within an episode was not searchable.

[32] describes a text to speech system that takes a document as input and

creates a series of podcast episodes as output. A heuristic is applied to the docu-

ment in order to identify independent sections. Each of these independent sections

(delineated by things such as bullet point, bolded titles, and numbering) becomes a

podcast.

6.5 Podcast Consumption

The Pew Research Center and Edison Research both have produced studies

of consumer adoption of podcasting. The Pew Internet Podcast Memo of 2008 [37]

revealed 19% of internet users have download a podcast (12% in 2006). 22% of online

men, 16% of online women. People with higher incomes have downloaded podcasts

more than lower income earners. People with higher education have downloaded

podcasts more than lower education. In 2008 a joint Arbitron and Edison paper [14]

reported the percentage of the total U.S. population that is familiar with podcast-

ing was the same at 37%. Found that 18% of the total population had listend to a

podcast. Most downloadable media was consumed on a desktop computer. 71% of

podcasts consumed on a PC, and 29% consumed with a portable media device. Pod-

cast consumers are very active online purchasers, 82% versus 59% of the population

at large. A follow-up report from 2009 [15] found the number of people who have

70

heard of podcasting increased to 43%. The stats were again updated with figures for

2010 [16].

6.6 Podcast Applications

[40] describes the planning and construction of essentially a public art fixture

intended to provide easy access to audio content such as streaming radio and podcasts.

The fixture takes hand gestures as input that allows the non-tech savvy user to

select the podcasts they may be interested in listening to. The paper discusses the

construction of the system, but does not provide any data around usage of the system

by real users. [11] demonstrates the merging RSS with mapping systems. It describes

a system that parses RSS for location clues and then superimposed the feed entry

onto a map to give the user the ability to browse news in a geographical context. [44]

describe an audio tour system that includes an animated map that helps guide users

through a physical area. The application they created uses location based information

to playback podcasts at pre- defined geographical locations.

71

CHAPTER VII

CONCLUSION AND FUTURE WORK

Users encounter frequent information quality problems in podcasting systems.

The defects that are causing these problems exist despite the availability of a feed

validation service provided by the World Wide Web Consortium. Therefore, we have

concluded that the existing feed validator service alone is insufficient at detecting

information quality defects that are specific to podcasting. To better understand the

extent of this data quality problem, and to provide a mechanism for improving the

quality of podcasting systems we have applied the Total Data Quality Management

methodology to podcasting data.

To build an understanding of the information quality problems encountered

by users of podcasting systems we performed a measurement and analysis of popu-

lar commercial podcasting platforms. To perform the measurement we constructed

PodBot, an automated web agent. PodBot performed a crawl of 72,786 unique pod-

cast feeds found in the sixteen categories of the iTunes catalog. The size and values

of various feed elements were captured and summarized in order to build a model

of podcast metadata. Metrics were examined over multiple dimensions, including

72

iTunes category and popularity. We believe this was the most comprehensive effort

at modeling podcasting metadata to date.

Existing feed validation services were explored so as to understand how data

quality is currently validated by podcast producers. Really Simple Syndication 2.0,

the markup language specification used for syndicating podcasting content, was de-

scribed. The open source Feed Validation project which is the software used by the

World Wide Web Consortium for its RSS 2.0 validation services was encapsulated

and included in PodBot. PodBot attempted to validate each feed from the iTunes

catalog for RSS 2.0 compliance. It was found that 42% of all podcasts feeds failed

this validation.

Following the Total Data Quality Management methodology we performed an

analysis of information quality problems using feeds that had successfully passed

validation. Information quality problems were reproduced with the Zune podcasting

software from Microsoft. The quality problems demonstrated with Zune using valid

feeds were classified into families of podcast specific failures. From this classification

we defined a series of five data quality requirements for podcasting. We have labeled

these requirements: Correctness, Uniqueness, Platform Adherence, Chronology, and

Performance. From this analysis we concluded that the existing validation service is

insufficient at guaranteeing a feed is free from defects that cause failures in podcasting

systems.

Finally to provide a mechanism for detecting podcast specific defects in valid

RSS feeds we constructed an improved validation tool - PodCop. This improved

validator contains rules for enforcing the Correctness, Uniqueness, and Chorology data

quality requirements. 2,594 RSS 2.0 complaint feeds were evaluated with the PodCop.

66% of these feeds were identified as being in violation of a quality requirement rule.

Therefore we have demonstrated that PodCop is capable of detecting defects that

73

cause information quality problems is podcasting systems.

7.1 Future Work

Opportunities exist to continue building a more comprehensive model of pod-

casting. This thesis as well as the previous measurement attempts [4, 18] have cap-

tured metrics through the inspection of podcasting feeds. Therefore, the character-

istics of the multimedia files that comprise the episodes of a podcast series are still

unknown. We can envision a future version of the PodBot that downloads and in-

spects both the feed and all of the files linked to from within the feed. Furthermore,

given that a survey of podcast episodes would need to download and inspect files that

are many orders of magnitude larger than an RSS feed, we recommend the creation

of a distributed client. This next generation podcast research client could run in par-

allel with iTunes, and inspect episodes as users naturally download them for personal

consumption. This research client could be hosted by students over the course of a

semester, thus preventing the overloading of any single research node.

From a data quality perspective, more can be done to understand feeds that

fail RSS 2.0 validation. The version of the PodBot used in this thesis did not attempt

to parse invalid feeds. The metrics captured from the various elements of a podcast

feed come only from those feeds that were found to be RSS 2.0 compliant. Therefore,

the characteristics of an invalid feed are largely unknown. Of particular interest would

be the values of the generator element. Capturing this value would provide insight

into which RSS authoring tools are producing the invalid markup.

An assumption at the time of PodBot development was that the .NET Syn-

dicationFeed component would not necessarily be able to successfully parse invalid

markup. Experiments are needed to understand the performance of this .NET com-

ponent with a known set of invalid feeds. This experimentation would reveal whether

74

or not the SyndicationFeed is an appropriate tool for capturing podcasting metrics

regardless of RSS compliance.

Finally, more effort is needed to understand how podcast feeds are unique

from traditional newsfeeds. From this understanding a more refined and targeted set

of podcast quality requirements can be developed. Podcasting systems are changing

constantly. This thesis focused on rules appropriate to existing desktop client systems.

However, podcasting systems are now made available on a variety of mobile computing

platforms. Therefore work is needed to ensure the quality rules proposed here are

applicable to this new context. Improving and validating the quality requirements

against new platforms will enable the development of future podcast validators.

75

BIBLIOGRAPHY

[1] D. Aldrich, B. Bell, and T. Batzel. Automated podcasting solution expands the

boundaries of the classroom. In Proceedings of the 34th annual ACM SIGUCCS

fall conference, SIGUCCS ’06, pages 1–4, New York, NY, USA, 2006. ACM.

[2] A. Andronache, M. R. Brust, and S. Rothkugel. Hycast- podcast discovery in

mobile networks. In Proceedings of the 3rd ACM workshop on Wireless multi-

media networking and performance modeling, WMuNeP ’07, pages 27–34, New

York, NY, USA, 2007. ACM.

[3] Apple. Making a podcast. http://www.apple.com/itunes/podcasts/specs.html,

August 2012.

[4] A. Banerjee, M. Faloutsos, and L. Bhuyan. Profiling podcast-based content

distribution. In INFOCOM Workshops 2008, IEEE, pages 1 –6, april 2008.

[5] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data

quality assessment and improvement. ACM Comput. Surv., 41(3):16:1–16:52,

July 2009.

[6] E. Berger. Podcasting in engineering education: A preliminary study of content,

student attitudes, and impact. Innovate, 4(1), 2008.

[7] Berkman Center for Internet & Society. Rss history.

http://cyber.law.harvard.edu/rss/rssVersionHistory.html, June 2011.

[8] Berkman Center for Internet & Society. Rss 2.0 at harvard law.

http://cyber.law.harvard.edu/rss/rss.html, 2012.

76

[9] J. Besser, K. Hofmann, and M. Larson. An exploratory study of user goals and

strategies in podcast search. In LWA, pages 27–34, 2008.

[10] H. Bui, D. Wright, C. Helm, R. Witty, P. Flynn, and D. Thain. Towards long term

data quality in a large scale biometrics experiment. In Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing,

HPDC ’10, pages 565–572, New York, NY, USA, 2010. ACM.

[11] Y.-F. R. Chen, G. Di Fabbrizio, D. Gibbon, S. Jora, B. Renger, and B. Wei.

Geotracker: geospatial and temporal rss navigation. In Proceedings of the 16th

international conference on World Wide Web, WWW ’07, pages 41–50, New

York, NY, USA, 2007. ACM.

[12] M. Collins, C. Reynolds, C. Le, C. Varol, and C. Bayrak. Automated data

verification in a format-free environment. SIGSOFT Softw. Eng. Notes, 31(2):1–

4, Mar. 2006.

[13] J. Duffy. How to create a podcast for e-learning: Coverage from the devlearn

2010 conference. eLearn, 2010(11), Nov. 2010.

[14] Edison Research. The podcast consumer revealed.

http://www.edisonresearch.com/2008 Edison Arbitron Podcast Report.pdf,

2008.

[15] Edison Research. The podcast consumer revealed 2009.

http://www.edisonresearch.com/2009 Edison Podcast Consumer Revealed.pdf,

2009.

[16] Edison Research. The current state of podcasting.

http://www.edisonresearch.com/2010 Edison Podcast Study Data Graphs

Only.pdf, 2010.

77

[17] J. D. González Arvelo and J. P. Aspas. Design and implementation of a mul-

timedia content delivery system for portable devices. In Proceedings of the 3rd

international conference on Mobile multimedia communications, MobiMedia ’07,

pages 13:1–13:6, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering).

[18] D. Gunawardena, T. Karagiannis, A. Proutiere, and M. Vojnovic. Characterizing

podcast services: publishing, usage, and dissemination. In Proceedings of the

9th ACM SIGCOMM conference on Internet measurement conference, IMC ’09,

pages 209–222, New York, NY, USA, 2009. ACM.

[19] C. Hantak. Gamercast network. http://feeds.feedburner.com/gamercastnetwork,

June 2012.

[20] L. Hu and L. Dittmann. Reputation system for user-generated podcasting un-

der community based mobility model. In Proceedings of the 4th Annual Inter-

national Conference on Wireless Internet, WICON ’08, pages 75:1–75:8, ICST,

Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[21] W. Hürst, M. Welte, and S. Jung. An evaluation of the mobile usage of e-

lecture podcasts. In Proceedings of the 4th international conference on mobile

technology, applications, and systems and the 1st international symposium on

Computer human interaction in mobile technology, Mobility ’07, pages 16–23,

New York, NY, USA, 2007. ACM.

[22] B. L. Kurtz, J. B. Fenwick, Jr., and C. C. Ellsworth. Using podcasts and tablet

pcs in computer science. In Proceedings of the 45th annual southeast regional

conference, ACM-SE 45, pages 484–489, New York, NY, USA, 2007. ACM.

78

[23] L. Larraga and D. Coleman. Video podcasting is not as hard or as expensive

as you think. In Proceedings of the 35th annual ACM SIGUCCS fall conference,

SIGUCCS ’07, pages 202–206, New York, NY, USA, 2007. ACM.

[24] V. Lenders, M. May, G. Karlsson, and C. Wacha. Wireless ad hoc podcasting.

SIGMOBILE Mob. Comput. Commun. Rev., 12(1):65–67, Jan. 2008.

[25] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client behavior and feed charac-

teristics of rss, a publish-subscribe system for web micronews. In Proceedings of

the 5th ACM SIGCOMM conference on Internet Measurement, IMC ’05, pages

3–3, Berkeley, CA, USA, 2005. USENIX Association.

[26] S. E. Madnick, R. Y. Wang, Y. W. Lee, and H. Zhu. Overview and framework

for data and information quality research. J. Data and Information Quality,

1(1):2:1–2:22, June 2009.

[27] D. J. Malan. Podcasting computer science e-1. SIGCSE Bull., 39(1):389–393,

Mar. 2007.

[28] M. May, V. Lenders, G. Karlsson, and C. Wacha. Wireless opportunistic pod-

casting: implementation and design tradeoffs. In Proceedings of the second ACM

workshop on Challenged networks, CHANTS ’07, pages 75–82, New York, NY,

USA, 2007. ACM.

[29] Microsoft. Providing content for zune. http://zune.net/en-

US/support/usersguide/podcasts/create.htm, 2012.

[30] Microsoft. Rss: Publishing news via xml. http://msdn.microsoft.com/en-

us/library/ms947599.aspx, August 2012.

[31] Microsoft. Syndicationfeed class. http://msdn.microsoft.com/en- us/library/sys-

tem.servicemodel.syndication.syndicationfeed.aspx, August 2012.

79

[32] G. Mori, M. C. Buzzi, M. Buzzi, and B. Leporini. Structured audio podcasts via

web text-to-speech system. In Proceedings of the 19th international conference

on World wide web, WWW ’10, pages 1281–1284, New York, NY, USA, 2010.

ACM.

[33] National Public Radio. Npr: Hourly news summary podcast.

http://www.npr.org/rss/podcast.php?id=500005, 2012.

[34] J. Ogata and M. Goto. Podcastle: a spoken document retrieval system for

podcasts and its performance improvement by anonymous user contributions.

In Proceedings of the third workshop on Searching spontaneous conversational

speech, SSCS ’09, pages 37–38, New York, NY, USA, 2009. ACM.

[35] P. R. Ormond. Podcasting enhances learning. J. Comput. Sci. Coll., 24(1):232–

238, Oct. 2008.

[36] A. Page, K. Johnston, B. Rollison, and L. Finnel. How We Test Software at

Microsoft. Microsoft Press, 2009.

[37] Pew Research Center. Pew internet project podcast

2008 memo. http://www.pewinternet.org/ /media/Files/Re-

ports/2008/PIP Podcast 2008 Memo.pdf.pdf, 2008.

[38] M. Pilgrim and S. Ruby. Feed validator. http://feedvalidator.sourceforge.net/,

August 2012.

[39] RSS Advisory Board. Rss advisory board charter.

http://www.rssboard.org/charter, August 2012.

[40] E. Rubegni, J. Brunk, M. Caporali, and A. Rizzo. Wi-roni: a gesture tangible

interface for experiencing internet content in public spaces. In Proceedings of

80

the 2007 workshop on Tagging, mining and retrieval of human related activity

information, TMR ’07, pages 15–22, New York, NY, USA, 2007. ACM.

[41] O. A. Schulte, T. Wunden, and A. Brunner. Replay: an integrated and open

solution to produce, handle, and distributeaudio-visual (lecture) recordings. In

Proceedings of the 36th annual ACM SIGUCCS fall conference: moving moun-

tains, blazing trails, SIGUCCS ’08, pages 195–198, New York, NY, USA, 2008.

ACM.

[42] M. Tsagkias, M. Larson, and M. de Rijke. Predicting podcast preference: An

analysis framework and its application. J. Am. Soc. Inf. Sci. Technol., 61(2):374–

391, Feb. 2010.

[43] M. Tsagkias, M. Larson, W. Weerkamp, and M. de Rijke. Podcred: a framework

for analyzing podcast preference. In Proceedings of the 2nd ACM workshop on

Information credibility on the web, WICOW ’08, pages 67–74, New York, NY,

USA, 2008. ACM.

[44] K. Tsuruoka and M. Arikawa. An authoring tool for urban audio tours with

animated maps. In Proceedings of the 2008 International Conference on Advances

in Computer Entertainment Technology, ACE ’08, pages 330–333, New York, NY,

USA, 2008. ACM.

[45] B. J. Voyer and C. W. Crane. Using new media to improve self-help for clients and

staff. In Proceedings of the 38th annual fall conference on SIGUCCS, SIGUCCS

’10, pages 235–240, New York, NY, USA, 2010. ACM.

[46] V. Vukadinović and G. Karlsson. Spectral efficiency of mobility-assisted podcast-

ing in cellular networks. In Proceedings of the Second International Workshop

81

on Mobile Opportunistic Networking, MobiOpp ’10, pages 51–57, New York, NY,

USA, 2010. ACM.

[47] R. Y. Wang. A product perspective on total data quality management. Commun.

ACM, 41(2):58–65, Feb. 1998.

[48] T. B. Wolff. Podcasting made simple. In Proceedings of the 34th annual ACM

SIGUCCS fall conference, SIGUCCS ’06, pages 413–418, New York, NY, USA,

2006. ACM.

[49] World Wide Web Consortium. About w3c. http://www.w3.org/Consortium/,

2012.

[50] World Wide Web Consortium. Feed validation service.

http://validator.w3.org/feed/, 2012.

82

APPENDIX

83

Listing 1: Example .NET Class SyndicationFeed Usage

1 using System;
2 using System.Collections.Generic;
3 using System.Collections.ObjectModel;
4 using System.ServiceModel.Syndication;
5 using System.Xml;
6 using System.Xml.Linq;
7

8 namespace SyndicationExample {
9 class Program
10 {
11 static void Main(string[] args) {
12 string feed = args[0];
13 XmlReader xmlReader = XmlReader.Create(feed);
14 SyndicationFeed syndicationFeed = SyndicationFeed.Load(

xmlReader);
15 PrintAttributeExtensions(syndicationFeed.AttributeExtensions

);
16 PrintAuthors(syndicationFeed.Authors);
17 PrintBaseUri(syndicationFeed.BaseUri);
18 PrintCategories(syndicationFeed.Categories);
19 PrintContributors(syndicationFeed.Contributors);
20 PrintCopyright(syndicationFeed.Copyright);
21 PrintDescription(syndicationFeed.Description);
22 PrintElementExtensions(syndicationFeed.ElementExtensions);
23 PrintGenerator(syndicationFeed.Generator);
24 PrintId(syndicationFeed.Id);
25 PrintImageUrl(syndicationFeed.ImageUrl);
26 PrintLanguage(syndicationFeed.Language);
27 PrintLastUpdatedTime(syndicationFeed.LastUpdatedTime);
28 PrintLinks(syndicationFeed.Links);
29 PrintTitle(syndicationFeed.Title);
30 PrintItems(syndicationFeed.Items);
31 }
32

33 static void PrintAttributeExtensions(Dictionary <XmlQualifiedName
, String> attributeExtensions)

34 {
35 if (attributeExtensions.Count == 0)
36 {
37 Console.WriteLine("AttributeExtensions : "); return;
38 }
39 foreach (KeyValuePair <XmlQualifiedName , String> keyValuePair

in attributeExtensions) {
40 Console.WriteLine("AttributeExtensions : {0}, {1}",

keyValuePair.Key, keyValuePair.Value);
41 }
42 }
43

44 static void PrintAuthors(Collection <SyndicationPerson > authors)
{

45 if (authors.Count == 0) {
46 Console.WriteLine("Authors : ");
47 return;
48 }
49 foreach (SyndicationPerson syndicationPerson in authors) {
50 Console.WriteLine("Authors : {0}, {1}, {2}",

syndicationPerson.Name, syndicationPerson.Email,

84

syndicationPerson.Uri);
51 }
52 }
53

54 static void PrintBaseUri(Uri baseUri) {
55 if (baseUri == null)
56 {
57 Console.WriteLine("BaseUri : ");
58 return;
59 }
60 Console.WriteLine("BaseUri : {0}", baseUri.ToString());
61 }
62

63 static void PrintCategories(Collection <SyndicationCategory >
categories) {

64 if (categories.Count == 0) {
65 Console.WriteLine("Categories : ");
66 r e t u r n ;
67 }
68 foreach (SyndicationCategory syndicationCategory in

categories) {
69 Console.WriteLine("Categories : {0}, {1}, {2}",

syndicationCategory.Label, syndicationCategory.Name,
syndicationCategory.Scheme);

70 }
71 }
72

73 static void PrintContributors(Collection <SyndicationPerson >
contributors) {

74 if (contributors.Count == 0)
75 {
76 Console.WriteLine("Contributors : ");
77 return;
78 }
79 foreach (SyndicationPerson syndicationPerson in contributors

) {
80 Console.WriteLine("Contributors : {0}, {1}, {2}",

syndicationPerson.Name, syndicationPerson.Email,
syndicationPerson.Uri.ToString());

81 }
82 }
83

84 static void PrintCopyright(TextSyndicationContent copyright) {
85 if (copyright == null) {
86 Console.WriteLine("Copyright : ");
87 return;
88 }
89 Console.WriteLine("Copyright : {0}", copyright.Text);
90 }
91

92 static void PrintDescription(TextSyndicationContent description)
{

93 if (description == null)
94 {
95 Console.WriteLine("Description : ");
96 r e t u r n ;
97 }
98 Console.WriteLine("Description : {0}", description.Text);

85

99 }
100

101 static void PrintElementExtensions(
SyndicationElementExtensionCollection elementExtensions)

102 {
103 if (elementExtensions.Count == 0) {
104 Console.WriteLine("ElementExtensions : ");
105 return;
106 }
107 foreach (SyndicationElementExtension

syndicationElementExtension in elementExtensions) {
108 XElement xElement = syndicationElementExtension.

GetObject <XElement >();
109 Console.Write("ElementExtensions : {0}, {1}, {2}",

syndicationElementExtension.OuterName ,
syndicationElementExtension.OuterNamespace , xElement
.Value);

110 if (xElement.HasAttributes)
111 {
112 foreach (XAttribute xAttribute in xElement.

Attributes()) {
113 Console.Write(" , {0}, {1}", xAttribute.Value,

xAttribute.Name); }
114 }
115 Console.WriteLine();
116 }
117 }
118

119 static void PrintGenerator(string generator) {
120 Console.WriteLine("Generator : {0}", generator);
121 }
122

123 static void PrintId(string id) {
124 Console.WriteLine("Id : {0}", id);
125 }
126

127 s t a t i c void PrintImageUrl(Uri imageUrl) {
128 if (imageUrl == null)
129 {
130 Console.WriteLine("ImageUrl : ");
131 return;
132 }
133 Console.WriteLine("ImageUrl : {0}", imageUrl.ToString());
134 }
135

136 static void PrintLanguage(string language) {
137 Console.WriteLine("Language : {0}", language);
138 }
139

140 static void PrintLastUpdatedTime(DateTimeOffset lastUpdatedTime)
{

141 Console.WriteLine("LastUpdateTime : {0}", lastUpdatedTime.
ToString());

142 }
143

144 static void PrintLinks(Collection <SyndicationLink > links) {
145 if (links.Count == 0)
146 {

86

147 Console.WriteLine("Links : ");
148 return;
149 }
150 foreach (SyndicationLink syndicationLink in links) {
151 Console.WriteLine("Links : {0}, {1}, {2}, {3}, {4}",

syndicationLink.Title, syndicationLink.Length,
syndicationLink.MediaType , syndicationLink.
RelationshipType , syndicationLink.Uri.ToString);

152 }
153 }
154

155 static void PrintTitle(TextSyndicationContent title) {
156 if (title == null)
157 {
158 Console.WriteLine("Title : ");
159 return;
160 }
161 Console.WriteLine("Title : {0}", title.Text);
162 }
163

164 static void PrintItems(IEnumerable <SyndicationItem > items) {
165 foreach (SyndicationItem syndicationItem in items) {
166 Console.WriteLine();
167 Console.WriteLine("

==");
168 Console.WriteLine("Item : ");
169 PrintAttributeExtensions(syndicationItem.

AttributeExtensions);
170 PrintAuthors(syndicationItem.Authors);
171 PrintBaseUri(syndicationItem.BaseUri);
172 PrintCategories(syndicationItem.Categories);
173 PrintContent(syndicationItem.Content);
174 PrintContributors(syndicationItem.Contributors);
175 PrintCopyright(syndicationItem.Copyright);
176 PrintElementExtensions(syndicationItem.ElementExtensions

);
177 PrintId(syndicationItem.Id);
178 PrintLastUpdatedTime(syndicationItem.LastUpdatedTime);
179 PrintLinks(syndicationItem.Links);
180 PrintPublishDate(syndicationItem.PublishDate);
181 PrintSummary(syndicationItem.Summary);
182 PrintTitle(syndicationItem.Title);
183 }
184 }
185

186 static void PrintContent(SyndicationContent content) {
187 if (content == null)
188 {
189 Console.WriteLine("Content : ");
190 return;
191 }
192 Console.WriteLine("Content : {0}", content.Type);
193 }
194

195 static void PrintPublishDate(DateTimeOffset publishDate) {
196 Console.WriteLine("PublishDate : {0}", publishDate.ToString

());
197 }

87

198

199 static void PrintSummary(TextSyndicationContent summary) {
200 if (summary == null)
201 {
202 Console.WriteLine("Summary : ");
203 return;
204 }
205 Console.WriteLine("Summary : {0}", summary.Text);
206 }
207 }
208 }

88

Element Description Example

title The name of the channel. It’s

how people refer to your ser-

vice. If you have an HTML

website that contains the same

information as your RSS file,

the title of your channel should

be the same as the title of your

website.

GoUpstate.com News Head-

lines

link The URL to the HTML web-

site corresponding to the chan-

nel.

http://www.goupstate.com/

description Phrase or sentence describing

the channel.

The latest news from GoUp-

state.com, a Spartanburg

Herald-Journal Web site.

language The language the channel is

written in. This allows aggre-

gators to group all Italian lan-

guage sites, for example, on a

single page. A list of allow-

able values for this element, as

provided by Netscape, is here.

You may also use values de-

fined by the W3C.

en-us

89

copyright Copyright notice for content in

the channel.

Copyright 2002, Spartanburg

Herald-Journal

managingEditor Email address for person re-

sponsible for editorial content.

geo@herald.com (George

Matesky)

webMaster Email address for person re-

sponsible for technical issues

relating to channel.

betty@herald.com (Betty

Guernsey)

pubDate The publication date for the

content in the channel. For

example, the New York Times

publishes on a daily basis, the

publication date flips once ev-

ery 24 hours. That’s when

the pubDate of the channel

changes. All date-times in RSS

conform to the Date and Time

Specification of RFC 822, with

the exception that the year

may be expressed with two

characters or four characters

(four preferred).

Sat, 07 Sep 2002 00:00:01

GMT

lastBuildDate The last time the content of

the channel changed.

Sat, 07 Sep 2002 09:42:31

GMT

90

category Specify one or more categories

that the channel belongs to.

Follows the same rules as the

<item>-level category element.

<category>Newspapers

</category>

generator A string indicating the pro-

gram used to generate the

channel.

MightyInHouse Content Sys-

tem v2.3

docs A URL that points to the doc-

umentation for the format used

in the RSS file. It’s proba-

bly a pointer to this page. It’s

for people who might stumble

across an RSS file on a Web

server 25 years from now and

wonder what it is.

http://blogs.law.harvard

.edu/tech/rss

cloud Allows processes to register

with a cloud to be notified of

updates to the channel, imple-

menting a lightweight publish-

subscribe protocol for RSS

feeds.

<cloud

domain=‘‘rpc.sys.com’’

port=‘‘80’’

path=‘‘/RPC2’’

registerProcedure=‘‘pingMe’’

protocol="soap"/>

91

ttl ttl stands for time to live. It’s

a number of minutes that in-

dicates how long a channel

can be cached before refreshing

from the source.

<ttl>60</ttl>

image Specifies a GIF, JPEG or PNG

image that can be displayed

with the channel.

rating The PICS rating for the chan-

nel.

textInput Specifies a text input box that

can be displayed with the

channel.

skipHours A hint for aggregators telling

them which hours they can

skip.

skipDays A hint for aggregators telling

them which days they can skip.

Table 33: RSS 2.0 Channel Elements

92

Feeds Error

2405 Undefined root element: xhtml:html

2084 Undefined root element: script

2024 XML parsing error: <unknown>:6:41: not well-formed (invalid token)

2012 link must be a full and valid URL

1897 Invalid email address

1480 Incorrect day of week

1394 pubDate must be an RFC-822 date-time

1254 Invalid character in a URI

1184 Undefined channel element: itunes:link

1097 Undefined root element: html

1093 guid values must not be duplicated within a feed

1023 Unexpected Text

1010 width must be between 1 and 144

867 Missing channel element: description

657 Invalid duration

652 url must be a full URL

637 lastBuildDate must be an RFC-822 date-time

628 language must be an ISO-639 language code

601 XML parsing error: <unknown>:23:35: not well-formed (invalid token)

567 href must be a full URL

546 Incorrect day of week (2 occurrences)

502 Undefined channel element: itunes:complete

499 Missing image element: link

490 Undefined channel element: itunes:provider

93

409 Missing image element: title

386 Missing atom:link with rel=”self”

360 Missing itunes:image attribute: href (100 occurrences)

358 Missing itunes:owner element: itunes:email

357 Unexpected Text (100 occurrences)

342 Educational Technology is not one of the predefined iTunes categories

or sub-categories

342 Missing itunes:image attribute: href

334 pubDate must be an RFC-822 date-time (2 occurrences)

320 length attribute of enclosure must be a positive integer

320 Undefined item element: itunes:category

310 XML parsing error: <unknown>:1:0: syntax error

306 Undefined channel element: background1

306 Undefined channel element: background2

306 Undefined channel element: displayrows

306 Undefined channel element: foreground

306 Undefined channel element: lg:headerimage

306 Undefined channel element: link:color

306 Undefined channel element: md:headerimage

306 Undefined channel element: show:xmltag

306 Undefined channel element: sm:headerimage

306 Undefined channel element: textsize

306 Undefined channel element: title:bg

306 Undefined channel element: title:fg

94

292 Podcasting is not one of the predefined iTunes categories or subcate-

gories

Table 34: The Top 50 RSS 2.0 Violations in Podcast

Feeds

95

Element Description Example

title The title of the item. Venice Film Festival Tries to Quit
Sinking.

link The URL of the item. http://nytimes.com/2004/12/

07FEST.html

description The item synopsis. Some of the most heated chatter
at the Venice Film Festival this
week was about the way that the
arrival of the stars at the Palazzo
del Cinema was being staged.

author Email address of the author of the
item.

oprah@oxygen.net

category Includes the item in one or more
categories.

comments URL of a page for comments re-
lating to the item.

http://www.myblog.org/cgi-

local/mt/mt-comments.cgi?

entry id=290

enclosure Describes a media object that is
attached to the item.

guid A string that uniquely identifies
the item.

http://inessential.com/2002/

09/01.php#a2

pubDate Indicates when the item was pub-
lished.

Sun, 19 May 2002 15:21:36 GMT

source The RSS channel that the item
came from.

Table 35: The RSS 2.0 Item Elements

96

Domain # Feeds Feed %

feedburner.com 17616 24.25%
libsyn.com 3753 5.17%
podbean.com 2481 3.42%
podomatic.com 1898 2.61%
blip.tv 1583 2.18%
blogtalkradio.com 1193 1.64%
mypodcast.com 852 1.17%
talkshoe.com 831 1.14%
mac.com 755 1.04%
apple.com 652 0.90%
me.com 565 0.78%
mevio.com 512 0.72%
podiobooks.com 438 0.60%
librivox.org 409 0.56%
gcast.com 310 0.44%
amazonaws.com 305 0.42%
hipcast.com 291 0.40%
bbc.co.uk 276 0.38%
libsynpro.com 271 0.37%
podcastmachine.com 237 0.33%
podspot.de 213 0.29%
audioacrobat.com 211 0.29%
dw-world.de 169 0.23%
sermonaudio.com 150 0.21%
peerviewpress.com 150 0.21%
npr.org 146 0.20%
odeo.com 138 0.19%
jellycast.com 126 0.17%
revision3.com 124 0.17%
go.com 122 0.17%

Table 36: The Top 30 Domains Hosting Podcast Feeds

97

Feed Popularity

http://feeds.thisamericanlife.org/talpodcast 1.0000000000
http://feeds.feedburner.com/comedycentral/standup 0.2909667500
http://feeds.feedburner.com/themothpodcast 0.2301070800
http://americanpublicmedia.publicradio.org/podcasts/xml/prairi
e home companion/news from lake wobegon.xml

0.1780055500

http://www.qdnow.com/grammar.xml 0.1394481800
http://feeds.feedburner.com/TEDTalks video 0.1343486000
http://selectedshortspri.pri.libsynpro.com/rss 0.1080078700
http://wtfpod.libsyn.com/rss 0.1031321360
http://feeds.newyorker.com/services/rss/feeds/fiction podcast.
xml

0.0986269040

http://www.gcast.com/u/dane cook/main.xml 0.0960611200

Table 37: The Top 10 Most Popular Arts Podcasts

Feed Popularity

http://www.npr.org/rss/podcast.php?id=510289 1.0000000000
http://www.daveramsey.com/media/audio/podcast/podcast itu
nes.xml

0.9912208000

http://podcast.cnbc.com/mmpodcast/lightninground.xml 0.5800561000
http://feeds.wsjonline.com/wsj/podcast wall street journal thi
s morning

0.5766480000

http://feeds.americanpublicmedia.org/MarketplacePodcast 0.4836761000
http://feeds.harvardbusiness.org/harvardbusiness/ideacast 0.4281649600
http://www.apple.com/podcasts/quicktips/apple-quick-tip-of-
the-week.xml

0.3907846500

http://feeds.wnyc.org/onthemedia 0.3906947700
http://www.qdnow.com/money.xml 0.3217286000
http://www.businessweek.com/search/podcasts/cover stories.rs s 0.3042813000

Table 38: The Top 10 Most Popular Business Podcasts

98

Feed Popularity

http://feeds.feedburner.com/comedycentral/standup 1.0000000000
http://www.theonion.com/feeds/radionews/ 0.9951623000
http://feeds.feedburner.com/boyt 0.9634709400
http://podcast.happytreefriends.com/htfrss.xml 0.8517678400
http://feeds.feedburner.com/themothpodcast 0.7939343000
http://feeds.feedburner.com/TheAdamCarollaPodcast 0.7093609600
http://americanpublicmedia.publicradio.org/podcasts/xml/prairi
e home companion/news from lake wobegon.xml

0.6135832700

http://feeds.theonion.com/OnionNewsNetwork 0.6104997400
http://feeds.feedburner.com/vh1 bestweekever 0.5966233000
http://podcast.rickygervais.com/podcast new.xml 0.5680127000

Table 39: The Top 10 Most Popular Comedy Podcasts

Feed Popularity

http://feeds.wnyc.org/radiolab 1.0000000000
http://feeds.feedburner.com/coffeebreakspanish 0.7231777000
http://www.qdnow.com/grammar.xml 0.5882143400
http://feeds.feedburner.com/TEDTalks video 0.5696028000
http://survivalspanish.libsyn.com/rss 0.2955899500
http://writersalmanac.publicradio.org/podcast/feed.php 0.2818662200
http://www.frenchpodclass.com/rss 0.2536054800
http://feeds.feedburner.com/TEDTalks audio 0.2484416400
http://feeds.feedburner.com/coffeebreakfrench 0.2403352300
http://podcast.discoverspanish.com/audiolessons/ 0.2268316600

Table 40: The Top 10 Most Popular Education Podcasts

Feed Popularity

http://www.npr.org/rss/podcast.php?id=35 1.0000000000
http://www.npr.org/rss/podcast.php?id=510208 0.5664123000
http://www.g4tv.com/xplay/podcasts/6/G4 TV XPlay Video
Podcast.xml

0.2471247800

http://www.myextralife.com/ftp/radio/instance rss.xml 0.0798286050
http://www.npr.org/rss/podcast.php?id=4473090&uid=n1qe4e
85742c986fdb81d2d38ffa0d5d53

0.0723763400

http://feeds.tipsfromthetopfloor.com/tftf 0.0723261300
http://feeds.feedburner.com/learningguitarnow 0.0639601950
http://feeds.feedburner.com/GSGPodcasts 0.0632954500
http://feeds.feedburner.com/1UP/1upShow 0.0590947940
http://feeds.ign.com/ignfeeds/podcasts/games/ 0.0562915300

Table 41: The Top 10 Most Popular Games & Hobbies Podcasts

99

Feed Popularity

http://www.democracynow.org/podcast.xml 1.0000000000
http://feeds.feedburner.com/walkintheword/wxZf 0.4419155700
http://www.democracynow.org/podcast-video.xml 0.4115143400
http://feeds.feedburner.com/BestOfTheLeftPodcast 0.3253019000
http://feeds.pbs.org/pbs/frontlineworld 0.2984872000
http://www.qdnow.com/legal.xml 0.2432659000
http://georgewbush- whitehouse.archives.gov/rss/radioaddress.xml 0.2253754000
http://www.mevio.com/feeds/noagenda.xml 0.1611784100
http://feeds.feedburner.com/blasttheright 0.1356372700
http://www.makochemedia.com/files/tjh.xml 0.1316714900

Table 42: The Top 10 Most Popular Government & Organizations Podcasts

Feed Popularity

http://www.daveramsey.com/media/audio/podcast/podcast itu
nes.xml

1.0000000000

http://podrunner.wm.wizzard.tv/rss 0.7293028000
http://www.oprah.com/podcasts/anewearth.xml 0.7089863000
http://feeds.thestranger.com/stranger/savage 0.6077437000
http://feeds.feedburner.com/yogamazing 0.4416526300
http://fitpod.libsyn.com/rss 0.3974276800
http://americanpublicmedia.publicradio.org/podcasts/xml/splen
did table/kitchen questions.xml

0.3646704600

http://feeds.feedburner.com/zencast 0.2574263200
http://feeds.feedburner.com/yogadownload 0.2571052000
http://www.ullreys.com/robert/Podcasts/page4/files/rss.xml 0.2528306500

Table 43: The Top 10 Most Popular Health Podcasts

100

Feed Popularity

http://americanpublicmedia.publicradio.org/podcasts/xml/prairi
e home companion/news from lake wobegon.xml

1.0000000000

http://www.daveramsey.com/media/audio/podcast/podcast itu
nes.xml

0.9131060000

http://www.mugglenet.com/mugglecast/mugglecast.rss 0.4700909000
http://podcasts.sesamestreet.org/SesameStreetPodcast 0.4654681400
http://americanpublicmedia.publicradio.org/podcasts/xml/splen
did table/kitchen questions.xml

0.3313115800

http://feeds.feedburner.com/ellenshow.rss 0.2686919600
http://www.the-leaky-cauldron.org/podcasts/pottercast.rss 0.2661548300
http://radio.disney.go.com/podcasts/itunes/radio disney now.xml 0.2446642400
http://www.qdnow.com/manners.xml 0.2328243700
http://feeds.feedburner.com/Storynory 0.2114372800

Table 44: The Top 10 Most Popular Kids & Family Podcasts

Feed Popularity

http://www.npr.org/rss/podcast.php?id=510019&uid=n1qe4e857
42c986fdb81d2d38ffa0d5d53

1.0000000000

http://feeds.feedburner.com/tiestos club life 0.5682367000
http://podrunner.wm.wizzard.tv/rss 0.5563007600
http://www.ringtonefeeder.com/promo/freedemo.xml 0.4569853000
http://www.npr.org/rss/podcast.php?id=510253 0.4239159500
http://podcast.armadamusic.com/asot/podcast.xml 0.3650835200
http://feeds.kexp.org/kexp/songoftheday 0.3344156000
http://feeds.feedburner.com/IndiefeedAlt/modernRock 0.3234398700
http://fitpod.libsyn.com/rss 0.3040501200
http://feeds.kcrw.com/kcrw/mb 0.2935790700

Table 45: The Top 10 Most Popular Music Podcasts

101

Feed Popularity

http://feeds.thisamericanlife.org/talpodcast 1.0000000000
http://www.hbo.com/podcasts/billmaher/podcast.xml 0.3066271800
http://www.sciencefriday.com/audio/scifriaudio.xml 0.2158997000
http://www.npr.org/rss/podcast.php?id=1090&uid=n1qe4e857
42c986fdb81d2d38ffa0d5d53

0.1869892200

http://feeds.feedburner.com/economist/audio all 0.1859505200
http://podcastfeeds.nbcnews.com/audio/podcast/MSNBC-NN-
NETCAST-M4V .xml

0.1712706000

http://www.npr.org/rss/podcast.php?id=510289 0.1649607100
http://downloads.bbc.co.uk/podcasts/worldservice/globalnews/
rss.xml

0.1579105300

http://www.npr.org/rss/podcast/TOTNPodcast.xml 0.1534835700
http://www.cbsradionewsfeed.com/rss.php?id=90&ud=512 0.1513136200

Table 46: The Top 10 Most Popular News & Politics Podcasts

Feed Popularity

http://www.joelosteen.com/ vti bin/JOMHelper.asmx/GetPod
castAudio

1.0000000000

http://www.oprah.com/podcasts/anewearth.xml 0.7184295000
http://www.joelosteen.com/ vti bin/JOMHelper.asmx/GetPod
castVideo

0.5549426700

http://feeds.feedburner.com/joycemeyer/SFiE 0.4629326000
http://feeds.feedburner.com/dailyaudiobible 0.4399391000
http://feeds.marshill.com/marshill/mark-driscoll/audio 0.4215766800
http://being.publicradio.org/podcast/podcast.xml 0.3737928000
http://feeds2.feedburner.com/DGSermonAudio 0.3613710700
http://rss.streamos.com/streamos/rss/genfeed.php?feedid=17&
groupname=itm

0.3290070300

http://feeds.feedburner.com/joycemeyer/lEAM 0.3111004500

Table 47: The Top 10 Most Popular Religion & Spirituality Podcasts

102

Feed Popularity

http://feeds.wnyc.org/radiolab 1.0000000000
http://www.sciencefriday.com/audio/scifriaudio.xml 0.9220162600
http://www.howstuffworks.com/podcasts/brainstuff.rss 0.3151734200
http://www.scientificamerican.com/podcast/sciam podcast i.x ml 0.2894540400
http://www.scientificamerican.com/podcast/sciam podcast i d
.xml

0.2858437000

http://feeds.feedburner.com/TEDTalks audio 0.2481027400
http://www.spitzer.caltech.edu/resource list/6-Hidden-Universe-
NASA-s-Spitzer-Space- Telescope?def=hi&format=xml

0.2443366800

http://feeds.feedburner.com/cnet/buzzoutloud 0.2346226300
http://feeds.feedburner.com/TedtalksHD 0.1986399300
http://blog.makezine.com/archive/category/make podcast/feed 0.1882510300

Table 48: The Top 10 Most Popular Science & Medicine Podcasts

Feed Popularity

http://feeds.thisamericanlife.org/talpodcast 1.0000000000
http://www.npr.org/rss/podcast.php?id=13 0.4450369200
http://www.howstuffworks.com/podcasts/stuff-you-should-
know.rss

0.3427562400

http://feeds.wnyc.org/radiolab 0.2345489900
http://www.howstuffworks.com/podcasts/stuff-you-missed-in-
history-class.rss

0.1974614100

http://feeds.feedburner.com/freakonomicsradio 0.1681365400
http://www.npr.org/rss/podcast.php?id=510289 0.1652642300
http://feeds.feedburner.com/TEDTalks video 0.1343809700
http://feeds.americanpublicmedia.org/MarketplacePodcast 0.0796713500
http://www.howstuffworks.com/podcasts/brainstuff.rss 0.0737197500

Table 49: The Top 10 Most Popular Society & Culture Podcasts

103

Feed Popularity

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2406595

1.0000000000

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2864045

0.5870259400

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2090484

0.4460636400

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2445552

0.4256554800

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2942325

0.3060259500

http://fitpod.libsyn.com/rss 0.2930497800
http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2386164

0.2423153500

http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2839445

0.2399011900

http://www.danpatrick.com/podcasts/feed/ 0.2310778800
http://sports.espn.go.com/espnradio/podcast/feeds/itunes/podC
ast?id=2544457

0.2058922600

Table 50: The Top 10 Most Popular Sports & Recreation Podcasts

Feed Popularity

http://leoville.tv/podcasts/twit.xml 1.0000000000
http://feeds.feedburner.com/TEDTalks video 0.7324087000
http://itstreaming.apple.com/podcasts/apple keynotes/apple ke
ynotes.xml

0.6169259000

http://www.ringtonefeeder.com/promo/freedemo.xml 0.5381654500
http://leoville.tv/podcasts/kfi.xml 0.4801688800
http://www.npr.org/rss/podcast.php?id=1019&uid=n1qe4e857
42c986fdb81d2d38ffa0d5d53

0.4617037500

http://blip.tv/photoshop-user-tv/rss/itunes 0.4526480700
http://www.howstuffworks.com/podcasts/brainstuff.rss 0.4035999800
http://revision3.com/diggnation/feed/quicktime-small/ 0.3888102800
http://www.scientificamerican.com/podcast/sciam podcast i.xml 0.3706646300

Table 51: The Top 10 Most Popular Technology Podcasts

104

Feed Popularity

http://feeds.feedburner.com/comedycentral/standup 1.0000000000
http://feeds.feedburner.com/vh1 bestweekever 0.5968024000
http://podcast.rickygervais.com/podcast new.xml 0.5627677400
http://www.discovery.com/radio/xml/discovery video.xml 0.4733996000
http://www.g4tv.com/xplay/podcasts/6/G4 TV XPlay Video
Podcast.xml

0.4669278000

http://dogma.vo.llnwd.net/o25/NewMoon/ipodTest/USM Itun
esClip.xml

0.4252564300

http://www.oprah.com/podcasts/anewearth.xml 0.3994750700
http://wtfpod.libsyn.com/rss 0.3479579000
http://www.gcast.com/u/dane cook/main.xml 0.3303963500
http://www.g4tv.com/attackoftheshow/podcasts/5/Attack of t
he Show Daily Video Podcast.xml

0.3254902000

Table 52: The Top 10 Most Popular TV & Film Podcasts

105

MIME Type Episode %

audio/mpeg 77.103%
video/mp4 5.536%
video/x-m4v 4.305%
NO MEDIA 4.161%
audio/x-m4a 2.657%
video/quicktime 1.428%
audio/mp3 0.915%
audio/mp4 0.758%
application/pdf 0.586%
video/mpeg 0.328%
video/x-mp4 0.282%
video/m4v 0.262%
audio/x-mp3 0.210%
application/octet-stream 0.193%
audio/x-mpeg 0.148%
video/mov 0.127%
audio/mpeg3 0.106%
x-audio/mp3 0.104%
audio/aac 0.103%
application/x-shockwave-flash 0.101%
video/x-m4a 0.071%
text/plain 0.036%
image/jpeg 0.035%
audio/x-wav 0.034%
video/x-flv 0.028%
audio/x-m4b 0.027%
text/html 0.022%
video/x-ms-wmv 0.021%
audio/m4a 0.020%

Table 53: The Top 30 Podcast Episode Formats

106

MIME Type Mean Median Min Max

audio/mpeg 98121994.54483 17387947 0 9.22337E+18
video/mp4 142006132.98446 36610336 0 2.415E+11
video/x-m4v 80987019.15629 30209162 0 16388000000
audio/x-m4a 33270999.27017 19772035 0 32108669329
video/quicktime 71296570.38464 26035364 0 4294967295
audio/mp3 26484489.81866 13238272 0 960000000
audio/mp4 32719813.58931 23886858 0 591085298
application/pdf 1328736.00124 175411 0 127919864
video/mpeg 60612693.64153 20948741 0 2213648319
video/x-mp4 55248559.56602 24588389 0 1670899837
video/m4v 73342508.63629 33671513 0 3451031149
audio/x-mp3 23168443.09555 9700724 0 857735168
application/octet- stream 46400826.44470 26328896 0 931969929
audio/x-mpeg 20682820.18931 14484375 0 153646134
video/mov 15175940.40630 107603 0 3763358544
audio/mpeg3 26547860.48566 21990172 3 650635927
x-audio/mp3 17421659.04184 15750000 0 484372960
audio/aac ?22010393.84437 16856858 0 151093265
application/x-
shockwave-flash

78912.95986 1190 0 34174435

video/x-m4a 50313285.44569 43678734 65437 313949767
text/plain 32277626.01603 19649143 0 481809503
image/jpeg 139662.65975 25638 0 7500000
audio/x-wav ?57301055.82251 13890579 0 645225704
video/x-flv 51127452.18110 24192098 0 402078442
audio/x-m4b 40907862.66220 37530510 1006318 216459117
text/html 3507573.34564 0 0 141385409
video/x-ms-wmv 129657421.98625 35801071 0 1137945894
audio/m4a 34152054.43885 27921275 0 298871759

Table 54: Sizes of the Top 30 Podcast Formats

107

Namespace Feeds %

http://www.itunes.com/dtds/podcast-1.0.dtd 100.000%
http://search.yahoo.com/mrss/ 43.917%
http://purl.org/dc/elements/1.1/ 37.027%
http://rssnamespace.org/feedburner/ext/1.0 32.931%
http://purl.org/rss/1.0/modules/content/ 27.861%
http://wellformedweb.org/CommentAPI/ 26.484%
http://purl.org/rss/1.0/modules/syndication/ 19.744%
http://purl.org/rss/1.0/modules/slash/ 19.142%
http://purl.org/syndication/thread/1.0 5.547%
http://a9.com/-/spec/opensearchrss/1.0/ 5.487%
http://purl.org/dc/terms/ 4.626%
http://backend.userland.com/creativeCommonsRssModule 3.797%
http://www.rawvoice.com/rawvoiceRssModule/ 2.901%
http://www.w3.org/2003/01/geo/wgs84 pos# 2.873%
http://www.w3.org/1999/xhtml 1.345%
http://a9.com/-/spec/opensearch/1.1/ 0.931%
http://bbc.co.uk/2009/01/ppgRss 0.816%
http://www.thespringbox.com/dtds/thespringbox-1.0.dtd 0.567%
http://webns.net/mvcb/ 0.287%
http://radiofrance.fr/Lancelot/Podcast# 0.265%
http://posterous.com/help/rss/1.0 0.201%
http://www.castfire.com/dtds/rss.dtd 0.191%
http://cstv.com 0.147%
http://www.cstv.com 0.147%
http://www.podzinger.com 0.147%
http://api.npr.org/nprml 0.140%
http://blogs.law.harvard.edu/tech/creativeCommonsRssModule 0.131%
http://www.cbsradio.com/ 0.131%
http://www.itunesu.com/feed 0.118%
http://libsyn.com/rss-extension 0.102%
http://www.adobe.com/amp/1.0 0.086%
http://pipes.yahoo.com 0.080%
http://www.georss.org/georss 0.070%
http://podfm.ru/RSS/extension 0.064%
http://channel9.msdn.com 0.051%
http://madskills.com/public/xml/rss/module/trackback/ 0.048%
http://www.blogger.com/atom/ns# 0.041%
http://purl.org/atom-blog/ns# 0.041%
http://www.rsr.ch/xml/namespace 0.035%
http://boxee.tv/spec/rss/ 0.032%

Table 55: The Top 40 Podcast XML Namespaces

108

Language Code Feeds %

en 58.500%
en-us 31.945%
en-gb 1.993%
EMPTY FIELD 1.396%
de 1.192%
es 0.797%
fr 0.721%
en-ca 0.450%
de-de 0.386%
en-au 0.325%
en-PI 0.316%
pt-br 0.306%
en-uk 0.281%
fr-FR 0.271%
ja 0.239%
es-mx 0.226%
it-it 0.201%
It 0.188%
es-es 0.179%
Ar 0.156%
zh 0.156%
zh-cn 0.131%
ru 0.124%
ru-ru 0.121%
nl 0.112%
cs 0.108%
de-A T 0.099%
en-ie 0.086%
ko 0.080%
sl 0.080%
en-en 0.070%
es-pr 0.070%
en-nz 0.061%
fr-ch 0.061%
nl-nl 0.057%
ko-kr 0.054%
pt 0.054%
zh-hk 0.054%
zh-tw 0.054%
DA 0.045%

Table 56: The Top 40 Podcast Languages

109

Generator Feeds %

EMPTY FIELD 25.642%
Libsyn WebEngine 7.993%
http://podbean.com/?v=3.2 5.484%
podOmatic RSS Generator 4.852%
http://wordpress.org/?v=3.3.2 4.266%
Blogger http://www.blogger.com 4.228%
http://wordpress.org/?v=3.3.1 3.998%
EZ Rss 0.1 3.466%
Blogger 2.155%
http://wordpress.org/?v=3.2.1 1.696%
Castermaster 1.0 1.355%
Podcast Maker v1.4.0 - http://www.lemonzdream.com/podcastmaker 1.253%
http://wordpress.com/ 1.237%
Hipcast RSS Feeder 1.25 1.189%
FeedForAll v2.0 (2.0.2.9) http://www.feedforall.com 0.998%
Podcast Maker v1.4.1 - http://www.lemonzdream.com/podcastmaker 0.998%
Podcast Maker v1.3.8b - http://www.lemonzdream.com/podcastmaker 0.937%
FeedForAll Mac v2.1 (2.1.0.1); http://www.FeedForAll.com/ 0.861%
PodShow PDN 0.772%
AudioAcrobat RSS Feeder 1.25 0.644%
http://wordpress.org/?v=2.9.2 0.590%
Feeder 1.5.10(880) http://reinventedsoftware.com/feeder/ 0.555%
iWeb 3.0.1 0.545%
Loudblog 0.536%
FeedForAll v2.0 (2.0.3.1) http://www.feedforall.com 0.523%
iWeb 3.0.4 0.516%
podcastmachine.com 0.485%
http://wordpress.org/?v=3.0.1 0.453%
http://wordpress.org/?v= 0.421%
iWeb 1.1.2 0.411%
http://wordpress.org/?v=3.1 0.395%
iWeb 2.0.4 0.383%
http://wordpress.org/?v=3.3 0.344%
Podcast Maker v1.3.6 - http://www.lemonzdream.com/podcastmaker 0.332%
http://wordpress.org/?v=3.0.4 0.325%
JellyCast http://www.jellycast.com 0.316%
TypePad http://www.typepad.com/ 0.300%
http://wordpress.org/?v=3.1.3 0.290%
Podcast Generator 1.3 - http://podcastgen.sourceforge.net 0.284%
http://wordpress.org/?v=2.7.1 0.281%

Table 57: The Top 40 RSS 2.0 Authoring Tools

110

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	I. INTRODUCTION
	1.1 The Problem
	1.2 The Thesis
	1.3 The Solution Approach
	1.4 The Contributions

	II. DEFINE PODCASTING
	2.1 Podcast Characteristics
	2.2 Podcast Architecture
	2.2.1 Media Production
	2.2.2 Publishing
	2.2.3 Cataloging
	2.2.4 Consumption

	2.3 Quality Requirements
	2.3.1 Correctness
	2.3.2 Uniqueness
	2.3.3 Platform Adherence
	2.3.4 Chronology
	2.3.5 Performance

	III. MEASURE PODCASTING
	3.1 Validation Service
	3.2 Validator Project
	3.3 PodBot
	3.3.1 Invoking Feed Validator
	3.3.2 SyndicationFeed Class
	3.3.3 Design Pitfalls

	3.4 Measurements
	3.4.1 The Data Set
	3.4.2 Categories
	3.4.3 Popularity
	3.4.4 Metrics

	IV. ANALYZE PODCASTING
	4.1 Quality Problems
	4.1.1 Correctness Problem
	4.1.2 Uniqueness Problem
	4.1.3 Platform Adherence Problems
	4.1.4 Chronology Problems
	4.1.5 Performance Problems

	4.2 Analysis Conclusions

	V. IMPROVE PODCASTING
	5.1 PodCop Overview
	5.1.1 Enforcing Correctness
	5.1.2 Enforcing Uniqueness
	5.1.3 Enforcing Chronology

	5.2 PodCop Results
	5.2.1 Random Podcasts
	5.2.2 Popular Podcasts

	VI. RELATED WORK
	6.1 Podcasting in Education
	6.2 Podcasting in Mobile Networks
	6.3 Podcast Metrics
	6.4 Podcast Search
	6.5 Podcast Consumption
	6.6 Podcast Applications

	VII. CONCLUSION AND FUTURE WORK
	7.1 Future Work

	BIBLIOGRAPHY
	APPENDIX

