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PRACTICAL SOLUTIONS TO THE NON-MINIMUM PHASE AND 

VIBRATION PROBLEMS UNDER THE DISTURBANCE 

REJECTION PARADIGM 

 

SHEN ZHAO 

 

ABSTRACT 

 

This dissertation tackles two kinds of control problems under the disturbance 

rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) 

systems, such as systems with right half plane (RHP) zeros and those with time delay; 

2) the specific problem of vibration, a prevailing problem facing practicing engineers in 

the real world of industrial control. It is shown that the DRP brings to the table a 

refreshingly novel way of thinking in tackling the persistently challenging problems in 

control. In particular, the problem of NMP has confounded researchers for decades in 

trying to find a satisfactory solution that is both rigorous and practical. The active 

disturbance rejection control (ADRC), originated from DRP, provides a potential solution. 

Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous 

problem of vibration, whether it is found in the resonant modes in industrial motion 

control with compliant load, which is almost always the case, or in the microphonics of 

superconducting radio frequency (SRF) cavities in high energy particle accelerators. That 

is, whether the vibration is caused by the environment or by the characteristics of process 

dynamics, DRP provides a single framework under which the problem is better 
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understood and resolved. New solutions are tested and validated in both simulations and 

experiments, demonstrating the superiority of the new design over the previous ones. For 

systems with time delay, the stability characteristic of the proposed solution is analyzed. 
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CHAPTER I 

INTRODUCTION 

Control as a technology is almost everywhere in engineering. It was developed by 

the people who tried to solve various problems in practice over thousands of years. For 

example, around 300 BC Greeks invented a float regulator for a water clock to accurately 

determine the time [1]. One of the most significant inventions in the control history may 

be the fly-ball governor designed by James Watt in 1788 to regulate the power output of 

the steam engine [2], after which the Industrial Revolution started. The mostly used 

proportional-integral-derivative (PID) controller was proposed by Nicholas Minorsky in 

1922 [3] to control the steering of ships and it is still a tool of choice today. The empirical 

approach to design and its variations can be characterized under the industrial paradigm 

[4-6]. 

On the other hand, control as a science is a branch of applied mathematics. The 

stability of the control systems was first analyzed by mathematicians around 1850s [1]. In 
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1930s the frequency domain approaches were used to analyze the control system and 

later on the classical control theory established. The modern control theory which is 

based on the time domain analysis started to develop in 1960s. Using the approaches 

mentioned above, a control problem is solved by the strict analysis and synthesis. Since 

the control design is based on the mathematical descriptions or models of the systems, 

this approach can be described as the model paradigm [4-6]. 

Though the modern control theory has been applied to many areas such as space 

vehicles, robots and aircrafts, the industry world is still dominated by the primitive PID 

controllers. More than 95% of the controllers used in process control are still PID 

controllers [7]. People may wonder why the gap is so big. By examining the two 

approaches, one may find the answer. For a PID controller design, no information about 

the system is required, which means the dynamics of the system is assumed to be 

unknown. This actually makes it easy to implement and more practical. For a control 

design using classical or modern control theory, a mathematic model of the system is 

needed at the very beginning, which means most of the dynamics of the system is 

assumed to be known. With the model, a rigorous and systematic control design can be 

carried out. These two approaches seem to be at two extremes. One assumes that no 

knowledge of the system is available; the other assumes that very good knowledge of the 

system is available. This may explain why there is a big gap between the two control 

paradigms. 

In most cases we know something about the system dynamics, but not everything. 

Thus an approach that can take advantage of what is known and also can deal with what 

is unknown is necessary. The disturbance rejection paradigm (DRP) [4-6] is proposed to 
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meet this need. Under the DRP, the primary dynamics of the system is assumed to be 

known and all the unknowns are considered as disturbances. The main goal of this 

approach is then to reject the disturbances. If somehow the effect of the disturbances can 

be cancelled, the remaining part of the control design will focus on the control of the 

primary dynamics of the system. 

As one can see, the DRP plays a role of connecting the industrial paradigm and 

the model paradigm as a bridge. It provides another option for solving a control problem 

between the industrial paradigm and the model paradigm, which may be more practical 

than the model paradigm and may get better performance than the industrial paradigm. 

The fundamental goal in a control system design is to keep the error e  between 

the system output y  and the reference input r  constantly at zero as shown in Figure 1. In 

other words, let the error e  be invariant to the changes in both the reference input r  and 

the disturbance input d , which can be considered as general disturbances under the DRP. 

From the traditional perspective, the fundamental goal might be broken down as two 

separate goals which are tracking the reference (also known as servo) and rejecting 

disturbances (also known as regulator). To achieve these goals, different methods can be 

used. The error driven feedback controller can achieve the two goals at the same time, but 

it is passive since it only reacts to the error. The model based feedforward control, 

however, can achieve better tracking performance, because it does not have to wait for 

the error to occur. Similarly better disturbance rejection performance can also be 

achieved by canceling the disturbance based on direct measurement or estimation. Both 

feedforward control and disturbance cancellation are active compared to the feedback 

control, hence both can be considered as active disturbance rejection methods. 
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Figure 1 The diagram of a general control design. 

The most effective way to cancel the disturbance is obviously to measure it 

directly. Under situations that the disturbance is not measurable, an estimation of the 

disturbance can be obtained using various methods; for example, the unknown input 

observer (UIO) [8, 9], the disturbance observer (DOB) [10, 11], the extended state 

observer (ESO) [4, 12], the perturbation observer (POB) [13, 14], etc. Among those 

methods, only ESO does not rely on an accurate system model, which means it can 

handle the system uncertainties. The active disturbance rejection control (ADRC) is built 

based on the unique ESO and has been demonstrated to be very effective for systems 

with both internal uncertainties and external disturbances. 

The research work on ADRC, however, has been mainly focus on minimum phase 

systems. The ADRC design for non-minimum phase (NMP) systems, for example, 

systems with right half plane (RHP) zeros and systems with time delay, have not been 

fully addressed. The control design for NMP systems is generally challenging due to the 

additional phase lag and the achievable closed-loop bandwidth is normally limited. Recall 

that the feedforward control does not help with the disturbance rejection and the 

disturbance cancellation does not help with the reference tracking. It is under this 
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background that we investigate the ADRC design for such systems, hoping for a better 

solution, and propose the ADRC and feedforward combined design to achieve better 

performance. 

In addition, the control design for two vibration problems in industrial 

applications is addressed under the DRP using ADRC. One is the ubiquitous vibration 

suppression problem in motion control; the other is the annoying microphonics problem 

in superconducting radio frequency (SRF) cavity control. In motion control, the vibration 

is the result of the resonant modes in system dynamics, which can be treated as internal 

disturbance, whereas in SRF cavity control the microphonics due to the vibrations from 

surrounding environment is an external disturbance. In each application, both simulation 

study and experimental verification are conducted. 

The rest of the dissertation is organized as follows. The literature review on 

disturbance rejection in general and the specific development of ADRC is given in 

Chapter 2, where the standard linear ADRC design with parameterization is also 

described. The literature review for each topic addressed in the dissertation is provided in 

individual chapters. The ADRC design together with the feedforward design for systems 

with RHP zeros is explored in Chapter 3. The ADRC design for systems with time delay 

is studied and corresponding stability analysis is provided in Chapter 4. The ADRC 

solution to the vibration suppression problem in motion control is studied through both 

simulations and experiments in Chapter 5. In Chapter 6 the microponics problem in SRF 

cavity control is solved using the ADRC design. As an extension the ability of ADRC to 

deal with unknown actuator nonlinearities is addressed in Chapter 6 as well. Finally, 

conclusions and possible future work are given in Chapter 7. 
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CHAPTER II 

THE EMERGENCE OF THE DISTURBANCE REJECTION PARADIGM 

In this chapter, a literature review on disturbance rejection is provided. The 

chapter is organized as follows. Section 2.1 reviews the history of active disturbance 

rejection. In Section 2.2 the evolution of ADRC towards a practical solution is reviewed 

from different perspective, including technical development, application and theoretical 

justification. Section 2.3 discusses the emergence and the benefits of the disturbance 

rejection paradigm. Section 2.4 describes the standard linear ADRC formulation with the 

parameterization, which will be used later on. Section 2.5 summarizes the chapter. 

2.1 A Historic View of Active Disturbance Rejection 

As discussed in Chapter 1, disturbance cancellation as an alternative to the 

feedback provides better disturbance rejection performance. The idea of disturbance 
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cancellation is not something new as many people may think. In fact, it has a history just 

as old as the feedback control. The first application of disturbance cancellation might be 

the south-pointing chariot [15], a famous Chinese invention, on which a figure points to a 

constant direction no matter how the chariot turns. In legend, the south-pointing chariot 

was invented in 2634 BC, but the first recorded invention happened in 235 AD [16]. In 

this application, the movement of the south-pointing chariot is measured by a special 

designed mechanism and then the figure is adjusted accordingly to maintain its direction. 

Over a thousand years later, in 1829, Jean-Victor Poncelet designed a new governor for 

steam engines using a similar idea [17]. In his design the engine load is measured directly 

by a spring, and based on the changes in load (disturbances), instead of changes in 

velocity (errors), the valve is adjusted to maintain a constant speed. The theory behind the 

idea, however, did not establish until 1939 when G. B. Shchipanov, a scholar of Soviet 

Union, proposed the theory of invariance [18]. The main problem studied in the theory of 

invariance is how to make a system variable (e.g. error) invariant to the system inputs 

(e.g. reference and disturbance). Reference tracking and disturbance rejection are then 

unified in this manner, and reference tracking can be regarded as another type of 

disturbance rejection. Hence the core of a control design is disturbance rejection. 

In the above two examples, the disturbances are directly measurable. Under 

situations that the disturbance is not measurable, an estimation of the disturbance is 

necessary for the cancellation. Different forms of modern control theory based observers 

have been proposed to meet this need. In 1971, Johnson proposed the UIO [8] to estimate 

the unknown input of the system. The transfer function based DOB [10], proposed later 

on by Japanese researchers, can estimate the disturbance as well. The research [11] in 
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2002 showed the UIO and DOB are equivalent. The POB was proposed by Kwon and 

Chung in 2002 [13] in the discrete form to estimate the perturbation acted on the system. 

Above the “unknown input”, the “disturbance” and the “perturbation” are just different 

names for the external disturbance, and the above observers can only deal with it. 

The observer design took a leap in 1995, when Han proposed the unique ESO [12] 

to address not only the external disturbances but also the internal dynamic uncertainties, 

the whole effect of which is considered as the total disturbance and estimated by the ESO. 

Once the total disturbance is estimated, it can be cancelled out in the control law, based 

on which the ADRC was first proposed in 1998 by Han [19] in the nonlinear form. In [20] 

ADRC has been demonstrated to be very effective for a variety of systems, such as 

MIMO systems, cascade systems, chaos systems, etc. 

2.2 The Evolution of ADRC towards an Engineered Solution 

Though powerful, the original nonlinear ADRC is very complicated in 

implementation, tuning, and analysis, which hinders its application. The simplification 

and parameterization by Gao [21] in 2003 made it practical and facilitated its 

development afterward. Much research work has been done on improving the ADRC 

design since then, which are classified into three categories: technical development, 

applications and theoretical justification, and summarized in the following subsections. 

2.2.1 Technical Development 

Since ESO is a key part of the ADRC, extensive work has been done on it. First, a 

current discrete extended state observer (CDESO) is developed based on the idea of 

taking advantage of the current measurement to reduce the lag due to the sampling [22, 
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23]. Its advantage is obvious in systems with slow sampling rate. ESO is then generalized 

to comprise more than one extended states so that it can accommodates different types of 

disturbances, such as a ramp or a parabola disturbance [23]. Under a few assumptions, 

the ESO is combined with a Kalman filter to provide an optimal ESO formulation 

without increasing the complexity [24]. After that, a reduced order ESO (RESO) is 

proposed [25] to reduce the phase lag while estimating the total disturbance, but it is 

more sensitive to the measurement noise. So one should decide when to use RESO based 

on the acceptable noise level. 

In addition to the observer development, a disturbance decoupling control (DDC) 

[26] is proposed based on the disturbance rejection ability of ADRC. By treating the 

internal interactions as disturbances, the multi-input-multi-output (MIMO) system is 

easily decoupled into separate loops. 

On the controller design, a study that combines ADRC and H-infinity controller is 

carried out in [27] and better robustness over the original ADRC design is achieved with 

the proposed design. 

2.2.2 Applications 

Besides the technical development, ADRC has also been applied to solve different 

problems successfully in a variety of applications, such as the web tension control [28, 

29], hard disk drive control, DC-DC power converter [30], etc. It also has the ability to 

deal with the nonlinearity of the actuators, such as hysteresis in the piezoceramic actuator 

[31, 32]. Several MIMO systems, such as micro-electro-mechanical system (MEMS) [33] 

and the continuous stirred tank reactor (CSTR) [26], are decoupled and well controlled by 
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applying DDC. The application of ADRC is no restrict only in control, it has been used 

for the health monitoring and fault detection purposes as well [24]. 

The previous applications are mostly within the confine of minimum phase 

systems. The more challenging control design for systems with RHP zeros and systems 

with time delay has not been fully investigated. Even in the only book on ADRC [20], the 

design problem associated with RHP zeros is not addressed. The ADRC design for 

systems with time delay is only addressed in [20, 34], but the complexity of the design 

inhibits its application. 

2.2.3 Theoretical Justification 

Theoretically, since ADRC has been simplified to the linear form, almost all the 

tools in the classical and modern control theory are readily available to facilitate the 

analysis of ADRC. An equivalent two degree of freedom transfer function form of ADRC 

is developed [35], so that the frequency domain analysis can be carried out. The 

frequency response analysis gives a clearer picture on how well is the total disturbance 

estimated than in the time domain description. 

The stability analysis of ESO and ADRC has been done to enhance the theoretical 

completeness of the technique. Zheng et al. [36, 37] proved the stability of ESO, ADRC 

and even DDC by solving the state equations directly, assuming that the derivative of the 

total disturbance f&  is bounded. A later research [38] showed that ESO converges as long 

as f&  is bounded or f  itself is bounded. Freidovich et al. [39] proved the stability of an 

extended high gain observer for a more general nonlinear system. Zhou et al. [40] proved 

the stability of ADRC from the prospective of singular perturbation. A comparison of the 
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stability properties of different observers is found in [41]. Zhao [42] studied the 

capability of ADRC for minimum phase systems with unknown orders and uncertain 

relative degrees. Most recently, Guo et al. provided the analysis on the convergence of 

ESO for nonlinear systems with uncertainty [43]. Huang et al. [44] compared ADRC 

with other control methods that deal with system uncertainties, such as adaptive control, 

robust control, sliding mode control, etc., and summarized recent theoretical 

achievements on the ADRC design. 

2.3 The Emergence of the Disturbance Rejection Paradigm 

After over ten years of significant developments and successful applications of 

ADRC-based design techniques, the concept of disturbance rejection paradigm (DRP) 

was crystallized and articulated by Gao in 2010 [6], inspired by the conviction that the 

essence of control problems is how to deal with uncertainties. There are many kinds of 

uncertainties in the physical processes. The disturbance commonly seen in the literature 

comes from the environment in which control systems operate, and is generally 

independent of the system dynamics. This notion of disturbance is also known as external 

disturbance. Another kind of system uncertainty, considered in robustness control theory 

in modern control, is associated with the unknown dynamics in the physical process and 

is “internal” to it. Such uncertainty can be viewed as internal disturbance. Central to the 

mission of control system design is to make the process variables to be controlled 

“invariant”, i.e. independent to, both kinds of uncertainties. Under the DRP, the 

previously two separated problems of (external) disturbance rejection and robustness with 

respect to unknown internal dynamics are united into a single framework. That is the 
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whole effect of the external disturbance and the internal disturbance is defined as the total 

disturbance. Hence, all design methods and concepts are evaluated in terms of how well 

such total disturbance is mitigated under the DRP. 

This unique idea of treating system uncertainties as total disturbances breaks 

down the boundaries and unifies many previously separate fields of investigation, 

including but not limited to, linear and nonlinear systems, time varying and time invariant 

systems, robust control and disturbance rejection, coupled (MIMO) and independent 

(SISO) control loops. In short, the DRP brings a totally different perspective in how the 

control problems are perceived and treated, as well as solutions to conventional problems 

that are “out of box”, as will be shown throughout this dissertation. One such solution is 

ADRC, as discussed below. 

2.4 The ADRC Formulation 

In this section, the ADRC solution is presented in its linear and parameterized 

form, which will be used throughout the dissertation unless otherwise noted. Consider the 

following n th order system 

 ( ) ( ) ( )1
1 1 0

n n

ny a y a y a y b u w
−

−+ + + + = +&L  (2.1) 

where y  is the system output, ( )n
y  denotes the n th order derivative of y , u  is the 

system input, and w  is the equivalent input disturbance which is a function of time. The 

objective of the control design is to make the system output y  to follow a given 

reference signal r . 

In the context of active disturbance rejection, the original system (2.1) can be 

reformulated as 
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 ( ) ( ) ( )( )
1

1

0

, , , ,
n

n i n

i

i

y bu bw a y bu f w y y y
−

−

=

 
= + − = + 

 
∑ & L  (2.2) 

where f  is called the total disturbance which includes not only the external disturbances 

but also the unknown internal dynamics. Then the state vector of the system is defined as 

 [ ] ( )1
1 1 2 1

TT n

n n n
X x x x x y y y f

−

+ +
 = =  

&L L  (2.3) 

which has ( )1n +  elements. Note that for an n th order system the state vector is 

normally defined as ( )1 T
n

X y y y
− =  

& L  with n  elements. Here 1n
x f+ =  which is 

called the extended state representing the total disturbance is augmented to the regular 

design. 

The state space representation of (2.2) is  

 1 1 1 1 1

1 1

n n n n n

n n

X A X bB u E f

y C X

+ + + + +

+ +

= + +

=

&&
 (2.4) 

where

( ) ( )

1

1 1

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

n

n n

A +

+ × +

 
 
 
 =
 
 
  

L

L

M M M O M

L

L

, 

( )

1

1 1

0

0

1

0

n

n

B +

+ ×

 
 
 
 =
 
 
  

M , 

( )

1

1 1

0

0

0

1

n

n

E +

+ ×

 
 
 
 =
 
 
  

M , and 

[ ] ( )1 1 1
1 0 0 0n n

C + × +
= L . An ESO is designed for system (2.4) accordingly as 

 ( )1 1 1 1 1 1 1
ˆˆ ˆ ˆ

n n n n nX A X bB u L x x+ + + + += + + −
&

 (2.5) 

where [ ]1 1 2 1
ˆ ˆ ˆ ˆ ˆ T

n n n
X x x x x+ += L  is the observer state vector which provides an 

estimation of the system state vector 1n
X + , b̂  is an estimation of b , and 

[ ]1 1 2 1

T

n n n
L l l l l+ += L  is the observer gain vector. The controller is designed as 
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( )1 1 1

ˆ

ˆ
n n n

K R X
u

b

+ + +−
=  (2.6) 

where ( ) ( )1
1

T
n n

n
R r r r r

−

+
 =  

& L , ( )n
r  denotes the n th order derivative of r , and 

[ ]1 1 2 1n nK k k k+ = L  is the controller gain vector. In practice, ( ) ( ) 1,2, ,i
r i n= K  is 

set to zero if it is either not available or unbounded. 

The above ADRC design is for the general n th system, hence called the n th 

order ADRC; though the observer has ( )1n +  states. 

According to the parameterization technique proposed in [21], the individual 

observer gains ( ) 1,2, , , 1il i n n= +K  are selected such that all eigenvalues of 

1 1 1n n n
A L C+ + +−  are placed at 

o
ω− , and they are found to be 

 ( )
1

=  1,2, , , 1i

i o

n
l i n n

i
ω

+ 
= + 

 
K  (2.7) 

where 
n

k

 
 
 

 denotes the number of k -combinations from a given set of n  elements. 

Similarly, the individual controller gains ( ) 1,2, ,ik i n= K  are selected such that all 

eigenvalues of matrix 
n n

A ×
%  are placed at 

c
ω− , where 

n n
A ×
%  is defined as 

 
( ) ( )

1 1 1

1 1

0

0 0
n n

n n n

n n

A
A B K×

+ + +

+ × +

 
= − 

 

%
 (2.8) 

and they are found to be 

 ( )1=  1,2, ,
1

n i

i c

n
k i n

n i
ω + − 

= 
+ − 

K  (2.9) 
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Above, 
o

ω  and 
c

ω  are referred to as observer and controller bandwidth 

respectively, and are the tuning parameters of the ADRC design. Furthermore, the ratio 

between the observer and controller bandwidth 
o c

α ω ω=  can be fixed, so that the 

controller bandwidth 
c

ω  becomes the only tuning parameter of the design. In most 

applications α  can be chosen from two to ten. 

In practice, observer and controller bandwidth are selected based on following 

considerations: 1) the controller bandwidth should be higher than the required bandwidth 

given in the specification; 2) the observer bandwidth should be two to five times higher 

than the controller bandwidth; 3) the observer bandwidth should be five to ten times less 

than the sampling rate. Normally, the higher the bandwidth is, the better the performance 

is; the cost is that the system is more susceptible to noise and has less robustness. 

2.5 Summary 

By reviewing the history of active disturbance rejection, the evolution of ADRC 

and the emergence of the DRP, shows that the research work addressing the disturbance 

rejection in NMP systems is of great importance and needs to be addressed timely. 
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CHAPTER III 

DISTURBANCE REJECTION IN SYSTEMS WITH RHP ZEROS 

Systems with right half plane (RHP) zeros belongs to a class of system known as 

non-minimum phase (NMP) systems. Hence the RHP zeros are also call NMP zeros. The 

control design for such NMP systems is quite challenging due to the additional phase lag 

introduce by the RHP zeros. At the same time, controlling such NMP systems is also a 

rather important practical concern as we find it alike in industrial processes such as hydro 

power plants as well as military applications such as the aircraft pitch angle control. In 

this chapter, several control designs were carried out to address the disturbance rejection 

as well as the tracking performance of such systems. 

The chapter is organized as follows. Starting in Section 3.1 some preliminaries 

and the literature review are provided. The ADRC design for systems with RHP zeros is 

addressed in Section 3.2. The feedforward control designs including the time optimal 

control solution and a novel solution that achieves minimum settling time subject to 
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undershoot constraint are presented in Section 3.3. An example adopting the feedforward 

and feedback combined design is given in Section 3.4 to demonstrate the effectiveness of 

the proposed solutions. At the end Section 3.5 summarizes this chapter. 

3.1 Background 

There are different causes for the RHP zeros. Physical non-collocation of sensing 

and actuation [45] or linearization of nonlinear systems around an operating point may 

produce RHP zeros in a continuous single-input-single-output system (SISO), such as the 

four-wheeled car and the inverted pendulum on a cart given in [46]; in a multi-input-

multi-output (MIMO) system, however, the RHP zeros are the effects of competing slow 

and fast dynamics which have opposite signs [47]; systems originally having stable zeros 

may possess RHP zeros as well after discretization using the zero-order hold (ZOH) 

method [48]. 

Systems with RHP zeros have a unique behavior in the step response known as 

undershoot or “wrong way response,” and it has been studied for many decades [45, 49-

53]. A rather comprehensive review on NMP zeros can be found in [46] where some 

important properties, for example, the condition for the initial undershoot and the number 

of zero crossings, of such systems are discussed. The NMP zeros in MIMO systems and 

discrete systems are also briefly mentioned at the end of [46]. 

Perfect tracking for systems with RHP zeros requires either the unstable pole-zero 

cancellation which should be avoided because it will make the system internally unstable, 

or a non-causal controller [47]. Neither is practical; hence perfect tracking should not be 

expected for such systems. Theoretical analysis on performance limitations imposed by 
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RHP zeros have been studied and presented [47, 54, 55]. It is shown that the closed-loop 

bandwidth 
cl

ω  is limited to 2
cl

zω < , where z  is a real RHP zero [47]. To overcome this 

constraint and achieve better, faster transient response, the only recourse seems to be the 

open loop compensation, known as the feedforward method. See, for example, [56] 

where various feedforward methods [57-60] for discrete systems with RHP zeros are 

considered in the context of a hard disk drive application to reduce the settling time. 

Even with the feedforward design, the task of control design for these problems is 

still complicated, because in general the faster the response the larger the undershoot; 

there is only so far the wrong way response can go before it endangers the physical 

integrity of the system. The well known time optimal control solution for a specific 

system with RHP zero will be derived in Section 3.3.1, but the associated undershoot 

tends to be overwhelming. Although some vague ideas of the connection between the 

settling time and the undershoot has been given in [53] and [61], what has not been 

adequately addressed in the literature is how to systematically make the proper design 

tradeoff between the settling time and the undershoot. In particular, the theoretical 

minimum settling time for a given undershoot constraint can be calculated based on the 

results in [53] and [61], but the corresponding control signal that achieves such settling 

time has not been found yet. In Section 3.3.2 the control law that achieves the minimum 

settling time for systems with either a single real RHP zero or two distinct real RHP zeros 

subject to a specific undershoot constraint will be constructed. 

In this chapter, we focus on the control design for continuous SISO systems with 

RHP zeros. Some related preliminaries which will be used in Section 3.3.2 are presented 

below. The transient response for linear time invariant NMP systems, with input u , 
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output y  and transfer function ( ) ( ) ( )P s Y s U s= , is addressed in [53],  from its initial 

condition ( 0y = ) to final destination ( 0
d

y y= > ). It is shown that for such systems the 

undershoot, while unavoidable in systems with real RHP zeros, has a tradeoff relationship 

with the settling time. Specifically, the relative undershoot 
us

r  and the settling time 
s

t  are 

defined in [53] as 

 
[ )

( )
0,

infus
t

d

y t
r

y∈ ∞

 
= −  

 
 (3.1) 

 
[ )

( ) [ ){ }
0,

inf ,   ,
s d

t y t y t
τ

τ τ
∈ ∞

= = ∈ ∞  (3.2) 

Note that 
s

t  is defined as the exact settling time to simplify the analysis, as stated 

in [53]. With these definitions, the relations between the undershoot and the settling time 

are obtained for systems with one real RHP zero or two distinct real RHP zeros, as 

restated in the following lemmas. 

Lemma 3.1 [53]: For a NMP system with one RHP zero 0z > , and for any 

bounded input signal u , 

 * 1
1s

us us zt
r r

e
≥ =

−
 or 

( )* ln 1 1
us

s s

r
t t

z

+
≥ =  (3.3) 

Lemma 3.2 [53]: For a NMP system with two RHP zeros 1z  and 2z , with 

2 1 0z z> > , and for any bounded input signal u , 

 
( ) ( )

( )
2 1

2 1

* 1 2
1 2

1 2

, ,
1 1

s s

s s

z t z t

us us sz t z t

z e z e
r r f t z z

z e z e

− −

− −

−
≥ = =

− − −
 or ( )* 1

1 2, ,s s ust t f r z z
−≥ =  (3.4) 

That is, for a given settling time 
s

t , there exists a minimum undershoot *
us

r ; 

conversely, for a given undershoot 
us

r , there exists a minimum settling time *
s

t . 
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Furthermore we can infer from (3.3) and (3.4) that there is an inverse relationship 

between the two, i.e. the shorter the settling time, the larger the undershoot and vice versa. 

The challenge is to find the specific input signal u  such that the output y  achieves the 

minimum settling time, or at least close to, for a given undershoot constraint. 

Before turning to the feedforward design, the unsolved ADRC design for systems 

with RHP zeros will be addressed first. 

3.2 ADRC Design for Systems with RHP Zeros 

Consider the following second order system with a RHP zero in the transfer 

function form 

 ( )
( )

( )( )
1 0

2
1 2 1 0

1

1 1p

k s z b s b
G s

s p s p s a s a

− +
= =

+ + + +
 (3.5) 

where 0 1 2a p p= , 1 1 2a p p= + , 0 1 2b kp p=  and 1 1 2b kp p z= − . All parameters ( z , 1p , 2p , 

k , 0b , 0a  and 1a ) in (3.5) are positive numbers; except 1b  is negative. Normally in the 

ADRC framework, system (3.5) can be treated either as a first order system using the 

relative degree formulation or as a second order system by ignoring the RHP zero. Since 

the former uses the high frequency gain and the latter uses the low frequency gain in the 

design, they are referred to as high frequency gain formulation and low frequency gain 

formulation respectively. The ADRC design based on those two formulations will be 

carried out in the subsequent two subsections. 

3.2.1 High Frequency Gain Formulation 

The corresponding differential equation for system (3.5) is 
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 1 0 1 0y a y a y b u b u+ + = +&& & &  (3.6) 

with a relative degree of one. Therefore by integrating (3.6) and manipulating the terms, a 

first order system is obtained as follows 

 
{1 0 1 0

b
f

y b u b udt a y a ydt bu f= + − − = +∫ ∫&
144424443

 (3.7) 

which is in the standard ADRC form. Following the ADRC design procedure described 

in Section 2.4, the state space representation of (3.7), the observer, and the controller are 

given below. 

 2 2 2 2 2X A X bB u E f= + + &&  (3.8) 

 ( )2 2 2 2 2 1 1
ˆˆ ˆ ˆX A X bB u L x x= + + −

&
 (3.9) 

 
( )2 2 2

ˆ

ˆ

K R X
u

b

−
=  (3.10) 

The ADRC design so far is almost the same as it normally is, except 1b̂ b=  here is 

negative. 

Simulations are run for a specific system with 1z = , 1 2p = , 2 5p = , 1k = , 

0 10a = , 1 7a = , 0 10b = and 1 10b = − , which is also used for the rest part of Section 3.2 

unless specified. The ratio between the observer and controller bandwidth α  is set to 2 

for the rest of the chapter. Different values of the controller bandwidth have been chosen 

over quite a big range to simulate the system responses, but none of them gives a stable 

result. One of the simulation results with 1
ˆ 10b b= = −  and 50

c
ω =  is shown in Figure 2. 
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Figure 2 Simulation results for high frequency gain formulation. 

As one can see, the transient part of the response is almost perfect without any 

undershoot. However, when the system goes near to the steady state it becomes unstable. 

An intuitive explanation of this is that since b̂  is negative, for the high frequency part the 

system is a negative feedback which explains why the transient response is very good. On 

the other hand, for the low frequency part the system is a positive feedback which leads 

to an undesired result. More detailed analysis will be conducted in Section 3.2.3 to give 

more insights to this problem. 

3.2.2 Low Frequency Gain Formulation 

Another possible way to formulate this problem is ignoring the unstable zero and 

considering system (3.5) as a system with a relative degree of two represented by the 

following equation. 
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{ ( )0 1 1 0

b f

y b u b u a y a y bu f= + − − = +&& & &
1442443

 (3.11) 

The corresponding ADRC design for (3.11) is given as 

 3 3 3 3 3X A X bB u E f= + + &&  (3.12) 

 ( )3 3 3 3 3 1 1
ˆˆ ˆ ˆX A X bB u L x x= + + −

&
 (3.13) 

 
( )3 3 3

ˆ

ˆ

K R X
u

b

−
=  (3.14) 

Again simulations were run to find an appropriate solution to this problem. 

Similar results are found that for most values of the controller bandwidth, the system is 

unstable. Only a very small stable range for the controller bandwidth is found, with which 

a very slow and oscillatory system response is obtained. A particular response with 

0
ˆ 10b b= = , 1.2

c
ω =  and 2α =  is shown in Figure 3. A disturbance of magnitude 0.1 is 

introduced at 60 seconds. 
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Figure 3 Simulation results for low frequency gain formulation. 
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As shown above, the two design formulations of ADRC do not fit the NMP zeros 

problem quite well. More researches based on frequency domain analysis are carried out 

in the next section to find the reasons behind it and the applicable approaches. 

3.2.3 Frequency Domain Analysis 

It is easy to take the advantage of the classical control theory and perform the 

frequency domain analysis for the linear ADRC design [35]. To do so, we need to put the 

ESO into the transfer function form. A schematic of the ADRC design with state 

feedback is shown in Figure 4. 
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Figure 4 Diagram of the ADRC structure with state feedback. 

This design can be transformed into an equivalent two degree of freedom transfer 

function form as shown in Figure 5, where ( )H s  is the pre-filter transfer function and 

( )C s  is the controller transfer function. 
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Figure 5 Equivalent transfer function structure of ADRC. 

It is not difficult to derive the transfer functions using linear system theory. The 

equivalent transfer functions for a first order ADRC with state feedback are given in 

(3.15) and (3.16); and those for a second order ADRC with state feedback are given in 

(3.17) and (3.18) as well. 

 ( )
( )

( )

2
1 1 2

1 1 2 1 2

k s l s l
H s

k l l s k l

+ +
=

+ +
 (3.15) 

 ( )
( )

( )
1 1 2 1 2

2
1 1

ˆ
k l l s k l

C s
b s l k s

+ +
=

 + + 
 (3.16) 

 ( )
( )

( ) ( )

3 2
1 1 2 3

2
1 1 2 2 3 1 2 2 3 1 3

k s l s l s l
H s

k l k l l s k l k l s k l

+ + +
=

+ + + + +
 (3.17) 

 ( )
( ) ( )

( ) ( )

2
1 1 2 2 3 1 2 2 3 1 3

3 2
1 2 2 2 1 1

ˆ
k l k l l s k l k l s k l

C s
b s l k s l k l k s

+ + + + +
=

 + + + + + 
 (3.18) 

Reconsidering the high frequency formulation presented in Section 3.2.1, the 

characteristic equation of the closed-loop transfer function can be obtained from (3.5) and 

(3.16) as 

 
( ) ( ) ( )

( ) ( )

4 3 2
1 1 1 0 1 1 1 1 1 2 1

0 1 1 1 1 2 0 1 2 1 1 2 0

ˆ

ˆ ˆ ˆ 0

s a l k s a a l k k l l b b s

a l k k l l b b k l b b s k l b b

 + + + + + + + + 

 + + + + + + = 

 (3.19) 
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Note that here 1b̂ b≈  is negative. It is noticed that for any 
c

ω , the coefficients of 

the highest order term and lowest order term will have the opposite signs. Therefore the 

system will have at least one pole located in the RHP making it unstable. This could also 

be explained intuitively, by examining (3.16), where ( )C s  is found having a negative 

sign due to the negative b̂ , which makes the loop a positive feedback loop according to 

Figure 5. 

Though with a negative b̂  the transient response is perfect without any 

undershoot, for systems with RHP zeros, the control design should focus on stabilizing 

the low frequency part first, hence the undershoot is unavoidable because the high 

frequency part always has a different sign from the low frequency part.  

Remark 3.1: Never use a negative b̂  in the ADRC design if the low frequency 

gain of the system is positive; doing so will lead to a positive feedback loop for the 

system. 

For the low frequency formulation provided in Section 3.2.2, the characteristic 

equation of the closed-loop transfer function derived from (3.5) and (3.18) is more 

complicated as 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

5 4 3
1 1 2 0 1 1 2 2 2 1 1 1 1 2 2 3 1

2
0 1 2 1 2 2 1 1 1 1 2 2 3 0 1 2 2 3 1

0 2 2 1 1 1 2 2 3 0 1 3 1 1 3 0

ˆ

ˆ ˆ

ˆ ˆ ˆ 0

s a l k s a a l k l k l k k l k l l b b s

a l k a l k l k k l k l l b b k l k l b b s

a l k l k k l k l b b k l b b s k l b b

 + + + + + + + + + + + +
 

 + + + + + + + + + +
 

 + + + + + + + = 

 (3.20) 

Note that 0b̂ b≈  is positive in this case. For the system to be stable, at least all of 

the coefficients should be positive. It is noticed that all of the system parameters as well 

as the observer and controller bandwidths are positive, except 1b . Thus only the last terms 



 

27 

in the coefficients of 3
s , 2

s  and s  terms have negative values which may result in 

negative coefficients. According to the selection of the individual gains of the observer 

and the controller, the negative terms have a higher order in terms of 
c

ω  than the positive 

terms, which means when 
c

ω  goes beyond a certain value the coefficients will become 

negative and the system will be unstable. 

This is reasonable if we recall the classical control theory. From the root locus 

point of view, as the feedback gain k  increases from zero to infinity, the closed-loop 

poles go from the open loop poles to the open loop zeros or infinity. Since there is an 

unstable zero in the system, k  must have an upper limit. This is also true for the ADRC 

design. 

Remark 3.2: In the ADRC design for systems with RHP zeros, the controller 

bandwidth will have an upper limit in order to keep the system stable. 

Through the frequency domain analysis, the reason why those two design 

formulations do not work for systems with RHP zeros becomes clearer. The solutions to 

this problem are discussed in the following section. 

3.2.4 Proposed Solution 

Based on the frequency domain analysis in the previous section, it can be seen 

from (3.20) that by increasing b̂  the effects of the negative terms get smaller. This means 

that the system tends to be more stable or with the same stability margin a higher 

controller bandwidth can be achieved. To analytically derive the upper limit for the 

controller bandwidth is non-trivial, hence a computer program is written to find the upper 

limits of the controller bandwidth according to different b̂  values. Figure 6 is a plot of 
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the result. The part below the curve represents the stable region, while the part above the 

curve represents the unstable region. 

 

Figure 6 Stable region search result. 

Simulations are run to demonstrate the effectiveness of this solution. As shown in 

Figure 7, with a larger b̂  value, 100 times of its nominal value, the allowable controller 

bandwidth is increased from 1.2 to 10. The performance is much better than the result 

obtained in Section 3.2.2, and is acceptable now. 
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Figure 7 Simulation results for low frequency gain formulation – comparison between 

original b̂  and increased b̂ . 

Increasing b̂  further, even higher controller bandwidth can be achieved; but 

overshoot and oscillation come into play when the bandwidth is set too high. Simulation 

results show that not much improvement on reducing the response time is obtained from 

further increasing b̂ . Based on a large amount of simulations, a range of 20 to 100 times 

of its nominal value is suggested for b̂ . 

3.3 Open Loop Design for Systems with RHP Zeros 

In Section 3.2, the ADRC design solution for systems with RHP zeros is provided. 

The tracking performance, however, is still not comparable to the performance limit 

indicated by Lemma 3.1 and 3.2. Hence in this section, the open loop design is carried 

out to further improve the tracking performance, and hopefully reach the performance 
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limit. In Section 3.3.1, the time optimal control solutions is obtained with the control 

effort constraint. The more practical minimum settling time solution subject to 

undershoot constraint is presented in Section 3.3.2. 

3.3.1 Time Optimal Control Solution 

Consider the system given in (3.5), repeated here as (3.21) 

 ( )
( )

( )( )
1 0

2
1 2 1 0

1

1 1p

k s z b s b
G s

s p s p s a s a

− +
= =

+ + + +
 (3.21) 

 The control input subjects to the constraint ( ) 0u r r≤ > . 

Putting (3.21) into the observable canonical form 

 
( )

[ ]

1 1

0 0

1
,

0

1 0
A

a b
x x u a x u

a b

y x

−   
= + =   −   

=

&

14243  (3.22) 

According to the Theorem 5.4-1 and Theorem 5.4-2 in [62], the time optimal 

solution for the above system exists and is unique as long as A  is Hurwitz. For time 

optimal control, the cost function is defined as 

 ( )
0

ft

t
J u dt= ∫  (3.23) 

The Hamiltonian is then formed below 

 ( ) ( )1 1 1 2 1 2 0 1 01T
g a a x x b u a x b uλ λ λ= + = + − + + + − +H  (3.24) 

Solving the co-state equation 

 

1 2

1 2

1 1 2
1 1 0 21

1 2
1 22

1 2

p t p t

p t p t

c e c e
a a

c c
e e

p p

λ
λ λλ

λ λλ

 = +
+    

= ⇒    − = − −   


&

&
 (3.25) 
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 ( ) ( ) ( ) ( )*
1 1 0 2 1 1 0 2b b u t b b u tλ λ λ λ+ ≤ +  (3.26) 
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Since 1 1 0 2b bλ λ+  will cross zero at most once depending on the values of 1c  and 

2c , the optimal control for a specified initial state must be one of the form: 
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0 1 1
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 (3.28) 
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 (3.29) 

Without loss of generality, assuming that the trajectory passes through the origin 

at time zero, 1c  and 2c  are solved below. 
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 (3.30) 

Next solving for t  and eliminate it from (3.29), we get the relationship between 

1x  and 2x , representing the switching curve in the phase plane. 
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 (3.31) 

The magenta switching curve is shown in Figure 8. The parameters of the system 

are chosen as: 1 7a = , 0 10a = , 1 1b = − , 0 1b =  and 10r = . As shown in Figure 8 the 

system trajectories are confined within an ellipse-like region, due to the fact that the 

system has no pure integrators. For system starts with initial states below the switching 

curve to reach the origin, u r= +  will be applied first; Once the trajectory reaches the 

switching curve, the control is switched to u r= − . Similar result can be found easily for 

initial states above the switching curve. 
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Figure 8 Phase plane trajectories of the time optimal control. 

Figure 9 shows the time optimal control that transfers the system states from 

(0, 0) to (0.5, 8.5). Here we see that the time optimal control solution has an undershoot 
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that is close to 180%, which is not desirable and urges us to find a more practical solution 

with the undershoot constraint. 
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Figure 9 Time domain response of the time optimal control. 

3.3.2 Minimum Settling Time Solution with Undershoot Constraint 

In this section, the control signals that minimize the settling time subject to 

undershoot constraint are synthesized for systems with one and two real RHP zeros, 

respectively, using the clues demonstrated in the proof of the two lemmas in [53]. 

One Positive Zero Case 

The ideal response for the system with just one positive zero can be deduced from 

the proof of Lemma 3.1 in [53] as 
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
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∈ ∞ 

 (3.32) 

which yields the minimum settling time, *
s s

t t=  in (3.3) and complies with the undershoot 

constraint ( ) [ ),   0,d usy t y r t− ≤ ∈ ∞ . But such response has two jumps at 0t =  and 

*
s

t t=  respectively, and this requires either an unbounded input which is ruled out in [53] 

or an infinitely fast system. Neither is practical but the latter gives us a starting point. Let 

us construct a bounded control law first for the ideal, i.e. infinitely fast, system. Without 

loss of generality, an n th order linear time invariant NMP system with one positive zero 

can be represented as 
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( )
( )

( )

1
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1
n

Y s s z
P s z p

U s s p

−
= = > >

+
 (3.33) 

This system becomes infinitely fast as p → ∞ . Now define 

 ( ) ( )1 ( )U s s z U s= −%  (3.34) 

or equivalently 

 ( ) ( ) ( )u t u t u t z= −% &  (3.35) 

where ( )U s%  is the Laplace transformation of ( )u t% . Then (3.33) becomes 
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( )

( )
( )

1

1
n

Y s
P s

U s s p
= =

+
%

%
 (3.36) 

For the infinitely fast system ( )P s%  in (3.36), i.e. p → ∞ , ( ) ( )Y s U s= %  or equivalently 

( ) ( )y t u t= % . Thus according to (3.32), for ( ) ( )*
y t y t= , 
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with the following initial condition and boundary condition. 

 ( )0 0u =  (3.38) 

 ( )1 du t y=  (3.39) 

Solving (3.37) subject to (3.38) and (3.39) yields 
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 +
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 (3.40) 

It is obvious that *
1 s
t t= , thus 

 *lim
s s

p
t t

→∞
=  (3.41) 

Therefore, the following theorem has been constructively proven. 

Theorem 3.1: Given the undershoot constraint ( ) [ ),   0,d usy t y r t− ≤ ∈ ∞ , if the 

transfer function of the system satisfies (3.33), then the control law (3.40) achieves the 

minimum settling time for the system as p → ∞ . 

Example 3.1: Consider the system with one positive zero. 

 ( )
( )

( )
2

1

1 10

s
Q s

s

−
=

+
 (3.42) 

Applying the constructed control law (3.40) to system (3.42) with three different 

undershoot constraints: 2%, 5%, and 10%, the system responses are shown in Figure 10. 
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Figure 10 Input and output signals in Example 3.1. 

As can be seen from the results, the larger undershoot allowed the shorter settling 

time can be achieved. The minimum settling time of system (3.42) can be calculated from 

(3.3) for each undershoot constraint with 1z = , and they are 3.932 seconds for 2% 

undershoot, 3.045 seconds for 5% undershoot, and 2.398 seconds for 10% undershoot. 

We see that the control signals reach their final value at exactly the minimum settling 

time. The responses, however, take a little longer to settle due to the finite poles at -10. 

For example, for the 5% undershoot case (green dashed line) the actual settling time is 

3.634 seconds. The settling time can be reduced by replacing the original system poles 

with larger ones, using the compensator (3.43) below with 10p > . But too large poles 
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may result in larger control effort and drastic changes in the control signal, which are to 

be avoided in practice. 

 ( )
( )

( )

2

2

1 10

1

s
C s

s p

+
=

+
 (3.43) 

Two Positive Zeros Case 

Consider NMP system with two positive zeros 
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The ideal response for system (3.44) with p → ∞  can also be deduced from the proof of 

Lemma 3.2 in [53] and it is the same as in (3.32). Consider that a continuous response of 

system (3.44) must have at least two zero crossings (see [63], pp. 154-156), the ideal 

response for it can be similarly constructed as 
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 with 1 0t →  (3.45) 

where 1A  and 2t  are design parameters to be determined as shown below. Define 

 ( ) ( )( )1 21 1 ( )U s s z s z U s= − −%  (3.46) 

or equivalently 

 ( ) ( ) ( ) ( ) ( )1 2 1 21 1u t u t z z u t u t z z= − + +% & &&  (3.47) 

where ( )U s%  is the Laplace transformation of ( )u t% . Then (3.44) becomes 
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For the infinitely fast system ( )P s%  in (3.48), i.e. p → ∞ , ( ) ( )Y s U s= %  or 

equivalently ( ) ( )y t u t= % . Thus according to (3.45), for ( ) ( )*
y t y t= , 
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 with 1 0t →  (3.49) 

with the following initial conditions and boundary conditions. 

 ( ) ( )0 0 0u u= =&  (3.50) 

 ( ) ( )2 2, 0du t y u t= =&  (3.51) 

Solving (3.49) subject to (3.50) and (3.51) yields 
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where 2 1T t t= − . Eliminating 1A  in (3.52) yields 
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With 1 0t →  or equivalently 2T t→  and applying the L’Hopital’s rule to (3.53) 
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 (3.54) 

Consequently in light of (3.4), 
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t t
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Therefore, the following theorem has been constructively proven. 

Theorem 3.2: Given the undershoot constraint ( ) [ ),   0,d usy t y r t− ≤ ∈ ∞ , if the 

transfer function of the system satisfies (3.44), then the control law determined by (3.49), 

(3.50) and (3.51) achieves the minimum settling time for the system as p → ∞ . 

Remark 3.3: Practically speaking 1t  can be chosen to be an appropriate small 

number, then 1A  and 2t  can be solved from (3.52). Due to the complexity of (3.52), the 

analytical solution may not be easily found but numerical algorithms, for example in 

MATLAB, are readily available to solve for 1A  and 2t . 

Remark 3.4: For NMP systems with more than two positive zeros, the relation 

between the undershoot constraint and the settling time is not yet known, to our 

knowledge. But based upon the results obtained above, a control law for m  positive 

zeros case can be constructed similarly. Consider the NMP system in the form of 

 
( )
( )

( )
( )

( )
1

1 2 1

1
,   0,  0,  

1

m

i

i
m mn

s z
Y s

P s z z z z p n m
U s s p

=
−

−

= = > > > > > > >
+

∏
L  (3.56) 
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where ( )U s%  is the Laplace transformation of ( )u t% . Given the undershoot constraint 

( ) [ ),   0,d usy t y r t− ≤ ∈ ∞  the control law ( )u t  can be constructed, as in the case of 

1, 2m = , by solving (3.58) and (3.59) subject to the initial conditions (3.60) and the 

boundary conditions (3.61).  Many solutions exist. To obtain a particular ( )u t  the 

following design parameters 1i i i
t t t −∆ = − , ( 2 1i m k= − + , [ ]1, , 2k m= K ), where [ ]2m  

denotes the greatest integer less than or equal to 2m , need to be selected.  
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 (3.59) 

 ( ) ( )0 0,  0,1, , 1i
u i m= = −K  (3.60) 

 ( ) ( ) ( ),  0,  1, 2, , 1i

m d mu t y u t i m= = = −K  (3.61) 

In the case of 2m = , if 1 0t∆ →  and p → ∞ , it is shown above that the 

corresponding control law ( )u t  achieves the minimum settling time. The mathematically 

analysis for the case of 2m > , however, seems prohibitively complex. In practical 

applications, it is suggested that 
i

t∆  ( 2 1i m k= − + , [ ]1, , 2k m= K ) be kept small for 

shorter settling time. 

Example 3.2: Consider the system with two positive zeros. 

 ( )
( ) ( )

( )
3

1 2 1 5

1 20

s s
Q s

s

− −
=

+
 (3.62) 

Appling the control signal determined by (3.49), (3.50) and (3.51) to system (3.62) 

with the following values for the parameters: 1 2z = , 2 5z = , 20p = , 1
d

y =  and 
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5%
us

r = . With 1t  chosen to be 0.2 seconds, 1 0.0289660085A =  is obtained numerically 

from solving (3.52). The system response is shown in Figure 11, with the actual settling 

time measured to be 2.28 seconds, which is very close to the minimum settling time, 

calculated from (3.4) to be 1.78 seconds. In this case, the settling time can be further 

reduced not only by assigning larger poles but also reducing 1t  as indicated by Theorem 

3.2. The decrease in 1t  corresponds, however, to a larger 1A . 
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Figure 11 Control signal, its derivative and the output response in Example 3.2. 

Remark 3.5: It is noticed that for a given 1t , 1A  has to be very precise such that 

the two boundary conditions required in (3.51) can be satisfied at the same time. Even in 

the above simulation with very accurate 1A , ( )u t&  is not exactly zero (slightly greater than 
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zero) when ( ) du t y= . That is why the control signal keeps increasing slowly. A practical 

solution will be forcing ( )u t&  to be zero when ( ) du t y=  so that 1A  does not have to be 

very accurate. The cost is that the undershoot constraint may be slightly violated. For 

example, with 1 0.0289661A =  the actual undershoot increases from 5% to 5.3%, which is 

still acceptable in most applications. 

3.4 The Combined Feedforward-Feedback Design 

In this section a realistic hydraulic turbine control problem is used to demonstrate 

the practical significance of the above solution, where a feedforward and feedback 

combined design [7, 18] is adopted. The overall transfer function of the hydraulic turbine 

generator is given in [64] as 

 

( )
2

4 3 2

5.25 4.2 1.05
1.14 8.2 7.945 6.235 1.05

1 1
1 0.2

1 1 1 1
6.2085 0.2144 0.385 0.7373 0.385 0.7373

s s
Q s

s s s s

s s

s s s s

i i

− + +
=

+ + + +

  
− +  

  =
    

+ + + +    
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 (3.63) 

A block diagram of the combined design is shown in Figure 12. The feedforward 

control signal is generated based on the reference signal. Before being sent to the real 

system as well as the system model, it passes through a compensator which is used to 

reassign the system poles or convert the system transfer function into the standard form in 

(3.33) or (3.44). The actual response is compared to the reference response coming out 

from the system model to produce the error signal. The error signal may not be zero due 
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to the disturbances and/or the model uncertainties. The output deviation is then corrected 

by the feedback controller. 
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Figure 12 The feedforward and feedback combined control design. 

The feedforward control is constructed based on Theorem 3.1 with a 5% 

undershoot constraint applied. The compensator (3.64) is used to convert system (3.63) 

into the standard form (3.33) and replace the small poles.  
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 (3.64) 

If the system model matches the real system exactly and no disturbance exists, the 

feedforward control would work perfectly (see Figure 13, blue dashed curve) as in 

Example 3.1. In reality, however, model uncertainties and disturbances do exist. Suppose 

that the real system dynamic is 
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(3.65) 

and a step disturbance with a magnitude of 0.2 is introduced to the system at 50 seconds. 

In such situations, the feedforward control alone is insufficient (see Figure 13, magenta 

dotted curve), thus the feedback control is needed to correct the deviation. Note that the 
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control signals are identical for the first two simulations. For the feedback design, the 

ADRC design proposed in Section 3.2 is adopted with the parameters chosen as ˆ 460b = , 

5
c

ω =  and 2α = . The simulation result of the combined feedforward and feedback 

design is shown in Figure 13 (green solid curve). The integral absolute error (IAE) for 

tracking reduces from 6.595 to 4.792 compared to the result of a pure ADRC design with 

the same parameters (see Figure 13, red dash-dotted curve). The system response settles 

in 20 seconds after the disturbance is introduced. 
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Figure 13 Control signals and output responses. 
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3.5 Summary 

The main contributions of this chapter are: 1) provided an applicable ADRC 

design for systems with RHP zeros; 2) obtained the feedforward control that achieves the 

minimum settling time subject to undershoot constraint. Based on those a comprehensive 

control solution for systems with RHP zeros is made available. The time optimal solution 

is derived as well and may be applied to the cases where the undershoot is not an issue. 
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CHAPTER IV 

DISTURBANCE REJECTION IN SYSTEMS WITH TIME DELAY 

Most industrial processes, e.g. combustion, distillation, waste water treatment, are 

modeled as systems with time delay, either first order plus time delay (FOPTD) or second 

order plus time delay (SOPTD). The time delay, also known as dead time, is generally 

associated with the transportation of the material or energy in the processes [65]. In 

addition, it can be the result of an approximation of higher order dynamics with a lower 

order one, which is not the main focus of this chapter. Generally speaking, systems with 

time delay are another class of NMP systems. In this chapter, we modify the existing 

ADRC structure to better accommodate the time delay, and demonstrate the effectiveness 

of the proposed method through simulations and experiments. The stability analysis for 

the closed-loop system is provided as well. 

The chapter is organized as follows. The control design for systems with time 

delay is briefly reviewed in Section 4.1, followed by the proposed modification to the 
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ADRC design given in Section 4.2. In Section 4.3, simulation and experimental results 

are provided to demonstrate the effectiveness of the proposed method. The stability 

analysis for the closed-loop system with the proposed design is done in Section 4.4. 

Section 4.5 summarizes the chapter. 

4.1 Background 

The control design for systems with time delay is very challenging due to the fact 

that the time delay introduces additional phase lag, which also increases as frequency gets 

higher, to the system. Hence, the achievable closed-loop bandwidth is normally limited to 

1 τ , where τ  is the time delay [47]. The well-known Smith predictor [66], however, can 

increase the closed-loop bandwidth providing an accurate system model is available; 

otherwise the high bandwidth may cause instability due to model uncertainties. The 

disturbance rejection performance of the original Smith predictor is found to be poor. In 

addition, it cannot deal with time-delay systems which have right half plane poles, 

because an unstable cancellation will be involved in such case. Therefore numerous 

efforts have been made to modify the original Smith predictor and improve its 

performance [67]. Especially, the control of integral processes with time delay seems to 

attract much attention [68-71] due to the critical stability. Zhong et al. even wrote a series 

of four papers on this topic [72-75], proposing a disturbance observer based approach. 

All of the above Smith predictor based methods would require an accurate mathematical 

model of the system. Hence the control design of ADRC, which is known for its ability to 

accommodate uncertainties, for systems with time delay is investigated. 
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As mentioned earlier in Chapter 2, the application of ADRC to systems with time 

delay has been studied by other researchers [20, 34]. Several methods was proposed in 

[20] to deal with time delay within ADRC. The first one is to ignore the time delay and 

design the ADRC for the dynamics without time delay. This leads to limited performance. 

The second method approximates the time delay with a first order dynamic using the 

relation ( )1 1s
e s

τ τ− ≈ +  and adopts a higher order ADRC design. Other methods try to 

predict the system output or the control signal based on ( ) ( ) ( )g t g t g tτ τ+ = + & . Such 

prediction may not be accurate when the time delay τ  is big. The ADRC design for a 

multivariable system with time delay is studied in [34], where the approximation method 

is adopted. The original nonlinear ADRC designs in [20, 34] though provide satisfactory 

performance, the complexity inhibits their applications. It is the aim of this chapter to 

provide a simple, easy to implement ADRC solution to the prevailing industrial process 

control applications. 

4.2 Proposed Solution 

The modification to the regular ADRC design is straightforward and intuitive. A 

time delay block is added, as shown in Figure 14, to delay the control signal before it 

goes into the extended state observer. Since the system output is already delayed due to 

the system dynamic, this will synchronize the signals that go into the observer and let it 

provide meaningful estimations of the system states and disturbances1.  

                                                 
1 This synchronization technique not only works for the ADRC design discussed in this chapter, but also 

applies to the general observer design for systems with time delay. After the synchronization of the 

observer inputs, the outputs of the observer then have physical meanings, which are delayed states. 
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Figure 14 Modified ADRC for systems with time delay. 

Compare to the standard ADRC design described in Section 2.4, the proposed 

ADRC can be implemented easily by replacing (2.5) with the following. 

 ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 1
ˆˆ ˆ ˆ

n n n n nX t A X t bB u t L x t x tτ+ + + + += + − + −
&

 (4.1) 

Though the modification is simple, it enhances the regular ADRC design by 

allowing higher observer bandwidth to be achieved. With appropriate tuning, the 

proposed method also provides a unified solution to a variety of systems with time delay, 

not matter they have stable poles, pure integrators, or even unstable poles, as will be 

demonstrated in the next section. 

4.3 Simulation and Experimental Results 

The following FOPTD and SOPTD systems have been widely studied and will be 

used to test the proposed method in this section. 

 ( ) s

FOPTD

b
G s e

s a

τ−=
+

 (4.2) 



 

50 

 ( ) 2
1 0

s

SOPTD

b
G s e

s a s a

τ−=
+ +

 (4.3) 

In most cases, there are 0a > , 1 0a >  and 0 0a > , i.e. all the poles are stable. With 

0a = and 0 0a = , system (4.2) and (4.3) become integral processes with time delay, 

which has caught much attention. Furthermore if for (4.2) 0a < , and for (4.3) 1 0a <  or 

0 0a < , the poles become unstable, which makes the problem more challenging. 

4.3.1 Simulation Results 

Example 4.1: The fuel dynamics of a boiler turbine unit can be considered as a 

FOPTD system [76] with the following transfer function. 

 ( )
3

60 60
3

0.2 1.38 10
145 1 6.90 10

s s

fuel
G s e e

s s

−
− −

−

×
= =

+ + ×
 (4.4) 

Three different ADRC designs are carried out. The first one is a standard first 

order ADRC by ignoring the time delay; the second design is a standard second order 

ADRC approximating the time delay with a first order dynamic; the last is the modified 

ADRC. The parameters of the three ADRC designs are chosen as: for the regular first 

order ADRC, 3ˆ 1.38 10b
−= × , 0.015

c
ω =  and 1α = ; for the regular second order ADRC, 

5ˆ 6.90 10b
−= × , 0.02

c
ω =  and 2α = ; for the modified first ADRC, 3ˆ 1.38 10b

−= × , 

0.015
c

ω =  and 10α = . A disturbance of magnitude 1 is added at 1000 seconds. The 

simulation results are shown in Figure 15. 
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Figure 15 Simulation results of three ADRC designs for system with time delay. 

As can be seen from above, since the modified ADRC allows higher observer 

bandwidth, better disturbance estimation and rejection is achieved. This demonstrates the 

advantages of the modified ADRC over the regular ADRC for systems with time delay. 

Example 4.2: In this example, we test the ability of the proposed ADRC to deal 

with different types of time-delay systems. The systems studied are all in the form of 

(4.2) with parameters 5τ = , 1b =  and 0.05,  0 and 0.05a = −  respectively. The design 

parameter ˆ 1b b= =  is the same for all three cases, and the tuning parameters are chosen 

as: for 0.05a = , 0.14
c

ω =  and 10α = ; for 0a = , 0.09
c

ω =  and 10α = ; for 0.05a = − , 

0.06
c

ω =  and 30α = . A disturbance of magnitude 0.1 is added at 70 seconds. The 

simulation results are shown in Figure 16. 
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Figure 16 Simulation results of ADRC accommodating different system dynamics. 

From above, it is demonstrated that the same ADRC design works for time-delay 

systems with stable, critical stable and unstable poles. Notice that, for the 0a =  case, 

similar performance as given in [68] is achieved, but our method is much easier to tune. 

Basically only one tuning parameter needs to be adjusted, whereas in [68], there are three 

parameters for the filter and an additional for the controller. 

4.3.2 Experimental Results 

The distillation column benchmark problem [77] is studied here. The system has 

two inputs and two outputs, and the system dynamics is represented by the following 

transfer function matrix. 

 
( )
( )

( ) ( )
( ) ( )

( )
( )

1 11 12 1

2 21 22 2

Y s P s P s U s

Y s P s P s U s

     
=     

     
 (4.5) 
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where ( )
1

11

12.8
16.7 1

s
e

P s
s

−

=
+

, ( )
3

12

18.9
21.0 1

s
e

P s
s

−−
=

+
, ( )

7

21

6.6
10.9 1

s
e

P s
s

−

=
+

 and ( )
3

22

19.4
14.4 1

s
e

P s
s

−−
=

+
. 

Then it is modeled in MATLAB SIMULINK as shown in Figure 17, and running in real-

time workshop to mimic the dynamics of a real distillation column. The virtual 

distillation column interacts with the outside through a multi-function analog and digital 

I/O card (PCI-DAS1602-16) from Measurement Computing Corporation. 

 

Figure 17 SIMULINK model of the distillation column. 

According to the disturbance decoupling control proposed in [26], two modified 

first order ADRC are designed to control ( )11P s  and ( )22P s  respectively. The control 

algorithm is coded and compiled in OpenPCS, an IEC (International Electrotechnical 

Commission) 61131-3 compatible PLC (Programmable Logic Controller) programming 

environment as shown in Figure 18, and then downloaded to and executed on the UPAC 

(Universal Programmable Automation Controller) platform as shown in Figure 19, a 

product from UniControl Inc., which interfaces with the virtual distillation column. 
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Figure 18 OpenPCS programming environment. 

 

Figure 19 UPAC platform. 



 

55 

The test is done with the following parameters: 1̂ 0.766b = , 1 0.08
c

ω = , 1 10α = , 

2̂ 1.347b = − , 2 0.1
c

ω =  and 2 10α = . The set-points for both loops are set to 5. At 100 

seconds a disturbance of magnitude of 0.1 is added to loop 1 and another disturbance of 

the same magnitude is added to loop 2 at 200 seconds. The dynamics of the distillation 

column is simulated at a rate of 100 Hz, and the controller runs at a rate of 10 Hz. The 

test results are shown in Figure 20 and Figure 21. 
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Figure 20 Simulation and test results of loop 1 of the distillation column. 

From the results we see that the simulation and test results match well, and the 

disturbances are well rejected. The discrepancy between the simulation and the hardware 

test at the beginning is caused by the different initial conditions. In this experiment, we 

demonstrate the feasibility of the implementation of the proposed method. Also its ability 

to deal with MIMO system with time delay, which is common in real industrial 
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applications, is verified. The tuning for such systems needs more consideration of the 

trade-off between the performances of each loop. 
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Figure 21 Simulation and test results of loop 2 of the distillation column. 

4.4 Stability Analysis 

The stability analysis for the above design can be carried out following the idea 

presented in [78] by means of linear matrix inequality (LMI). Applying the modified 

ADRC design, the overall closed-loop system can be written as 

 
( ) ( ) ( )

( ) ( ) [ ]

,  0

,  ,0

d
x t Ax t A x t t

x t t t

τ

ξ τ

= + − >

= ∈ −

&
 (4.6) 

where ( )tξ  is a vector-valued continuous function of time and τ  is the constant time 

delay. For the FOPTD system (4.2) there are 
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ˆ

ˆ

y

x y

f

 
 

=  
 
 

, 
1

1

2

ˆ ˆ

0 1

0 0

a k b b b b

A l

l

 − − −
 

= − 
 − 

 and 1 1

2

0 0 0

1

0 0
dA l k

l

 
 = − − 
  

; 

and for the SOPTD system (4.3) there are 

ˆ

ˆ

ˆ

y

y

yx

y

f

 
 
 
 =
 
 
 
 

&

&

, 
0 1 1 2

1

2

3

0 1 0 0 0

ˆ ˆ ˆ

0 0 1 0

0 0 0 1

0 0 0 0

a a k b b k b b b b

A l

l

l

 
 
− − − − − 
 = −
 

− 
 − 

 and 1

2 1 2

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 1

0 0 0 0

dA l

l k k

l

 
 
 
 =
 

− − − 
  

. 

The following lemmas will be used for the analysis. 

Lemma 4.1 (Jensen’s Inequality) [79]: For any constant matrix 0S > , scalars 

2 1t t> , vector function [ ]1 2: , m
x t t R→  such that the integrations in the following are well 

defined, then 

 ( ) ( ) ( ) ( ) ( )
2 2 2

1 1 1
2 1

T
t t tT

t t t
t t x t Sx t dt x t dt S x t dt   − ≥

      ∫ ∫ ∫  (4.7) 

Lemma 4.2 (Finsler’s Lemma) [78]: Let 
n

x R∈ , T n nP P R ×= ∈  and m nH R ×∈  

such that ( )rank H r n= < . The following are equivalent: 

1. 0,  0,  0Tx Px Hx x< ∀ = ≠ ; 

2. n mX R ×∃ ∈  such that 0T T
P XH H X+ + < . 

Lemma 4.3 (Schur complements) [80]: For any symmetric matrix 
T

A B

B C

 
Ψ =  

 
, 

where 0C >  and is invertible, then 0Ψ >  if and only if 
1 0T

A BC B
−− > . 

Theorem 4.1: System (4.6) is asymptotically stable, if there exist symmetric 

matrices 0P > , 0Q >  and 0M >  such that the following LMI holds. 
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 0

T T

d

T T

d d

d

PA A P Q M PA M A M

A P M Q M A M

MA MA M

τ

τ

τ τ

 + + − +
 

+ − − < 
 − 

 (4.8) 

Proof. Choosing the following Lyapunov functional 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
0t t

T T T

t t s
V x t x t Px t x s Qx s ds x Mx d ds

τ τ
τ σ σ σ

− − +
= + +∫ ∫ ∫ & &  (4.9) 

The time derivative of ( )( )V x t  along the trajectory of system (4.6) can be calculated as 

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

2 T T T

t
T T

t

V x t x t Px t x t Qx t x t Qx t

x t Mx t x Mx d
τ

τ τ

τ τ σ σ σ
−

= + − − −

+ − ∫

& &

& & & &
 (4.10) 

From Lemma 4.1, the following is true. 

 ( ) ( ) ( ) ( )
t

T T

t
x Mx d x t Mx t

τ
τ σ σ σ

−
− ≤ −∫ & & % %  (4.11) 

where ( ) ( ) ( )x t x t x t τ= − −% . Then 

 ( )( ) ( ) ( )T
V x t t tφ φ≤ Λ&  (4.12) 

where ( ) ( ) ( ) ( ) ( ), , ,
T

T T T Tt x t x t x t x tφ τ = − & %  and 

2 0 0

0 0

0 0 0

0 0 0

M P

P Q

Q

M

τ 
 
 Λ =
 −
 

− 

. 

According to (4.6), there is ( ) 0A tφ ≡ , where 
0

0
dI A A

A
I I I

− − 
=  − 

. Then the 

closed-loop system (4.6) is asymptotically stable if for all ( ) 0A tφ = , ( ) ( ) 0T
t tφ φΛ < . 

With 
0

0

T
T

T

d

A I I
A

A I I

⊥
 

=  
− 

, which is orthogonal to A  and 0AA
⊥ = , from Lemma 4.2, 

the following holds. 
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 ( ) ( ) 0 0T T
t t A Aφ φ ⊥ ⊥Λ < ⇔ Λ <  (4.13) 

 
2 2

2 2
0

T T T

T d d

T T T

d d d d

A MA PA A P Q M A MA PA M
A A

A MA A P M A MA Q M

τ τ

τ τ
⊥ ⊥

 + + + − + +
Λ = < 

+ + − − 
 (4.14) 

By Lemma 4.3, (4.14) is equivalent to (4.8). Thus, we can always find a sufficiently 

small 0ε >  such that ( )( ) ( )
2

V x t x tε< −& , which ensures the asymptotic stability of 

system (4.6). Q.E.D. 

The MATLAB code for finding a feasible solution of (4.8) can be found in the 

Appendix A.2. The analysis above can be used as a guide for selecting controller 

parameters. For example, we can choose the maximum controller bandwidth which 

ensures a feasible solution of (4.8) as a starting point, i.e. the closed-loop system is 

guaranteed to be stable; then gradually increase the bandwidth until a satisfactory 

performance is achieved, since the solution from (4.8) may be conservative. 

4.5 Summary 

The main contributions of this chapter are: 1) proposed a simple and easy to 

implement ADRC solution for systems with time delay; 2) provided, for the first time, the 

stability analysis of ADRC applied to systems with time delay. The proposed solution has 

been demonstrated to be very effective through both simulations and experiments. 
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CHAPTER V 

THE VIBRATION SUPPRESSION IN MOTION CONTROL 

The vibration due to the resonance mode, which is a part of the internal dynamics, 

is a widely recognized problem in motion control applications. In this chapter, we try to 

provide an alternative solution to this problem using our unique ADRC design, which 

requires very little system model information and makes the control system tolerant of 

unknown changes in system dynamics. With the proposed method, the effect of the 

resonant mode to motion, i.e. the ripples in torque, is estimated and canceled in real time 

using the motor torque, after which the motion dynamic behaves largely like a rigid body. 

The chapter is organized as follows. First, the literature review is presented in 

Section 5.1, while the specific problem studied and the existing solutions are described in 

Section 5.2. In Section 5.3, the ADRC design for the vibration problem is carried out. 

Simulation and experimental results are presented in Section 5.4 and Section 5.5 

respectively. Section 5.6 summarizes the chapter. 
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5.1 Background 

Vibration suppression is important in motion control applications because 

vibration causes dynamic stresses, energy wastes and performance degradations [81]. By 

law of physics, mechanical resonance is unavoidable in every system involving motion, 

but the natural frequencies of such systems are usually quite high and not excited during 

most common motion maneuvers, where a simple proportional-integral-derivative (PID) 

controller is often sufficient to meet the design requirements. Control design becomes an 

issue, however, when the performance improvements push the loop bandwidth to its limit 

where the resonant modes come into play. The most common resonance seen in industry 

can be attributed to the compliant couplings, such as gear boxes, long shafts and belts, 

which can be treated as springs [82]. 

To deal with resonance, there are mechanical and electrical means. Since the 

resonance is caused by compliance, a stiffer transmission, i.e. a direct coupling in place 

of a belt, will be an obvious solution. Adding more mechanical damping will surely be 

helpful. In addition, increasing the motor inertia is found to be an effective way to 

alleviate the resonance [82]. These mechanical methods are costly, which leads us to 

electrical options, consist of low-pass filter, notch filter [83] and bi-quad filter [84], all 

for the objective of attenuating the loop gain amplitude at the resonant frequency so that 

the resonance is suppressed. Some of the electrical methods are equivalent 

mathematically to the mechanical methods mentioned above. Active resonance damping 

control [84] actually increases the effective physical damping by adding a torque that is 

proportional to the speed difference between the motor and load. Acceleration feedback 

control [84, 85], however, increases the motor inertia equivalently. There are still other 



 

62 

control methods available, such as center of mass control [82, 84] and resonance ratio 

control [86, 87]. 

All of the above control methods predicate on the detailed mathematical model of 

the physical process that may or may not be readily available. Even if such a model is 

obtained at considerable cost, the parameters of the model often change during operation, 

which may lead to variations in the resonant frequency, leaving the notch filter approach, 

for example, vulnerable. The attempt to address this flaw leads to solutions such as the 

adaptive notch filter [88], which is designed to tune the filter parameters on the fly based 

on adaptive control theory, adding complexity and cost to the design, implementation, 

and tuning of the control system. It is in this background that an alternative ADRC 

solution is proposed in this chapter. 

5.2 Problem Description and Existing Solutions 

The compliant resonance problem can be simplified and represented by the two-

inertia system model [82, 87] as shown in Figure 22. 

 

Figure 22 Two-inertia system model. 

Motor inertia 
M

J  is connected to load inertia 
L

J  by a spring with spring constant 

S
K  and damping ratio 

S
b . A torque 

E
T  is applied on the motor side to drive the system. 
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Angular acceleration, angular velocity and angular position of the motor and the load are 

denoted as 
M

α , 
M

ω , 
M

θ  and 
L

α , 
L

ω , 
L

θ  respectively. Through simple analysis, we can 

derive the transfer functions from input (
E

T ) to different outputs (
M

ω , 
L

ω , 
M

θ  and 
L

θ ). 

The transfer function from 
E

T  to 
M

ω  is 

 
( )

2

2

1 L S SM

E M L P S S

J s b s K

T J J s J s b s K

ω + +
= ⋅

+ + +
 (5.1) 

where ( )P M L M LJ J J J J= + . Similarly, the other three transfer functions are 

 
( )

2

2 2

1 L S SM

E M L P S S

J s b s K

T J J s J s b s K

θ + +
= ⋅

+ + +
 (5.2) 

 
( ) 2

1 S SL

E M L P S S

b s K

T J J s J s b s K

ω +
= ⋅

+ + +
 (5.3) 

 
( ) 2 2

1 S SL

E M L P S S

b s K

T J J s J s b s K

θ +
= ⋅

+ + +
 (5.4) 

The first term of each transfer function is exactly the same as the transfer function 

for the rigid body model; the second term which contains resonance is introduced by the 

compliance. In both motor and load transfer functions, the denominators of the resonance 

term will produce a resonant frequency 
R

ω , and the numerator of the resonance term in 

motor transfer functions will produce an anti-resonant frequency 
AR

ω  [82]. They can be 

calculated by following equations. 

 R S PK Jω =  (5.5) 

 AR S LK Jω =  (5.6) 

The Bode plots of velocity transfer functions of rigid body model and compliant 

model (two-inertia system model) are shown in Figure 23 for comparison. At low 



 

64 

frequency (below the anti-resonant frequency) the two models behave the same. The 

motor and load are connected as a whole just like the rigid body. As frequency goes 

higher, the motor and load become disconnected and behave differently. Around resonant 

frequency there is a 180 degree phase difference between the motor and load, which to 

some extent represents the resonance as well. 
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Figure 23 Bode plots of velocity transfer functions - Rigid vs. Compliant. 

Several existing methods are described in [84] that deal with the resonance. A 

notch filter in the form of 

 ( )
2 2

2 22
R

N

R R

s
F s

s s

ω

ζω ω

+
=

+ +
 (5.7) 

is often used to attenuate the open loop gain at the resonant frequency. The bi-quad filter 
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 ( )
2 2

2 2

2
2

R R R
BQ

AR AR AR

s s
F s

s s

ζ ω ω

ζ ω ω

+ +
=

+ +
 (5.8) 

as another solution, not only attenuates the open loop gain at the resonant frequency but 

also increases the open loop gain at the anti-resonant frequency making it more like a 

rigid body system. The acceleration feedback method employs a rigid-body Luenberger 

observer to estimate the motor acceleration and uses it as a feedback for the purpose of 

increasing the motor inertia, as shown in Figure 24. 

 

Figure 24 Diagram of the acceleration feedback design. 

In a typical configuration of two-inertia system, the sensor is normally mounted at 

the motor end, where only the motion of the motor is measured and fed back. We denote 

this set up as motor feedback and this is the common practice in industry. In most cases 

seen in industry, however, the objective is to control the motion of the load. 

Consequently, we will also investigate the alternative where we mount the sensor at the 

load end and use the measurement of the load as feedback, which is denoted as the load 

feedback. Although the load feedback provides the direct information on how the load 

behaves, there is a considerable amount of phase lag, comparing to the motor feedback, 
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which makes the control design more challenging. One may suspect that this might be a 

main reason why the motor feedback configuration is widely used in industry. 

Different applications may have different design objectives. Some regulate 

velocity, others position. To show the generality of the proposed method, both velocity 

control and position control are addressed. 

5.3 ADRC Solution 

The main idea of ADRC is to treat any unknown dynamics of the system together 

with external disturbance as a total disturbance, use an extended state observer (ESO) to 

estimate this total disturbance in real time, and then cancel it in the control law [4]. In this 

manner we do not have to know the exact system model in order to control it, and 

particularly in this application we can treat the resonance, no matter what the frequency 

is, as part of the total disturbance. 

For completeness, we consider two types of motion control, velocity control and 

position control, and two feedback options, motor feedback and load feedback. Since the 

only difference between velocity control and position control is that the plant has one 

more integrator in position control, we will only present the problem reformulation for 

velocity control in the ADRC structure with both feedback options. 

Velocity Control with Motor Feedback 

With 2 1
M

b J= , ( )1 S M Lb b J J= , ( )0 S M Lb K J J= , 2 S P
a b J= , 1 S P

a K J= , 

and considering an external disturbance w , (5.1) can be rewritten as 

 2 1 2 1 0y a y a y b u b u b u w+ + = + + +&&& && & && &  (5.9) 
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where y  is the motor velocity 
M

ω , and u  is torque 
E

T  applied to the motor. Integrating 

(5.9) twice on both sides, the third-order system with a relative degree of one becomes a 

first order system [89] as below 

 
( )

( )
2 2 1 1 0

2 , , , ,

y b u a y a ydt b udt b udt wdt

b u f y ydt udt udt wdt

= + − − + + +

= +

∫ ∫ ∫∫ ∫∫

∫ ∫ ∫∫ ∫∫

&
 (5.10) 

Hence the standard first order ADRC design is adopted for this case. Similarly, a second 

order ADRC can be applied to the position control with motor feedback. 

Velocity Control with Load Feedback 

Considering an external disturbance w , (5.3) can be rewritten as 

 2 1 1 0y a y a y b u b u w+ + = + +&&& && & &  (5.11) 

where y  is the load velocity 
L

ω , and u  is torque 
E

T  applied to the motor. Integrating 

(5.11) once on both sides, the third-order system with a relative degree of two becomes a 

second order system 

 
( )

( )
1 2 1 0

1 , , ,

y b u a y a y b udt wdt

b u f y y udt wdt

= + − − + +

= +

∫ ∫

∫ ∫

&& &

&
 (5.12) 

Hence the standard second order ADRC design is adopted. Similarly, a third order ADRC 

can be applied to the position control with load feedback. 

5.4 Simulation Results 

In this section, the ADRC solution is tested in simulation and compared to the 

three existing methods described in [84], using the motor feedback configuration as in 

[84]. The more practical load feedback configuration is also explored. 
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5.4.1 Parameters and Profile Selection 

The proposed method is tested in simulations using the same system parameters 

as those in [84], with 372
S

K =  N·m/rad, 0.008
S

b =  N·m·s/rad, 3 21.88 10  kg m
M

J
−= × ⋅ , 

3 23.13 10  kg m
L

J
−= × ⋅ , 3 21.17 10  kg m

P
J

−= × ⋅ . In this case, the anti-resonant frequency 

AR
ω  is 345 rad/s (or 55 Hz), and resonant frequency 

R
ω  is 563 rad/s (or 90 Hz).We also 

compare our method with those discussed in [84] applying their fine tuned parameters in 

velocity control with motor feedback. The comparison is not done for other cases because 

only velocity control with motor feedback is considered in [84]. 

Step reference is a commonly used profile in simulations and real tests, but it is 

too aggressive and contains components with very broad bandwidth, which will excite 

the resonant mode of the system. So in industry the trapezoidal profile, which is less 

aggressive and also energy saving, is widely used instead of step reference. 
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Figure 25 Trapezoidal profile. 
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Even if a trapezoidal profile is used, the rising time of the profile is still crucial to 

the system performance. The faster the rising time is, more possible the system is going 

to have resonance. In order to avoid the resonance, the rising time is chosen between 

0.05 seconds and 0.1 seconds in the simulations. 

5.4.2 Results Comparison for Velocity Control with Motor Feedback 

Table I  MOTOR RESPONSES: TRACKING PERFORMANCE 

 Overshoot 

 (%) 

5‰ Settling Time 

(ms) 

Notch Filter 4.2 132 

Bi-quad Filter 1.4 112 

Acceleration Feedback 6.6 139 

ADRC with 
different 

c
ω  

(Hz) 

50 0.8 110 

100 0.3 96 

200 0.1 96 

 

Table II   MOTOR RESPONSES: DISTURBANCE REJECTION PERFORMANCE 

 Maximum Error 

(rad/s) 

5‰ Settling Time 

(ms) 

Notch Filter 1.35 >1000 

Bi-quad Filter 0.82 >1000 

Acceleration Feedback 0.66 101 

ADRC with 
different 

c
ω  

(Hz) 

50 0.68 73 

100 0.40 80 

200 0.22 115 

 

The proposed ADRC solution is simulated and compared to the notch filter, 

bi-quad filter and acceleration feedback methods, with the rising time set to 100 ms (0.1 
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s), the profile starting time set to 0.5 s and a disturbance of 1 N·m applied to the motor at 

1 second. The ratio between the observer and controller bandwidth α  is set to 2 for the 

rest of the chapter. The results are shown in Table I  and Table II , as well as in Figure 26. 
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Figure 26 Motor responses of velocity control with motor feedback. 

It is observed that acceleration feedback has the biggest overshoot. Bi-quad filter 

has less overshoot because it cancels out both resonant and anti-resonant terms in the 

transfer function. ADRC has even less overshoot and the overshoot decreases as the 
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bandwidth increases. The disturbance rejection ability of acceleration feedback is better 

than both notch filter and bi-quad filter, which have big errors and oscillate. The ADRC 

has the best disturbance rejection ability which increases as the bandwidth increases. 

Note that the bandwidth of ADRC can go well beyond the resonant frequency, 

which is quite difficult to achieve with other methods. As shown in [84] the closed-loop 

bandwidths associated with the notch filter, the bi-quad filter and acceleration feedback 

design are 32 Hz, 47 Hz and 37 Hz, respectively, well below the resonant frequency 

(90 Hz). With 
c

ω  set to 200 Hz, however, the closed-loop bandwidth of ADRC is found 

to be 192 Hz, which is well beyond the resonant frequency, unlike the existing methods. 

The robustness of each controller is also tested by varying the load inertia without 

changing the controller parameters. The tests are performed with the load changing to 

0.9, 1.1, 2 and 5 times of its original value. The bi-quad filter is found to be the most 

fragile, because the system becomes unstable for all four load changes. With the notch 

filter, the system is stable for the first two changes but becomes unstable for last two in 

the presence of external disturbances. Acceleration feedback and ADRC are stable for all 

four cases, but the former results in a bigger overshoot of 17% when the load increases to 

5 times of its original value. The motor overshoot in ADRC remains mostly unchanged, 

but the load oscillation becomes more pronounced with the increasing load. 

5.4.3 More Results on Load Response Regulation 

In Section 5.4.2, we were concerned with only the response of the motor, as in the 

existing methods mentioned above. In reality, however, load response is equally 

important. The good response from the motor in Figure 26 may be a bit misleading, 
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considering that the load may experience significant oscillations, as shown in Figure 27. 

Following we will discuss how to better regulate the load response. 
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Figure 27 Load responses of velocity control with motor feedback. 

Load Control with Motor Feedback 

With motor feedback, since it is open loop from the motor to the load, all we can 

do is to control the motor. From the simulation we found that if the motor is perfectly 

controlled, more oscillation is found in load response. In this situation, we are left with 
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the only option of either manipulating the motion profile to influence the load response 

indirectly, or to degrade the motor response performance to avoid load oscillation. 

Table III  and Table IV  summarize load responses of all four methods 

considering velocity control with motor feedback. Note that the best load response 

performance is obtained at 100
c

ω =  Hz, proving that the optimal performance is not 

corresponding to the highest bandwidth. The reason is rather intuitive: higher bandwidth 

in the motor loop leads to faster movement of the motor shaft, which in turn leads to 

more stimulation of the resonant mode. 

Table III  LOAD RESPONSES: TRACKING PERFORMANCE 

 Overshoot 

 (%) 

5‰ Settling Time 

(ms) 

Notch Filter 4.6 134 

Bi-quad Filter 2.2 226 

Acceleration Feedback 7.0 139 

ADRC with 
different 

c
ω  

(Hz) 

50 1.1 110 

100 0.7 104 

200 0.8 149 

 

Table IV   LOAD RESPONSES: DISTURBANCE REJECTION PERFORMANCE 

 Maximum Error 

(rad/s) 

5‰ Settling Time 

(ms) 

Notch Filter 1.30 >1000 

Bi-quad Filter 0.75 >1000 

Acceleration Feedback 0.81 116 

ADRC with 
different 

c
ω  

(Hz) 

50 0.84 73 

100 0.38 154 

200 0.13 308 
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For position control, the results are similar as shown in Table V . The best 

performance is obtained at the medium bandwidth of 40 Hz; when bandwidth goes 

beyond 75 Hz the system becomes unstable. The load still has some oscillation but the 

amplitude is relative small. The performance of disturbance rejection is also quite good. 

To further reduce load oscillation, we investigate the alternative load feedback 

configuration below. 

Table V  LOAD RESPONSES OF POSITION CONTROL WITH MOTOR FEEDBACK 

Controller Bandwidth 

(Hz) 

Overshoot 

 (%) 

5‰ Settling Time 

(ms) 

20 0.4 158 

30 0.3 133 

40 0.1 114 

50 0.4 123 

60 0.7 154 

 

Load Control with Load Feedback 

In this configuration, the output measurement, i.e. position or velocity, is taken at 

the load side, leading to significantly more phase lag, as shown in (5.3) and (5.4). Note 

that comparing to the motor feedback, there is one less zero in the transfer function and 

the remaining zero moves to the frequency of 7 KHz. This means that at the resonant 

frequency (90 Hz), there is additional 180 degree phase lag, making the control design 

more challenging. But it turns out that the benefits of measuring the load response 

directly outweigh disadvantage in the phase lag. 

Applying the proposed ADRC solution to this configuration at the sampling 

frequency of 50 KHz, excellent performance is obtained. With 
c

ω  set to 100 Hz and 
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rising time set to 50 ms, the overshoot is only 0.1%, and the settling time is 52 ms as 

shown in Figure 28. With load feedback the load response gets better and the oscillation 

migrates to the motor response. It is evident that ADRC has the ability to remove the 

oscillation from whichever response that is the main concern. 
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Figure 28 Motor and load responses of velocity control with load feedback. 

The simulation results for the position control with load feedback are listed in 

Table VI . Note that the overshoot is basically nonexistent. Excellent disturbance 

rejection is also observed. 
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Table VI  LOAD RESPONSES OF POSITION CONTROL WITH LOAD FEEDBACK 

Controller Bandwidth 

(Hz) 

Overshoot 

 (%) 

5‰ Settling Time 

(ms) 

25 0.2 104 

50 0.3 60 

100 0.0 55 

5.5 Experiment Verification 

In addition to the simulation comparison with other methods, the proposed control 

solution to the vibration problem is also verified in hardware tests for the velocity control 

with motor feedback case. The experiments are conducted on the torsional apparatus 

Model 205 from Educational Control Products. For a fast validation, the control 

algorithm is implemented using the MATLAB real-time workshop. For application 

purpose, the implementation of the proposed algorithm can be found in [23]. 

5.5.1 Test Setup 

The torsional apparatus Model 205 has a flexible vertical shaft connecting three 

disks (lower, middle and upper), with an encoder mounted on each disk for the purpose 

of position measurement. The lower disk is driven by a DC servo motor via the belt and 

pulley system with a 3 to 1 speed reduction ratio. In this experiment since we only 

consider the vibration in a two-inertia system, the upper disk is not used and the belt is 

tightened to provide a rigid connection that matches the simulation model. There are also 

brass weights that can be added to the middle disk to test the effect of changing the 

inertia of the load. 



 

77 

A personal computer, with MATLAB real-time workshop installed, is used to 

implement the proposed control algorithm. A four-channel quadrature encoder input card 

(PCI-QUAD04) and a multi-function analog and digital I/O card (PCI-DAS1002), both 

from Measurement Computing, are install in the computer to interface with the torsional 

apparatus. A photo of the experimental system is shown in Figure 29. A diagram is also 

given (see Figure 30) to clearly show the mechanical and electrical connections of the 

system. 

 

Figure 29 Photo of the test setup. 
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Figure 30 Diagram of the test setup. 

5.5.2 System Parameters 

The torque constant (
T E

K T U= ) of the motor is 0.058 N·m/V. The encoders 

generate 16000 pulses per round. Therefore the resolution for position measurement is 

43.927 10−×  rad ( 56.25 10−×  round). The resolution for velocity measurement depends on 

the sampling rate, and is 0.196 rad/s (0.03125 round/s) at 500 Hz and 0.393 rad/s (0.0625 

round/s) at 1 KHz, i.e. higher the sampling rate lower the resolution. To get a better 

resolution, a sampling rate of 500 Hz is adopted for velocity control. 

To determine the parameters of the test equipment, a frequency sweep test is run 

by applying a chirp signal with amplitude of 2 volts to the amplifier. The frequency 

changes from 0.1 Hz to 15 Hz in 30 seconds. Figure 31 shows the motor velocity 

response. The anti-resonant frequency 
AR

ω  and the resonant frequency 
R

ω  are observed 
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at 37.6 rad/s (or 5.99 Hz) and 48.1 rad/s (or 7.65 Hz) respectively from the test. The peak 

velocity at the resonant frequency is 3.08 round/s. 
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Figure 31 Motor velocity response of the frequency sweep test. 

From Figure 23 we can see that at low frequency the motor response and the load 

response are consistent and the whole system behaves like a rigid body. Thus another test 

is run with a 0.3 Hz sinusoid input to determine the total inertia (
T M L

J J J= + ) of the 

system. The gain at 0.3 Hz is found to be 107.76 round/s/N/m. From (5.1) 
T

J  is 

calculated to be 3 24.92 10  kg m−× ⋅ . Together with the above frequency sweep test results, 

from (5.5) and (5.6), we get 3 23.01 10  kg m
M

J
−= × ⋅ , 3 21.91 10  kg m

L
J

−= × ⋅ , 

3 21.17 10  kg m
P

J
−= × ⋅ , 2.71

S
K =  N·m/rad, 0.006

S
b =  N·m·s/rad. 

According to the equipment manual the motor inertia, which includes the inertial 

of the DC motor, pulley and the lower disk, is around 3 22.65 10  kg m−× ⋅  and the load 

inertia is around 3 22.00 10  kg m−× ⋅ , which matches the test results quite well. 
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5.5.3 Test Results 

A trapezoidal profile, as mentioned in Section 5.4.1, with a magnitude of 

8 round/s is used to run the tests. The rising time is chosen to be 0.5 seconds which is 

slower, due to a relative lower resonant frequency compared to the simulation case. The 

controller under test is described in Section 5.3, with the controller bandwidth set to 160 

rad/s. The results are shown in Figure 32. 
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Figure 32 Velocity control hardware test results. 

Both motor response and load response track the reference very well before the 

load change. A load with inertia of 3 23.29 10  kg m−× ⋅  is added to the middle disk, which 

is equivalent to 2.7 times load change, to test the robustness of the control method. The 
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motor velocity remains well controlled with the load change. But the load exhibits 

oscillations as expected, since resonant frequency is lowered with the load increase and 

the previous profile is a little fast compare to the new resonance. Test results show that 

decreasing the rising time to one second will greatly reduce the oscillations. 

Based on the system model, the open loop and closed-loop transfer functions are 

derived using the above system and controller parameters and the Bode plots are given in 

Figure 33 and Figure 34. From Figure 33 the phase margin of the system is found to be 

50 degrees. The closed-loop bandwidth is read from Figure 34 to be 158 rad/s, which is 

well beyond the resonant frequency of the system (48.1 rad/s). The resonant mode of the 

system is attenuated by applying the proposed ADRC design. 
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Figure 33 Open loop Bode plot for hardware test. 
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Closed-Loop Bode Plot
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Figure 34 Closed-loop Bode plot for hardware test. 

5.6 Summary 

In this chapter, the vibration suppression problem is reformulated as a disturbance 

rejection problem. The ADRC design as an alternative solution to the problem is 

thoroughly studied through both simulations and experiments. The results demonstrate 

the method to be very effective and practical. 
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CHAPTER VI 

CURE FOR MICROPHONICS IN SUPERCONDUCTING RADIO FREQUENCY 

CAVITY CONTROL
2
 

Microphonics in the superconducting radio frequency (SRF) cavity control are 

external vibrations from the environment. In this chapter, the ADRC is applied to solve 

the microphonics problem in the SRF cavity application. The chapter is organized as 

follows. Section 6.1 introduces the background of the problem. The dynamics of the SRF 

cavity is described in Section 6.2, followed by a new problem formulation and the 

corresponding control design presented in Section 6.3. Simulation and hardware test 

results are provided in Section 6.4. The actuator nonlinearity problem as an extension is 

studied in Section 6.5. Section 6.6 summarizes the chapter. 

                                                 
2 This work was supported in part by the National Science Foundation under Grant no. PHY-06-06007. It 

has been published in an Elsevier journal [96]. The author retains the right to include it in the dissertation. 
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6.1 Background 

The National Superconducting Cyclotron Laboratory (NSCL) is currently 

constructing a 3 MeV/u re-accelerator (ReA3), expandable to 12 MeV/u, using SRF 

cavities [90]. The project is cooperatively funded by Michigan State University (MSU) 

and the National Science Foundation (NSF). In addition, MSU has been selected to build 

the Facility for Rare Isotope Beams (FRIB) national user facility that features a 400 kW, 

200 MeV/u SRF linear accelerator (LINAC) requiring over 340 SRF cavities [91]. FRIB 

is funded through a cooperative agreement between MSU and the Office of Nuclear 

Physics in the Department of Energy (DOE) Office of Science. Maximizing the 

performance and decreasing the overall costs of these systems is an ongoing goal of both 

projects. 

 

Figure 35 NSCL facility at MSU3. 

The control of lightly loaded SRF cavities is an ongoing topic in the accelerator 

community due to the extreme sensitivity of these cavities to disturbances and other 

                                                 
3 ©Copyright by Michigan State University. Reprinted with permission. 
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detuning forces. A dominant method applied is to over-couple these cavities thereby 

reducing the sensitivity by increasing the bandwidth and applying standard PID controls 

[92]. Advanced control algorithms are sought that can minimize the required drive power 

and improve the overall performance of these systems. 

 

Figure 36 A 7-cell SRF cavity under test at NSCL4. 

In accelerator applications, the cavity voltage must be precisely controlled in the 

presence of vibrations referred to as “microphonics”. The problem is acute here at NSCL 

since the ReA3 accelerator has been mounted on a balcony, making it even more 

susceptible to microphonics disturbances from the environment. The previously explored 

adaptive feedforward cancellation method [93] is found to be not sufficient in this case. 

Thus the motivation to explore more effective disturbance rejection technology beyond a 

standard PID leads to our ADRC solution. 

The nature of many, if not most, control problems is disturbance rejection, 

particularly the microphonics problem discussed here, and the key question in design is 

                                                 
4 ©Copyright by Michigan State University. Reprinted with permission. 
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how to deal with it. The PID control strategy, by default, deals with the disturbances in a 

passive way as it merely reacts to the tracking errors caused by the disturbances. An 

alternative, and better, solution is to reject the disturbances actively by estimating the 

disturbances directly and cancelling it out, before it affect the system in a significant way, 

and this is at the core of ADRC. 

6.2 Dynamics of the SRF cavity 

The cavity dynamics can be represented by a parallel RLC circuit [94] as shown 

in Figure 37, where 
c

V
v

 is the cavity voltage and gI
v

 is the generator current. 

 

Figure 37 Equivalent circuit model for the SRF cavity dynamics. 

According to Kirchhoff’s law, the following second order differential equation 

holds. 

 
2

20 0
02

gc c
c

dId V dV R
V

dt Q dt Q dt

ω ω
ω+ + =

vv v
v

 (6.1) 

where 0 1 LCω =  is the cavity resonant frequency and Q R C L=  is the quality factor. 

For a fixed frequency radio frequency (RF) system, transforming the cavity 

voltage and the driving current to a reference frame that rotates at the generator frequency 

gω  can greatly simplify the calculation [95]. The transformations are given below. 



 

87 

 ( ) ( ) ( ) gj t

c cI cQ
V t V t jV t e

ω = + 
v

 (6.2) 

 ( ) ( ) ( ) gj t

g gI gQ
I t I t jI t e

ω = + 
v

 (6.3) 

where 
cI

V  and 
gII  are in-phase components; 

cQV  and 
gQI  are quadrature components. 

The amplitude of the cavity voltage and generator current are slowly changing 

compared to the RF component, thus c g cV Vω<<&  and g g gI Iω<<& . Together with 0 gω ω≈  

and  1 2 1Q << , (6.1) can be simplified to the following two first order differential 

equations. 

 1 2 1 2cI cI cQ gIV V V Vω ω ω+ + ∆ =&  (6.4) 

 1 2 1 2cQ cQ cI gQV V V Vω ω ω+ − ∆ =&  (6.5) 

where 1 2 0 2Qω ω=  is the cavity half bandwidth; 0 gω ω ω∆ = −  is the cavity detuning 

frequency; gI gIV I R=  and 
gQ gQV I R= . 

Note that the quadrature components in (6.4) and the in-phase components in 

(6.5) represent the coupling between the two channels which is ignored in the existing 

PID design. This microphonics induced coupling is what makes the control design 

challenging for the SRF cavities. 

6.3 The Total Disturbance Rejection Formulation 

The key problem in SRF cavity control is to maintain the constant amplitude and 

phase in 
c

V , which is a very challenging task as the resonant frequency 0ω  changes due 

to Lorenz force and microphonics. Here the microphonics are part of external 

disturbances, denoted as d  and the Lorenz force is field induced within the cavities and 
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is a function of the system variable 
c

V . Therefore, the controller must mitigate both the 

external disturbances and internal dynamics. Since the cavity resonant frequency 

( )0 , cd Vω  is actually a function of both the external disturbance (primarily microphonics) 

and the cavity voltage, a more realistic model of the cavity is 

 ( )1 2 1 2,cI cI c cQ gIV V d V V Vω ω ω+ + ∆ =&  (6.6) 

 ( )1 2 1 2,cQ cQ c cI gQV V d V V Vω ω ω+ − ∆ =&  (6.7) 

For such a nonlinear, time-varying and coupled system (6.6)-(6.7), the control 

design using regular methods could be very complicated. In the ADRC framework, 

however, all the nonlinear, time-varying and coupling terms are parts of the total 

disturbance to be estimated and mitigated greatly simplifying the design task. 

Considering the realistic model (6.6) and defining the output as 
cI

y V= , input as 

gIu V=  and the total disturbance as ( )1 2 ,cI c cQf V d V Vω ω= − − ∆ , the dynamics of the 

in-phase (I) component can be reformulated as 

 y bu f= +&  (6.8) 

where 1 2b ω= . Similarly, for the quadrature (Q) component, (6.7) can also be rewritten 

as (6.8) by defining 
cQy V= , 

gQu V=  and ( )1 2 ,cQ c cIf V d V Vω ω= − + ∆ . Since no zero and 

time delay exist in both loops, the standard first order ADRC design described in 

Section 2.4 is adopted. 

As shown above, the cavity dynamics can be clearly described by the IQ model. 

However, in the real operation environment, the set-point for the electric field is normally 

given in terms of amplitude and phase. The relationship between the IQ components and 

amplitude/phase is merely an algebraic coordinate transformation, from Cartesian to 
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polar. For the sake of convenience and without loss of generality, the proposed ADRC 

solution is implemented to control the amplitude and phase directly instead of the IQ 

components, as the transformation does not affect the cavity dynamics. However, a 

difficulty that is referred to as the “wrap-around” problem exists in the phase control, 

since the phase can jump between -180 degrees and 180 degrees. The problem is 

addressed in more detail in Section 6.5. 

6.4 Simulation and Test Results 

A MATLAB simulation model is built to test the control design as shown in 

Figure 38. The cavity half bandwidth is 219 rad/s (35 Hz). The sampling rate is 54.6 kHz; 

the ADRC parameters are chosen as: ˆ 219b = , 600cω = rad/s and 5α = . For 

comparison, a PI controller is tuned with a proportional gain of 3 and an integral gain of 

5474. The parameters were tuned to achieve the best stable response. The same values 

were used for simulations and measurements. 
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Figure 38 SRF cavity simulation model with ADRC control. 
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The RF control is implemented on a digital low-level RF (LLRF) controller 

developed at the NSCL. The controller produces a LLRF output at the cavity drive 

frequency and directly controls the phase and amplitude of the output. This LLRF signal 

is fed into a solid-state linear amplifier and the output of the amplifier is coupled to the 

cavity. The cavity used for the tests is a SRF quarter wave resonator with a loaded 

bandwidth of 70 Hz (438 rad/s). This particular cavity is especially susceptible to 

microphonics because its mechanical damper does not work as well as anticipated. 

During tests, intermittent microphonics was present that detuned the cavity by more than 

40 Hz. The discrete implementation of the ADRC control algorithm can be found in [23]. 

 

Figure 39 Cavity amplitude step response - Simulation (top) vs. Measured (bottom). 
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Step signals were introduced as the references for both amplitude and phase 

components. For the simulations, a constant detuning frequency of 40 rad/s was used. 

The simulated and measured response curves for a step in amplitude (from 6MV/m to 

8MV/m) are shown in Figure 39. The response curves for a step in phase (from 75° to 

90°) are shown in Figure 40. With the ADRC controller, the coupling between the 

amplitude and phase loops is greatly reduced, and the overshoot in both loops while 

tracking a set-point change is eliminated. 

 

Figure 40 Cavity phase step response - Simulation (top) vs. Measured (bottom). 
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The steady state probability density functions for amplitude and phase are shown 

in Figure 41. The steady state model includes a Gaussian detuning frequency which was 

varied in order to match the measured data. Two times of performance improvement in 

simulation and four times of performance improvement in hardware test are observed. 

 

Figure 41 Steady state probability density function - Simulation (top) vs. Measured 

(bottom). 

6.5 Actuator nonlinearities 

As mentioned in Section 6.3, there is a wrap-around problem associated with the 

phase loop. In fact, it can be treated as a type of actuator nonlinearity, similar to the 
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saturation effect. Other types of actuator nonlinearity includes dead-zone, backlash and 

hysteresis. A previous study [24] suggests that taking the signal after the saturation and 

sending it back to ESO will improve the performance. It is not true, however, for the 

wrap-around effect in this application. Ignoring the wrap-around effect totally and using 

the disturbance rejection ability of ADRC to handle it is found to be the solution, which 

has been documented in [96]. This leads us to the investigation of the ADRC’s ability to 

handle actuator nonlinearities. The general analysis is provided below. 

The main idea is that a nonlinear actuator can be represented by a linear one plus 

the difference between the two and the difference can be treated as a disturbance to be 

estimated and rejected in the ADRC framework. In particular, suppose that the controller 

outputs a control signal u  to the actuator. Due to the nonlinear effect of the actuator, the 

effective control that acts on the system dynamic becomes ( )F u , where ( )F ⋅  is an 

unknown nonlinear function whose specific form depends on the actuator. If system (2.1) 

has a nonlinear actuator, ignoring the input disturbance w , (2.1) becomes 

 ( ) ( ) ( )1
1 1 0

n n

ny a y a y a y bF u
−

−+ + + + =&L  (6.9) 

From the ADRC design point of view, (6.9) can still be rewritten as (2.2) with 

( ) ( )
1

0

n
i

i

i

f bF u bu a y
−

=

= − −∑ . In other words, the difference between the nonlinear actuator 

represented as ( )bF u  and its linear counterpart bu  is treated as a disturbance to be 

rejected. Note that in most cases ( )bF u bu−  will be bounded and previous analysis has 

shown the convergence of ESO under the condition that f  is bounded. In addition, 

experimental results have shown that such disturbance can be readily estimated and 

cancelled, forcing the actuator to behave like a linear one [97]. 
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It is worthwhile to notice that the specific form of ( )F ⋅  as well as its parameters 

are assumed unknown, and they do not affect the problem formulation, i.e. the ADRC 

design shares the same solution for different types of actuator nonlinearities. 

6.6 Summary 

The main contributions of this chapter are: 1) provided a cost effective solution to 

the microphonics problem for NSCL; 2) provided a general analysis for ADRC when 

dealing with actuator nonlinearities. The ADRC solution proposed in this chapter has 

been applied to control the SRF cavities at NSCL since January, 2011. Similar 

performance improvement as shown in the test has been reported. As the FRIB project 

moves forward hundreds more SRF cavities will be installed in the near future. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

7.1  Conclusion 

In this dissertation, we investigated the generally challenging control design for 

two kinds of NMP systems, namely systems with RHP zeros and systems with time 

delay, which has not been well addressed under the DRP, especially in the frame work of 

ADRC. The results of the investigation show that with appropriate modifications made to 

the existing ADRC design both problems can be solved effectively and enhanced 

performance is obtained. For the control of systems with RHP zeros, the tracking 

performance obtained merely by applying ADRC is still limited due to the complexity of 

the problems. Hence we resort to feedforward design to improve the tracking 

performance further. A unique feedforward design with practical undershoot constraint 
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consideration is accomplished. For the control of systems with time delay, the stability 

analysis for the modified ADRC also fills in a blank on theoretical analysis of ADRC. 

The two specific industrial applications, the vibration suppression in motion 

control and the microphonics control in SRF cavities, show that ADRC is capable of 

handling vibrations caused both internally and externally, demonstrating again the benefit 

of the DRP. Through thorough simulation study and experimental verification, the ADRC 

solution as an alternative to existing solutions is demonstrated to be superior, not only 

because of the performance improvement but also the simple and easy implementation. 

As an extension to the SRF cavity control problem, the analysis shows that ADRC can 

deal with unknown actuator nonlinearities despite of type of the nonlinearity. 

7.2  Future Work 

Though a lot has been accomplished in this dissertation, there are still unsolved 

problems or other possible topics to work on. In Chapter 3, a hypothesis on the synthesis 

of the minimum settling time control signal subject to undershoot constraint for the 

general m  RHP zeros case is raised. The mathematical proof of it will be very 

meaningful. The systematic ADRC design for systems with RHP zeros can be explored 

further as well. 

The problem studied in Chapter 4 is restricted to the constant time delay case. The 

ability of ADRC applied to systems with uncertainty in the time delay or with time 

varying delay needs to be tested and can be a future research topic. Also the relay tuning 

[98] based auto-tuning function can be added to the ADRC function blocks developed, 

making it readily available for industrial applications. 
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Since the systems with RHP zeros is closely related to the systems with time 

delay, the methods proposed for one can be tested to see if it applies to the other. This 

cross validation is interesting and could be a research topic as well. 

Other problems such as the transfer function based decoupling analysis for 

coupled systems, the online estimation of b̂  using adaptive control techniques are all 

very interesting topics. 
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