
On Privacy in Time Series Data Mining

Ye Zhu Yongjian Fu

Department of Electrical and Computer Engineering

Cleveland State University

Cleveland OH 44115-2214, USA

September 30, 2007

Abstract

Traditional research on preserving privacy in data mining focuses on

time-invariant privacy issues. With the emergence of time series data

mining, traditional snapshot-based privacy issues need to be extended to

be multi-dimensional with the addition of time dimension. We find current

techniques to preserve privacy in data mining is not effective in preserving

time-domain privacy. We present data flow separation attack on privacy

in time series data mining, which is based on blind source separation

techniques from statistical signal processing. Our experiments with real

and synthetic data show that this attack is effective. By combining the

data flow separation method and the frequency matching method, an

attacker can identify data sources and compromise time-domain privacy.

We propose possible countermeasures to the data flow separation attack

in the paper.

1 Introduction

With the popularity of data mining, privacy issues have been a serious con-
cern. Many approaches have been proposed to preserve privacy in data mining
[1, 2, 3, 4, 5, 6]. Most research focuses on the privacy of data. The goal of these
research is to mine data while protecting the identity of data owners. Vari-
ous approaches have been proposed to conduct data mining without breaching
of privacy. However, privacy issues studied in previous research are on time-
invariant data which do not change over time. In other words, the data can be
viewed as a snap-shot of objects.

Time-domain data mining becomes popular recently. The goal of time-
domain data mining is to find out pattens contained in time domain data
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In the context of time-domain data mining,
the data to be mined is labeled with timestamps. We call such data time series
data. One example is the daily stock price. For time series data, because of
the special nature of the data, the privacy goes beyond the protection of data.
In this paper, when the meaning of privacy is unclear from context, we call the

1

privacy in time-invariant data mining snap-shot privacy, and the privacy in time
series data mining time series privacy.

We focus on time series privacy issues in this paper. As snap-shot pri-
vacy issues arise from snap-shot based data mining, time-domain privacy issues
arise from time-domain data mining. Time series privacy issues concern about
changes in data over time. We need to protect data, as well as its properties in
time and frequency domains. For example, sales data on a car model changes
over time, but the manufacturer of the car model will worry about sharing the
sales data with data miners because the sales data may indicate changes in
financial situation or marketing strategies of the manufacturer over time. An-
other example is that a store may not be willing to share its sales data because a
data miner may find out promotion periods of the store by checking periodicities
contained in the data provided by the store. We argue that privacy in time series
data involves protection of properties in time domain such as peak, trough, and
trend, and properties in frequency domain, such as periodicity. Such properties
reveal lots of information, even though they do not reveal data.

Two common approaches have been proposed to preserve snap-shot privacy
in data mining. One approach is data perturbation in which data to be mined
is modified to protect privacy. The other approach is data partitioning in which
data is split among multiple parties and each party only see its share of the data.
One method in data perturbation approach is aggregation in which time series
data from different sources are aggregated and given to data miners. This can
prevent data miners from finding private information about individual sources.
For example, auto manufacturers usually do not want to publish daily, monthly
or yearly sales data of individual car model because too much sensitive infor-
mation is contained in the time-series data. Instead, trusted market research
companies aggregate sales data of different car models made by different auto
manufacturers and publish these aggregated data for data mining or market
study. These time series data can be aggregated in different ways such as ac-
cording to vehicle types or vehicle features for different purposes.

In this research, we found that current techniques to protect snap-shot pri-
vacy were largely ineffective under data flow separation attack, which can sep-
arate aggregated data and separate noise from original data. The data flow
separation attack employs the blind source separation model [17], which was
originally defined to solve cocktail party problem: blind source separation algo-
rithms can extract one person’s voice signal given the mixtures of voices in a
cocktail party. The blind source separation algorithms solve the problem based
on the independence among voices of different persons. Similarly, for time-
domain data mining, one can use blind source separation algorithms to separate
independent time series data generated from different sources.

The contributions of this paper can be summarized as follows:

• We introduce the concept of privacy in time series data mining. Because
of the nature of time series data, privacy issues in time series data mining
go beyond these in snap-shot data mining, especially privacy in time and
frequency domains. We believe it is important to preserve privacy in time

2

series data as well as in snap-shot data.

• We present data flow separation attack and show that aggregation is not
always enough to protect time series privacy. We use experiments on real
data to show that data flow separation attacks are effective.

• We present frequency matching attack, a further attack based on data flow
separation attacks, which can fully disclose sensitive information of data
sources.

• We analyze and discuss the pros and cons of countermeasures to data flow
separation attacks.

The rest of the paper is organized as follows: Section 2 reviews the related
work in privacy preserving data mining and time series data mining. We list
time series privacy issues in Section 3. Section 4 outlines the threat model. In
Section 5, we introduce the data flow separation attack. We will also describe the
frequency spectrum matching that can be used as further attacks. In Section 6,
we use experiments on real stock data to show the effectiveness of the data flow
separation attack. Section 7 discusses the application of data flow separation
attack in different settings and countermeasures for data flow separation attack.
We conclude this paper in Section 8, with remarks on extensions of this work.

2 Related Work

In this section, previous research on privacy preserving data mining and time
series data mining is summarized.

2.1 Privacy Preserving Data Mining

The objective of privacy-preserving data mining is to find interesting patterns
without violating privacy, i.e., protecting data privacy in data mining process.
On the one hand, we want to protect individual data’s identity. On the other
hand, we want to find general patterns about data. In other words, privacy
concerns individual data, while data mining concerns aggregate data. Though
the two do not directly conflict with each other, care must be taken as data
mining requires revelation of data. It is important to balance privacy protection
and data mining.

The main approaches to privacy-preserving data mining can be categorized
into two types: data perturbation and data partitioning. The former modifies
data to be mined to protect privacy. The latter splits data among multiple
parties which do not share their data. Each of the two approached are explained
below.

In data perturbation approaches, original data is modified by data obscura-
tion or by adding random noise. An example of data obscuration is replacing
values of a continuous variable with ranges. Random noises are from known

3

distributions, such as even distribution or normal distribution. The modified
data is given to data miner for knowledge discovery.

In [1], Agrawal and Srikant proposed a classification algorithm which did not
need individual data’s identity. They added random noises to original data and
built decision trees from the modified data. The noise was either Gaussian or
uniform distributed. They proposed an iterative algorithm which could approx-
imate the distribution of original data from the perturbed data. The algorithm
might be applied on global data, on each class, or on each node locally. They
found that when the algorithm was applied on each class or on each local node,
a decision tree with similar accuracy to that from the original data could be
built.

Evfimievski et al. proposed an approach for privacy preserving mining of
association rules [2]. They defined and mathematically formulated a form of
privacy breaches. They pointed out that previous randomization methods could
not totally prevent this kind of privacy breaches. They proposed a randomiza-
tion method, called select-a-size, which added items to transactions to make
up false frequent itemsets to be mixed with true frequent itemsets. This would
prevent one from finding out true frequent itemsets, and therefore items in
transactions. The method let users control the balance between meaningful
association rules and privacy breaches. Using partial support, they developed
an algorithm to find frequent itemsets in randomized data. Results from their
experiments showed that the algorithm could find most true frequent itemsets
within the limits of privacy breaches.

Du and Zhan proposed to use randomized response technique for protecting
privacy of data [3]. They generalized the classical random response technique by
allowing the attribute to be a logical expression. Using the proposed technique,
decision trees can be built from randomized data with precisions similar to
these from original data. One limitation is that the data must be binary. They
also showed the relationship between randomness and recovered precision. Not
surprisingly, the precision of decision trees decreased when the randomness level
increased.

In [18], Huang et al. argued that even with random noise, data privacy might
be compromised when data correlation was exploited. They developed a data
reconstruction method based on Principal Component Analysis (PCA). When
there were high correlations among attributes, their method could apply PCA
to find more significant components among the attributes and reconstruct data
from these components. The insignificant components were thrown away. Since
noises were independently added to attributes, throwing away insignificant com-
ponents will reduce a lot of noises without losing much original data. They also
proposed a Bayesian based method for data reconstruction, which worked even
when attribute correlations were low. Based on their analysis and experiments,
they proposed a randomization approach where noises had correlations similar
to these of data.

Zhu and Liu proposed a generalized approach to randomization [19]. They
pointed out that the randomization problem is the same as the mixture model
problem in statistics. They showed that the randomization in [2, 1] were special

4

cases of the mixture model. Using the results from the mixture model, they
presented two methods to reconstruct the density distribution of original data.
They also presented an interval based and an entropy based metrics for privacy.
Finally, they presented two problems that must be solved to obtain optimal
randomization.

In data partitioning approaches to privacy preserving data mining, the orig-
inal data is distributed among multiple sites, either by the partitioning of cen-
tralized data or by the nature of data collection. The data mining process is
split into local computation at individual sites and global computation. During
the process, each party does not see other party’s data, but cooperates to find
global patterns. Data is usually partitioned vertically or horizontally. In verti-
cal partitioning, each party holds all tuples, but only a subset of attributes. In
horizontal partitioning, each party holds a subset of tuples with all attributes.
In many cases, secure multi-party computation [20] is employed. A lot of them
use encryptions too.

Lindell and Pinkas first introduced secure multiparty computation as a tech-
nique for privacy preserving in data mining [4]. The data was horizontally par-
titioned between two parties. A privacy preserving algorithm for decision tree
construction was proposed, which was based on the ID3 algorithm [21]. They
introduced three protocols for privately computing the global information gain
of any attribute. In addition, they presented how to privately handle terminal
conditions, i.e., when all tuples in a node belonged to a class and when all at-
tributes had been used in nodes. Based on these, they proposed a private secure
ID3 algorithm.

Vaidya and Clifton proposed a method for mining association rules in ver-
tically partitioned data [5]. Their method modified the Apriori algorithm [22].
Assuming two parties, the method used a scalar product protocol to compute
the global supports of itemsets, without revealing supports of itemsets at each
party.

Kantarcioglu and Clifton proposed a privacy preserving algorithm for min-
ing horizontally partition data [6]. They assumed three or more parties, each of
which held a subset of the data. The parties wanted to learn global association
rules without revealing their data or local associations. The proposed algorithm
extended a distributed association rule mining algorithm [23]. Two secure pro-
tocols were introduced, one for computing union of globally frequent itemsets,
another for computing the global supports of itemsets. The main ideas in the
first protocol were to encrypt locally frequent itemsets and to alternate item-
sets exchange. In the second protocol, the difference between actual support
and minimum support at each site was accumulated with a random number
introduced by the first party.

Vaidya and Clifton proposed a privacy-preserving k-means clustering algo-
rithm [24]. They assumed the data was vertically partitioned and there were at
least three parties. They developed a secure algorithm to find closest cluster,
which employed the secure permutation algorithm [20]. Also, a secure algorithm
for checking terminal condition, when the means were stable, was developed.

Jagannathan and Wright proposed a privacy-preserving k-means clustering

5

algorithm for arbitrarily partitioned data [25]. They assumed there were two
parties. In their model, data tuples and attributes were split arbitrarily between
the two partied. In other words, data was viewed as a two dimensional (tuple,
attribute) table. Every cell in the table might belong to any one of the parties. In
addition to secure algorithms for finding closest cluster and for checking terminal
condition, they also developed a secure algorithm for computing means after
each iteration. The algorithms used random share of variables, secure scalar
product [20], and Yao’s protocol [26].

Wright and Yang proposed a secure algorithm for learning Bayesian network
structures [27]. The data was partitioned vertically between two parties. Based
on the K2 algorithm [28], their algorithm included secure computing for the
scoring function, which decided whether a link should be added to the Bayesian
network structure, and if so, which link to add.

In the above data partitioning algorithms, all parties were assumed to be
semi- honest. That is, every party would faithfully follow the protocol or algo-
rithm, but tried to learn as much as possible about others.

As discussed above, past research in privacy preserving data mining focuses
on privacy of raw data. Though privacy of derived information has been men-
tioned [18], we are not aware of any research in time series privacy. We hope to
raise the awareness of time series privacy issues by this paper.

2.2 Time Series Data Mining

Research in time series data mining mostly focuses on data preprocessing tech-
niques, such as transformation, indexing, feature extraction, and feature reduc-
tion. Work has been also been done in related techniques such as representation
and similarity metric. Because time series data is usually large and noisy, di-
rect application of data mining algorithms on raw data is time-consuming and
gives unreliable results. Therefore a lot of attentions have been paid on pre-
processing techniques that facilitate data mining tasks. The data mining tasks
studied by researchers include subsequence matching, classification, clustering,
and association rule mining.

Agrawal et al. pioneered the work on sequence matching in their seminal
paper [7]. They tackled the problem of finding sequences that match a query
sequence. To efficiently find matching sequences, they first applied Discrete
Fourier Transform on sequences to get their coefficients. The first few significant
coefficients were extracted and saved in an R*-tree [29]. The search for matching
sequences was then done by searching in the R* tree. This enabled faster search
without missing any potential matching. The false positives were eliminated in
the post processing by comparing the actual sequences.

Faloutsos et al. extended the idea in [7] to allow query sequence shorter than
the sequences in database[8]. The initial steps were similar. Each sequence was
mapped into a series of subsequences using a sliding window. The subsequences
were processed by Discrete Fourier Transform. After significant coefficients were
extracted, instead of indexing them directly, the minimum bounding regions of

6

the coefficients were indexed. This improved search because consecutive subse-
quences were usually similar and shared minimum bounding regions.

Agrawal et al. proposed an approach to deal with irregularities in sequence
matching [30]. When matching two sequences, their approach allowed gaps,
scaling, and translation of sequences. They defined the shortest subsequence
without gap as atomic windows. First, matching atomic windows were found
between the two sequences. Second, consecutive matching atomic windows were
concatenated to form longer matching subsequences, as long as gaps were within
a threshold and scaling was similar for all matching pairs. Last, their algorithm
found the best overall matching among the matching subsequences from the
previous step.

Das at el proposed a method for mining association rules from time series
data [9]. First, they used a sliding window to transform a sequence into sub-
sequences. Second, they clustered these subsequences into groups. Third, the
subsequences were replaced by their corresponding cluster number. Finally, they
ran an association rule mining algorithm to find rules in the discretized data.

Geurts proposed an approach for classification of time series data [10]. Given
a set of series, he used a greedy algorithm to divide each series into segments.
The algorithm found cutoff points for segments by minimizing variances in the
resulting segments. Each segment was discretized by its mean. A decision
tree classifier was built using the segments. One series from each class was
chosen at each node splitting. The subsequences in the chosen series were tested
as splitting conditions, and the one which minimized classification error was
selected for splitting.

Keogh and Lin argued that clustering of subsequences of a time series would
not give meaningful clusters [11]. They demonstrated that subsequence cluster-
ing resulted in clusters no better than clusters from random data. They revealed
the hidden constraint on subsequence clustering, i.e., the weighted average of
cluster means must equal the global mean. Instead of clustering subsequences,
they proposed to find frequent subsequences, which they called motif.

Ihler et al. built a framework for modeling count data where the time series
data was the count of some human activity [12]. They argued that the total
count could be explained by normal activity and special events. The normal
activity could be modeled by a Poisson distribution. The special events could
be modeled as a Marcov process.

Morchen and Ultsch proposed a persistence based approach to segmentation
of time series data [13]. They assumed that each segment was representing an
underlying state. The segmentation was to find a set of most persistent states.
A states persistence was measured by the difference between its prior probability
and its self transition probability. An algorithm iteratively found breakpoints
that maximized the persistence measure.

Bagnall and Janacek proposed to use clipping to discretize date [31]. In
clipping, a data point was assigned 1 if its value was greater than the mean; and 0
otherwise. Therefore, clipping would convert the raw date into a binary series for
faster processing and easy storage. For time series generated by autoregressive
moving average models, clustering of clipped data was as good as that of original

7

data, and was better when there were outliers.
Keogh and Pazzani introduced a representation of time series based on piece-

wise linear segmentation [14]. Each linear segment was represented by its end
points and its weight, which was the relative significance of the segment. They
found the representation suitable for clustering and classification. Another rep-
resentation based on piecewise linear segmentation was introduced in [32] for
feature reduction. The representation allowed variable size segments and each
segment was by its mean. Two distance measures were proposed as well as an
index structure.

In [15], Cole et al. dealt with the problem of feature reduction when en-
ergy was spread across spectrum and thus could not by approximated by a few
coefficients in other feature reduction methods such as Fourier transformation,
wavelet transformation, and principal component analysis. They proposed a
method called sketch. Subsequences of a sequence were transformed into a vec-
tor in sketch space by taking inner product with a set of random vectors. To deal
with the dimensionality of the resulting vector, it was split into small subsets
for indexing and searching.

Mielikainen et al. studied the problem of merging various segmentations of
a time series [16]. Given a set of segmentations over the same time series, they
tried to find the best segmentation, in the sense that it agreed the most with
the given segmentations. An algorithm was proposed which used dynamic pro-
gramming to find the best segmentation. A greedy algorithm was also proposed
which was faster and in practice found near optimal solution.

Patel et al. proposed to find unknown patterns in time series data [33].
Instead of looking for patterns in a time series database, they tried to identify
frequent patterns in the database, which they called motif. The time series was
first divided into a set of segments. Each segment was reduced to its mean.
The segments were then normalized and discretized using equal area under a
Gaussian distribution. An algorithm was proposed which searched motifs in the
discretized data.

A probabilistic model for subsequence matching was proposed by Keogh
and Smyth [34]. After piecewise linear segmentation of sequences, features were
extracted and used to model the sequences. A similarity measure for comparing
two sequences was proposed which was composed of two parts, distance and
deformation. Both were modeled with a known distribution. In [35], Ge and
Smyth also used the piecewise linear segmentation. However, they proposed a
Markov model for sequences. Each segment was a state in the Markov model.
The parameters of the Markov model were learned from sequences in database.
The query sequence was checked against the model to find the likelihood that
it was generated from the model. If so, a matching was found.

Most time series data mining research used Euclidean distance to measure
similarity between two subsequences. However, Euclidean distance is sensitive
to noise and temporal variation. Dynamic Time Warp (DTW) was introduced
in [36] to overcome the shortcomings of the Euclidean distance. DTW allows
mapping of a point in one sequence to one or more points in the other sequence.
Using dynamic programming, the DTW similarity between two sequences could

8

be calculated efficiently. Keogh and Pazzani [37] introduced an approximate
representation of sequences to speed up DTW calculation for long sequences. In
their method, a sequence was split into segments, each of which was represented
by its mean, thus reducing the size of the sequence.

It is clear that most research in time series data mining does not address
privacy issues, let alone time series privacy issues. While current privacy pre-
serving techniques can be applied to preserve snap-shot privacy in time series
data, they are inadequate for protecting time series privacy.

3 Time Series Privacy Issues

we identify privacy issues for time series data in addition to traditional privacy
issues in data mining. Time series data from a data source can be regarded as
a time-domain signal. All the characteristics of a time-domain signal can be
potentially regarded as private information by the data provider. Below, we list
common characteristics in time series data that a data provider may need to
keep confidential.

• Amplitude: Amplitude indicates the strength of a signal. This is the same
as in traditional privacy research.

• Average: The average signal strength over time. For example, for a series
of sales data, average amplitude indicates the average sales.

• Peak and trough: Peak and trough indicate extreme situations. The in-
formation is usually considered confidential as it may disclose extreme
changes in underlying causes such as difficulties in money flow.

• Trend: By observing trends of time series data, an adversary may predict
future changes of time series data. Thus trend information should be
protected from competitors as well.

• Periodicity: Periodical changes in time series data indicate existence of
periodically changing factors. For sales data of a store, the factor can be
periodical changes in marketing strategies such as promotion which are
usually regarded as confidential information for stores. Unlike the previ-
ous characteristics which are in time domain, periodicity is in frequency
domain.

There are other characteristics which may be regarded as confidential by
some data providers. However, as an initial study on time series privacy, we
focus on the common characteristics listed above. Since data flow separation
attack aims to recover original signal, the attack may be effective to disclose
these common characteristics.

9

4 Threat Model

In this paper we assume that data providers care about the sensitive informa-
tion contained in their time series data. To protect their privacy, data providers
will only supply their data to trusted research companies. Research companies
will aggregate time series data provided by different data providers according to
different criteria. An example of aggregating sales data provided by auto manu-
facturers is shown in Figure 1. In Figure 1, there is only one aggregation layer.
In practice there can be many layers of aggregation because some research com-
panies may aggregate data provided by other research companies or aggregate
data provided by both original data providers and research companies.

We assume research companies will publish aggregated data for profit or for
public usage. The research companies will disclose criteria used in aggregation.
But research companies will not disclose information of data sources, specifically
identities of data providers to protect privacy of data providers.

We assume adversaries to have capability summarized as follows:

• Adversaries can obtain aggregated data from research companies for a
small amount of fee or for free.

• Adversaries can not obtain data generated from original data sources be-
cause of lack of trust with original data sources. This assumption excludes
the possibility of an original data provider being a privacy attacker. We
do not study the case of compromised data provider in this paper. But
obviously the data flow separation attack will be more effective if an ad-
versary, being a provider of original data, can know part of original data
aggregated by research companies.

• Adversaries can obtain data aggregated according to different criteria.

• Research companies have various data providers as their data sources
and research companies do not want to disclose the composition of data
sources. It is similar as risk company does not want to disclose the com-
position of stocks in possess.

The model assumed in our paper is realistic. Many research company com-
piles weekly or monthly sales of large items, such as cars, TVs, computers, etc,
from retailers or manufacturers. Each research company has its own sources
and publishes its reports with aggregated totals. Since these reports are avail-
able with a small fee, someone can collect all these reports and try to separate
data to recover original data. The manufacturers do not want to share data
with parties other than trusted research companies, but would like to see the
aggregated data to understand industry.

5 Data Flow Separation Attack

In this section, we will first define the problem in the context of blind source
separation and then describe how to apply the data flow separation attack in

10

Manufacturer B

Manufacturer A

Research Company A Sales Reports by Vehicle
Type (ex. Truck)

Sales Reports by Price
Range (ex. $20,000 ~ $30,000)

Sales Reports by
Features (ex. ABS)

Research Company B

Research Company X

O1

O2

On

F1

F2

F3

F4

F5

F6

Figure 1: An Example for Data Flow Model

practice.

5.1 Blind Source Separation

Blind source separation is a methodology in statistical signal processing to re-
cover unobserved “source” signals from a set of observed mixtures of the signals.
The separation is called “blind” to emphasize that the source signals are not
observed and that the mixture is a black box to the observer. While no knowl-
edge is available about the mixture, in many cases it can be safely assumed
that source signals are independent. In its simplest form [38], the blind source
separation model assumes n independent signals F1(t), · · · , Fn(t) and n obser-
vations of mixture O1(t), · · · , On(t) where Oi(t) =

∑n

j=1
aijFj(t). The goal of

blind source separation is to reconstruct the source signals Fj(t) using only the
observed data Oi(t), with the assumption of independence among the signals
Fj(t). A very nice introduction to the statistical principles behind blind source
separation is given in [38]. The common methods employed in blind source
separation are minimization of mutual information [39, 40], maximization of
nongaussianity [41, 42] and maximization of likelihood [43, 44].

5.2 Data Flow Separation as a Blind Source Separation

Problem

In this paper, we define an individual data flow as a series of time-stamped
data generated by an original data source. An aggregate data flow is defined as

11

the aggregate of individual data flows. Aggregate data flows are generated by
research companies. If not specified, the phase data flow in the remaining of
this paper means the individual data flow for brevity.

For the attacker who is interested in sensitive information contained in in-
dividual data flow, it will be very helpful to separate the individual data flows
based on the aggregate data flows. Because the separation of the data flows
can recover the pattern of data flows, they can be use for further attack such as
frequency spectrum matching attack described in Section 5.3.

In this paper, we are interested in patterns carried in the time series data.
For example, in Figure 1, the attacker can get a time series O1 = [o1

1, o
1
2, · · · , o

1
n]

of aggregate data flow from Research Company A. We call n as the sample
size in this paper. The attacker’s objective is to recover the time series Fi =
[f i

1, f
i
2, · · · , f

i
n] for each individual data flow. The time series F3 is contained in

both time series O1 and O2, i.e., O1 = F3 +F6, O2 = F2 +F3 +F4 +F5. For the
scenario with l research companies and m individual data flows, we can rewrite
the problem in vector-matrix notation,

O1

O2

...
Ol

= Al×m

F1

F2

...
Fm

(1)

where Al×m is called mixing matrix in blind source separation problem.
Data flow separation can be achieved using blind source separation tech-

niques. The individual data flows are independent from each other since the indi-
vidual data flows are from different sources. Given the observations O1, O2, · · · , Ol,
blind source separation techniques can be used to estimate the independent ag-
gregate flows F1, F2, · · · , Fm by maximizing the independence between estimated
individual data flows.

The issues about blind source separation method are summarized as follows.

• Basic blind source separation algorithms requires the number of observa-
tions to be greater than or equal to the number of independent compo-
nents. For data flow separation, it means l ≥ m. Advanced blind source
separation algorithms [45, 46] can be use for cases where m > l. But they
usually require that m, the number of independent flows, to be known.
Since it is hard for the attacker to get m, we assume l ≥ m. The cost of
the assumption is that some independent flows are still mixed when m > l.
But by using frequency spectrum matching method, the shortcoming can
be overlooked. Furthermore, we assume m = l in this paper since it is
fairly straightforward to extend our idea to cases where l > m.

• The l observations may have redundancy. In other words, the row vectors
of the mixing matrix may be linearly dependent. Again, the cost of the
redundancy will be that some independent data flows are not separated.

• The data flow estimation by blind source separation algorithms are usually
a lifted, scaled version of the actual data flow. Sometimes, the estimated

12

data flow may be of different sign than the actual data flow. This is be-
cause the mixing matrix got from the blind source separation can contain
arbitrary numbers1. However, the attacker can still find characteristics
of the actual data flow from the estimated data flow. Also, heuristic ap-
proaches can be used to fine tune the estimation, which is an interesting
topic for further research.

5.3 Frequency Matching Attack

After the data flows have been separated, a number of data flows, each with a
given time series, has been determined to be included in the aggregate.

We choose the frequency spectrum matching to do further attack. Frequency
spectrum can be generated by applying discrete Fourier transform on time se-
ries data and then calculating the magnitude of transformed data. We match
frequency spectrum by correlation.

The rationale for the use of frequency matching is two-fold: First, the dynam-
ics of many data flows, such as sales, stock price, and weather, is characterized
by their periodicities. By matching the frequency spectrum of a known data
flow with the frequency spectrum of estimated data flows obtained by blind
source separation techniques, we can identify the known flow with high accu-
racy. Second, frequency matching can easily remove the ambiguities introduced
by the lifting and scaling in the estimated time series by removing the zero-
frequency component. In summary, frequency spectrum analysis has excellent
prerequisites to be highly effective.

Frequency spectrum matching can be applied to match data flows separated
from different attacks. After collecting a set of aggregate data flows according
to different criteria, the attacker can select arbitrary subsets of aggregate data
flows as groups and apply data flow separation techniques on the groups to
recover individual data flows. If a data flow separated from a group matches
with a data flow separated from another group, then these two data flows should
be generated from the same source. Moreover, the source generating these two
data flows should satisfy at least one aggregation criteria in each group. If the
attacker can match a data flow with data flows separated from several groups,
the attacker can largely reduce the anonymity or possibly determine the identify
of the source generating the data flow since the source should satisfy at least one
criteria in each of these groups of aggregate flows. To better utilize the data,
the attacker can try all the possible combinations to group available aggregate
data flows and then match the data flows separated from these groups. Of
course, when the number of aggregate flows in a group is too small, the data
flow separation technique can not separate all data flows because the number
of observations is smaller than the number independent components. We will
study the limit of this grouping and matching method in our future research.

1For some cases, the mixing matrix is known to be binary. This kind of a priori information

can eliminate the ambiguities.

13

6 Evaluation

In this section, we will evaluate the performance of the data flow separation.
We use the blind source separation algorithm proposed in [47] to separate the
data flows. The accuracy of separation will be measured using correlation with
actual flows. In our experiments, real stock market data [48] is used.

6.1 Performance Metrics

In the following, we will adopt two metrics to evaluate the accuracy of the data
flow separation. Both metrics are based on a comparison of the separated data
flows with the actual data flows.

As first performance metric, we use mean square error (MSE), a widely
used performance criterion in blind source separation research. Let FA =
[fA

1
, fA

2
, · · · , fA

n] represent the time series of the actual data flow and FB =
[fB

1 , fB
2 , · · · , fB

n] represent the time series estimated by the blind source sepa-
ration algorithm. To match the time series FA with FB , we first need to scale
and lift FB so that they have the same mean and variance.

F ′

B =
std(FA)

std(FB)
· (FB −mean(FB) · [1, 1, · · · , 1]) + mean(FA) · [1, 1, · · · , 1] , (2)

where std(F) and mean(F) denote the standard deviation and average of the
time series F , respectively. The mean square error is defined as follows:

εA,B =
‖FA − F ′

B‖
2

n
. (3)

Since the times series FB can also be a flipped version of FA, we also need to
match FA with −FB.

As the second metric, we use correlation between a separated flow FB and
the corresponding actual flow FA defined as follow:

RFA,FB
=

∑

i(f
A
i − mean(FA))(fB

i − mean(FB))

std(FA)std(FB)
(4)

6.2 A Small Example

In this experiment, four time series of stock price selected from [48] are mixed
into four aggregates. Figure 2(a) and Figure 2(b) show the actual data flows
and separated data flows from the aggregates.

We can observe for data flow 1, 2, and 3, the separated data flows are flipped,
scaled and lifted versions of the corresponding actual data flows. We can also
observe the resemblance between separated flow and the corresponding actual
flow for data flow 4.

Figure 3 shows the performance of data flow separation in terms of metrics
introduced in Section 6.1. According to the correlation metric, the separated
data flows are highly correlated to actual data flows as shown in Figure 3(a).

14

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2

0

2

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−6

−4

−2

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−10

−5

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

(a) Actual Data Flows (b) Estimated Data Flows

Figure 2: Example of Data Flow Separation

In Figure 3(b) both the separated data flow and its flipped time series are
compared against the actual flows and the mean square error for each data flow
shown in the figure is the smaller one. According to the mean square error
metrics, we can observe that the reconstructed data flows are off by around
10% in comparison with the actual data flows. Both metrics indicate that the
data flow separation is successful. In the following we will use correlation only
to evaluate performance because the lifting and scaling in the mean square error
metrics may introduce error.

6.3 Mixing Degree

In this set of experiments, we would like to study the effect of mixing degree on
the performance of data flow separation. We define mixing degree as follows:

Dmix =
average number of individual data flows mixed in aggregates

number of individual data flows
. (5)

It is equivalent as

Dmix =
number of non-zero entries in Al×m

l × m
. (6)

Ten time series selected from stock data [48] are mixed randomly in this
experiment to create ten aggregates. Totally 10000 randomly-generated full-
rank2 mixing matrices were used in this experiment3.

2Experiments on rank deficient mixing matrices are described in Section 6.4.
3In this experiment, we focus on binary mixing matrices since most applications use binary

mixing matrices. There are 2100 different mixing matrices of size 10 × 10. We randomly

generated 10000 mixing matrices for this experiment.

15

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4

Data Flows

Co
rre

lat
ion

0

5

10

15

20

25

30

35

40

45

1 2 3 4

Data Flows

Me
an

 Sq
ua

re
Er

ror

(a) Correlation (b) Mean Square Error

Figure 3: Performance of Data Flow Separation on a Small Example

Figure 4 shows the effect of mixing degree on the performance of data flow
separation. We plot statistics of both average correlation and worst case correla-
tion. In this paper average correlation is defined as mean of correlation between
separated data flows and actual data flows for each trial. We use worst case to
refer to the most accurately separated data flow in each trial. It corresponds to
worst privacy compromising in each trial.

From Figure 4, we can observe that data flow separation is effective since the
separated flows are highly correlated to actual flows especially for the worst case.
We can also observe that the performance of data flow separation is not sensitive
to mixing degree for full-rank mixing matrices. This experiment indicates that
countermeasure to data flow separation attack by simply increasing mix degree
is not effective.

6.4 Redundant Aggregate Data Flows

In this set of experiments, we focus on the cases with redundant aggregate data
flows. In our setting, redundant aggregate data flows mean that some aggregate
data flows are linear combinations of other aggregate data flows. Redundant
aggregate data flows will reduce the number of effective aggregate data flows.
Redundant aggregate data flows are caused by rank deficient mixing matrices.

To study the effect of redundant observations, we randomly generate 1000
mixing matrices for each possible rank. Ten data flows randomly selected from
the stock data are mixed using the randomly-generated mixing metrics of dif-
ferent ranks.

Figure 5 shows the performance of data flow separation with redundant
observations. We can observe that the performance of data flow separation
decreases as the number of redundant observations increases. The performance

16

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Mixing Degree(D
mix

)

C
o

rr
e

la
tio

n

Average Correlation with 25 Percentile and 75 Percentile
Worst Case Correlation with 25 Percentile and 75 Percentile

Figure 4: Effect of Mixing Degree (Lower bar: 25 percentile, Upper bar: 75
percentile)

degradation is because the number of knowns decreases. When the number of
aggregate data flows is larger than the number of individual data flows, the
data flow separation problem becomes an over-complete base problem in blind
source separation literature. In general an over-complete base problem is harder
to solve.

6.5 Dependence between Individual Data Flows

In this set of experiments, we study the effect of dependence between individual
data flows on data flow separation performance. We did this series of experi-
ments because of the fact that most blind source separation algorithms assume
relative independence between actual signals.

Groups of ten data flows are randomly picked from the stock data [48]. These
groups of data flows have different average correlation between data flows in a
same group. The time series in each group are mixed randomly and we apply
data flow separation technique on the generated aggregates.

Figure 6 shows that the performance of data flow separation technique de-
creases when the dependence between individual data flows increases. It is
because blind source separation algorithms used in data flow separation assume
independence between underlying components. Even for the blind source sep-
aration algorithm [47] which takes advantage of both independence and timing
structure of underlying signals, the dependence between individual data flows
can still degrade the performance of data flow separation attack. We can also

17

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of Redundant Aggregate Data Flows

C
o

rr
e

la
ti
o

n

Figure 5: Effect of Dependence between Individual Data Flows (Lower bar: 25
percentile, Upper bar: 75 percentile)

observe that worst case correlation is not sensitive to the dependence between
individual data flows.

6.6 Frequency Matching

In this subsection, we show the performance of frequency matching attack pro-
posed in Section 5.3. In this experiment, two groups of ten data flows are formed
by selecting data flows from the stock dataset. Three data flows in both groups
are the same. These two groups of data flows are mixed randomly to form two
groups of aggregate data flows. Data flow separation is performed on the two
groups of aggregate data flows. We identify common flows in both groups by
matching spectrum of separated data flows in two different groups.

Figure 7 shows the correlation between three identified separated data flows
in one group and the ten separated data flows in the other group. As shown in
Figure 7 we can easily find out the data flows common to both groups.

7 Discussion

From the experiments in Section 6, it is apparent that aggregation methods
are not sufficient to effectively counter data flow separation attacks. Additional
measures are needed.

One naive countermeasure can be adding different noise to a data flow to be

18

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Correlation Between Individual Data Flows

C
o

rr
e

la
tio

n

Average Correlation Between Individual Data Flows
Worst Case Correlation Between Individual Data Flows

Figure 6: Effect of Dependence between Individual Data Flows

supplied to research companies so that research companies will receive different
copies of the data flow. This approach may not work because the noise and the
original data flow are regarded as independent components and thus they can
be separated by blind source separation algorithm.

According to our experiments, following countermeasures will be effective
against data flow separation attacks:

• Increase the dependence among data flows by adding dependant noise to
the data flows. Further research is needed to investigate how to optimally
add noise so that privacy can be preserved and the performance of time-
domain data mining will not be significantly affected.

• Limit the number aggregate data flows that can be obtained by an adver-
saries so that the number of observations is much less than the number
of independent components. This countermeasure requires cooperation
among research companies and it is hard to be enforced.

• Data sources should know from research companies about how the supplied
data to be aggregated and restricted the usage of supplied data.

Also, research in blind source separation shows most blind source separation
algorithms fail when the signals mixed are Gaussian distributed. Therefore,
another countermeasure against data flow separation attack is padding each
aggregate data flow so that the distribution of the aggregated data is Gaussian.
But different classes of blind source separation algorithm that make use of the
time structure of the signals can still separate the data flows e.g., [49, 50].

19

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Seperated Data Flow 7
in GroupA

Seperated Data Flow 4
in GroupA

Seperated Data Flow 3
in GroupA

C
or

re
la

tio
n

Seperated Data Flow1 in GroupB Seperated Data Flow2 in GroupB
Seperated Data Flow3 in GroupB Sepearted Data Flow4 in GroupB
Seperated Data Flow5 in GroupB Seperated Data Flow6 in GroupB
Seperated Data Flow7 in GroupB Seperated Data Flow8 in GroupB
Seperated Data Flow9 in GroupB Seperated Data Flow10 in GroupB

Figure 7: Performance of Frequency Matching

Data flow separation attack can be launched to break privacy of a wide range
of privacy-sensitive systems. In this paper, we use auto industry and research
company as our example. Our threat model can be easily extended to other
systems such as mutual funds. The composition of stocks held by a mutual
fund is regarded as commercial secret. But commercial companies publish their
performance index routinely. The published performance index is essentially an
aggregation of stock prices. An attacker can run data flow separation attack to
separate data flows and compare separated data flows with public-known stock
prices to estimate the composition of stocks held by mutual fund companies.

As mentioned in [51], aggregation is a major technique used to preserve pri-
vacy in data mining. Since data flow separation attack can separate individual
data flows from aggregates, aggregation technique based privacy-preserving data
mining systems are potentially vulnerable to data flow separation attacks.

8 Conclusion

We presented a new attack against privacy in time series data mining, called
data flow separation attack, which can be used either alone or in conjunctions
with other attacks to significantly reduce the effectiveness of privacy-preserving
techniques in data mining. Data flow separation attack is based on the blind
source separation algorithms widely used to recover individual signals from mix-
tures of signals. Our experiments show that the attack is effective. With the
aid of further attack such as frequency spectrum matching attack, data flow

20

separation attack can be used to determine data sources of separate data flows.
We discuss countermeasures against data flow separation attack. Our future

work will focus on countermeasures to balance privacy-preserving and perfor-
mance of data mining. We also plan to analytically model the effectiveness of
the attack.

9 Acknowledgement

We thank Professor Keogh for providing us the data sets used in our experi-
ments.

References

[1] Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD
Conference. (2000) 439–450

[2] Evfimievski, A.V., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving
mining of association rules. In: SIGKDD. (2002) 217–228

[3] Du, W., Zhan, Z.: Using randomized response techniques for privacy-
preserving data mining. In: SIGKDD. (2003) 505–510

[4] Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: CRYPTO.
(2000) 36–54

[5] Vaidya, J., Clifton, C.: Privacy preserving association rule mining in ver-
tically partitioned data. In: SIGKDD. (2002) 639–644

[6] Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of
association rules on horizontally partitioned data. IEEE Trans. Knowl.
Data Eng. 16(9) (2004)

[7] Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in
sequence databases. In: FODO. (1993) 69–84

[8] Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence
matching in time-series databases. In: SIGMOD Conference. (1994) 419–
429

[9] Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discov-
ery from time series. In: SIGKDD. (1998) 16–22

[10] Geurts, P.: Pattern extraction for time series classification. In: PKDD.
(2001) 115–127

[11] Keogh, E.J., Lin, J.: Clustering of time-series subsequences is meaningless:
implications for previous and future research. Knowl. Inf. Syst. 8(2) (2005)
154–177

21

[12] Ihler, A.T., Hutchins, J., Smyth, P.: Adaptive event detection with time-
varying poisson processes. In: SIGKDD. (2006) 207–216

[13] Mörchen, F., Ultsch, A.: Optimizing time series discretization for knowl-
edge discovery. In: SIGKDD. (2005) 660–665

[14] Keogh, E.J., Pazzani, M.J.: An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance feed-
back. In: SIGKDD. (1998) 239–243

[15] Cole, R., Shasha, D., Zhao, X.: Fast window correlations over uncoopera-
tive time series. In: SIGKDD. (2005) 743–749

[16] Mielikäinen, T., Terzi, E., Tsaparas, P.: Aggregating time partitions. In:
SIGKDD. (2006) 347–356

[17] Jutten, C., Herault, J.: Blind separation of sources, part 1: an adaptive
algorithm based on neuromimetic architecture. Signal Process. 24(1) (1991)
1–10

[18] Huang, Z., Du, W., Chen, B.: Deriving private information from random-
ized data. In: SIGMOD Conference. (2005) 37–48

[19] Zhu, Y., Liu, L.: Optimal randomization for privacy preserving data min-
ing. In: SIGKDD. (2004) 761–766

[20] Du, W., Atallah, M.J.: Secure multi-party computation problems and their
applications: a review and open problems. In: New Security Paradigms
Workshop 2001, Cloudcroft, New Mexico, USA, September 10-13,. (2001)
13–22

[21] Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1) (1986)
81–106

[22] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in
large databases. In: VLDB. (1994) 487–499

[23] Cheung, D.W.L., Han, J., Ng, V.T.Y., Fu, A.W.C., Fu, Y.: A fast dis-
tributed algorithm for mining association rules. In: PDIS. (1996) 31–42

[24] Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over verti-
cally partitioned data. In: SIGKDD. (2003) 206–215

[25] Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In: SIGKDD. (2005) 593–599

[26] Yao, A.C.C.: How to generate and exchange secrets (extended abstract).
In: FOCS. (1986) 162–167

[27] Wright, R.N., Yang, Z.: Privacy-preserving bayesian network structure
computation on distributed heterogeneous data. In: SIGKDD. (2004) 713–
718

22

[28] Cooper, G.F., Herskovits, E.: A bayesian method for the induction of
probabilistic networks from data. Machine Learning 9 (1992) 309–347

[29] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: An
efficient and robust access method for points and rectangles. In: SIGMOD
Conference. (1990) 322–331

[30] Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast similarity search in
the presence of noise, scaling, and translation in time-series databases. In:
VLDB. (1995) 490–501

[31] Bagnall, A.J., Janacek, G.J.: Clustering time series from arma models with
clipped data. In: SIGKDD. (2004) 49–58

[32] Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally adap-
tive dimensionality reduction for indexing large time series databases. In:
SIGMOD Conference. (2001) 151–162

[33] Patel, P., Keogh, E.J., Lin, J., Lonardi, S.: Mining motifs in massive time
series databases. In: ICDM. (2002) 370–377

[34] Keogh, E.J., Smyth, P.: A probabilistic approach to fast pattern matching
in time series databases. In: SIGKDD. (1997) 24–30

[35] Ge, X., Smyth, P.: Deformable markov model templates for time-series
pattern matching. In: SIGKDD. (2000) 81–90

[36] Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in
time series. In: AAAI-94 Workshop on Knowledge Discovery in Databases.
(1994)

[37] Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamin-
ing applications. In: SIGKDD. (2000) 285–289

[38] Cardoso, J.: Blind signal separation: statistical principles. 9(10) (1998)
2009–2025 Special issue on blind identification and estimation.

[39] Comon, P.: Independent component analysis, a new concept? Signal
Process. 36(3) (1994) 287–314

[40] He, Z., Yang, L., Liu, J., Lu, Z., He, C., Shi, Y.: Blind source separation
using clustering-based multivariate density estimation algorithm. IEEE
Trans. on Signal Processing 48(2) (2000) 575–579

[41] Hyvärinen, A.: Fast and robust fixed-point algorithms for independent
component analysis. IEEE Transactions on Neural Networks 10(3) (1999)
626–634

[42] Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent com-
ponent analysis. Neural Comput. 9(7) (1997) 1483–1492

23

[43] Gaeta, M., Lacoume, J.L.: Source separation without prior knowledge: the
maximum likelihood solution. In: Proc. EUSIPCO’90. (1990) 621–624

[44] Pham, D.T., Garrat, P., Jutten, C.: Separation of a mixture of independent
sources through a maximum likelihood approach. In: Proc. EUSIPCO.
(1992) 771–774

[45] Hyvärinen, A., Inki, M.: Estimating overcomplete independent component
bases for image windows. J. Math. Imaging Vis. 17(2) (2002) 139–152

[46] Hyvärinen, A., Cristescu, R., Oja, E.: A fast algorithm for estimating
overcomplete ICA bases for image windows. In: Proc. Int. Joint Conf. on
Neural Networks, Washington, D.C. (1999) 894–899

[47] Cruces-Alvarez, S.A., Cichocki, A.: Combining blind source extraction with
joint approximate diagonalization: Thin algorithms for ICA. In: Proc. of
the Fourth Symposium on Independent Component Analysis and Blind
Signal Separation, Nara, Japan (apr 2003) 463–468

[48] Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The ucr time series
classification/clustering homepage. http://www.cs.ucr.edu/~eamonn/

time_series_data/ (2006)

[49] Tong, L., Liu, R.W., Soon, V.C., Huang, Y.F.: Indeterminacy and identi-
fiability of blind identification. Circuits and Systems, IEEE Transactions
on 38(5) (1991) 499–509

[50] Molgedey, L., Schuster, H.G.: Separation of a mixture of independent
signals using time delayed correlations. Physical Review Letters 72(23)
(June 1994) 3634–3637

[51] Zhang, N., Zhao, W.: Privacy-preserving data mining systems. Computer
40(4) (2007) 52–58

24

