
Improving Network Link Quality in Embedded Wireless Systems
Andrew R. Dalton, Jason O. Hallstrom

Clemson University
{adalton,jasonoh}@cs.clemson.edu

Hamza A. Zia, Nigamanth Sridhar
Cleveland State University

{n.sridhar1,h.zia}@csuohio.edu

Abstract
Embedded wireless networks are finding increased adop-

tion across a range of application domains. Unfortunately,
these systems are notoriously difficult to deploy at scale;
system reliability tends to degrade unexpectedly. This dif-
ficulty is due, in part, to link quality variations that impact
application correctness and performance.
In this paper, we present and evaluate an alternative ra-

dio stack implementation for TinyOS, a popular operating
system for embedded sensor networks. The radio stack is
designed to improve the reliability of middle- to high-quality
network links, while identifying and avoiding transmissions
over low-quality links. The implementation is evaluated
in the context of two representative routing scenarios: (i)
neighbor-to-neighbor and (ii) distributed convergecast.

1 Introduction

Embedded wireless systems are gaining wide adoption
across diverse application domains. The emergence and in-
tegration of small, low-cost, low-powered sensors is one of
the principal contributing factors. As a result, embedded
sensor systems constitute one of the fastest growing system
categories, with applications ranging from volcanic activ-
ity monitoring [12], to structural damage detection [2], to
wildfire prediction and tracking [8, 4] — and many others.
One experiential result emerging from the development of
these systems is that achieving high reliability in large-scale
deployments is notoriously difficult.
One important factor contributing to this difficulty is the

unusually high degree of link quality variation found in
these systems. The variation is often significant, result-
ing from geographic node distribution, environmental fac-
tors (e.g., physical obstructions), and temporal phenomenon
(e.g., increased network load, periodic external interfer-
ence). As a result, designers are forced to contend with
links that exhibit both persistent and transient message loss.
Coupled with the highly concurrent and distributed nature
of embedded sensor systems, accounting for the myriad
of fault scenarios resulting from link failures can be over-
whelming. Consequently, the resulting systems, when de-
ployed at scale, tend to exhibit unexpected behaviors and
performance characteristics.
In this paper, we present an alternative radio stack im-

plementation for TinyOS [9], the defacto standard oper-

ating system for embedded sensor networks. The radio
stack implementation is designed to limit link quality varia-
tion, improving the reliability of mid-to-high-quality links,
and identifying — and avoiding transmissions over — low-
quality links. The main contribution of the paper is a de-
tailed evaluation of the reliability benefits provided by the
solution. The study is performed on a physical network
testbed consisting of 80 wireless sensor nodes. Two rep-
resentative routing scenarios are considered: (i) neighbor-
to-neighbor and (ii) distributed convergecast. The first sce-
nario corresponds to basic one-hop neighborhood commu-
nication. The second is generally used for distributed data
exfiltration to upper-tier base station nodes.
Paper Organization. Section 2 presents an overview of

the radio stack design. Section 3 summarizes the testbed in-
frastructure used to evaluate the implementation. Section 4
describes the experimental setup for each of the evaluation
scenarios, and presents the experimental results. Section 5
provides a brief overview of related work. Section 6 con-
cludes with a summary of contributions.

2 Design Overview
The alternative radio stack implementation is designed

as a reusable component for TinyOS. The component,
ReliableComm, serves as a drop-in replacement for
GenericComm, the default radio stack component dis-
tributed as part of the operating system. The new com-
ponent is implemented as a wrapper over GenericComm
using the Decorator pattern [7] for TinyOS. (The pat-
tern is a variant of the standard pattern of the same name
originally characterized in [6].) Hence, ReliableComm
supports the same software interfaces as GenericComm,
providing functions to enable applications to transmit
and receive messages over the wireless radio. As
a wrapper, ReliableComm maintains a reference to
GenericComm, injecting additional services before (and
after) delegating transmission (and reception) responsibility
to the internal component. The additional injected services
focus on reducing link quality variation.
ReliableComm provides three salient features to im-

prove network performance. First, the implementation in-
troduces transmission queueing. The queueing strategy im-
proves the utilization of the wireless radio without introduc-
ing unnecessary blocking delays in the calling context. Sec-
ond, ReliableComm implements an acknowledgement

Submitted to The 3rd International Workshop on Dependable Embedded Systems
Leeds, UK, October 1, 2006



and retransmission protocol to improve the packet reception
rate (PRR) over each link. The implementation leverages
MAC-level acknowledgement support, significantly reduc-
ing the additional traffic introduced by the acknowledge-
ments. Third, ReliableComm implements a link qual-
ity monitor that estimates the PRR over each link based on
empirical observation. These estimates are used to iden-
tify low-quality links over which messages are expected to
be lost. This information is in turn used to discard mes-
sages destined for low-quality links. This not only improves
the utilization of the radio (by avoiding transmissions that
would be lost anyway), but also reduces overall network
congestion, improving PRR across the network. While the
individual services provided by ReliableComm are rela-
tively straightforward, as we will see, the synergistic com-
bination serves to provide significant benefits.

3 Testbed Overview

Figure 1: NESTbed Deployment

The evaluation of ReliableComm was performed on
the Clemson University NESTbed system [3], a testbed in-
frastructure designed for evaluating large-scale sensor net-
works. The testbed is composed of 80 Tmote Sky [11]
motes, arranged in a regular grid of 5 rows consisting of
16 motes each. Each matchbox-sized device includes an
8Mhz microcontroller, 48K of ROM, 10K of RAM, 1Mb
of off-chip EEPROM storage, and a 2.4GHz IEEE 802.15.4
(Zigbee) wireless transceiver. This particular type of device
is widely used in academic research, and is beginning to
gain popularity in the commercial sector. A picture of the
NESTbed deployment is shown in Figure 1.
As shown in the figure, each mote is attached to a central-

ized application and database server through a wired USB
connection. Each connection provides power to the attached
mote, and is used by the NESTbed server to program, con-
trol, and profile the device. The NESTbed server provides
an extensive API for installing program images, inspecting
source- and packet-level runtime data, and managing de-
vice power settings. The API is exposed through a remote

interface used to perform the ReliableComm evaluation
experiments presented here.
Due to (geographic) space limitations, the NESTbed de-

ployment is far more dense than a typical network installa-
tion. To simulate greater geographic distribution, the API
provides services for reducing the radio power level of each
device. As we will see, by reducing transmission strength,
the deployment admits of interesting wireless topologies,
including multi-hop topologies with as many as five hops.

4 Performance Evaluation
We now turn our attention to the experiments performed

to evaluate the link quality improvements provided by
ReliableComm. The discussion is divided into two sub-
sections, corresponding respectively to the two representa-
tive routing scenarios identified previously: (i) neighbor-
to-neighbor and (ii) distributed convergecast. In each case,
performance results collected using GenericComm are
used as reference points.

4.1 Neighbor-to-Neighbor
The first evaluation scenario investigates the relative im-

pact of ReliableComm on the link quality of 1-hop neigh-
bors. The experimental setup required the development of
a custom application installed on the network using two
deployment configurations. The first configuration used
GenericComm for network communication; the second
used ReliableComm. When installed, the application in-
structs the host device to transmit packets to each of its
neighbors (in sequence) at a specified rate for a specified
duration. The application includes a distributed time syn-
chronization layer to ensure that each device begins and ter-
minates at the same time1. Each mote records the number of
messages sent on each link, as well as the number of mes-
sages received on each link. Dividing the number of packets
received by the number of packets sent yields the PRR for
a link. By comparing the results under the two deployment
configurations, it is possible to compare the relative perfor-
mance of GenericComm and ReliableComm.
In the first experiment, each mote was instructed to trans-

mit at a rate of 4 messages per second for a duration of
20 minutes. To simulate geographic distribution, the radio
power level of each device was reduced to 2 (on a scale
from 1–31 [-25dBm–0dBm]). The link quality results for a
small portion of the network (i.e., the first row of 16 motes)
are illustrated in Figure 2. The grid on the left corresponds
to GenericComm; the grid on the right corresponds to
ReliableComm. Each grid column represents a transmit-
ting node; each row represents a receiving node. The cell
shading at their intersection represents the PRR of the link
defined by the transmitter-receiver pair, with black denoting

1The margin of error in the reported results is less than 1%.



Figure 2: Link Quality Comparison (Power=2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.00-10.00

10.00-20.00

20.00-30.00

30.00-40.00

40.00-50.00

50.00-60.00

60.00-70.00

70.00-80.00

80.00-90.00

90.00-100.00

Fr
eq

ue
nc

y

Packet Reception Rate (PRR)

ReliableComm
GenericComm

Figure 3: Link Quality Histogram (Power=2)

a PRR of 0% and white denoting a PRR of 100%. The cells
are shaded on a linear scale between the PRR endpoints.
The figure shows that for these 16 motes,

ReliableComm decreases link quality variability,
generally separating links into two classes: dead links and
high-quality links. Dark gray cells in the first grid tend to be
black in the second. This shows that ReliableComm suc-
cessfully identifies and avoids low-quality links. Light gray
cells in the first grid tend to be white in the second. This
shows that ReliableComm successfully improves the
reliability of mid-quality links. White cells in the first grid
remain white in the second, showing that ReliableComm
has no impact on high-quality links.
The aggregate impact of ReliableComm on the first

row of motes is summarized by the histogram shown in Fig-
ure 3. Ten link categories are considered, ranging from links
of the lowest quality (0% ≤ PRR < 10%) to links of the
highest quality (90% ≤ PRR ≤ 100%). The vertical bars
represent the number of links in each category. Although
the benefits appear incremental when considering this small
network subset, our performance claims are supported.
More striking are the results detailing the impact of

ReliableComm on the network as a whole. The com-
plete results of the 80 node experiment are shown in Fig-
ure 4. In this figure, the reduction in link quality variation
provided by ReliableComm is clearly visible. The light
gray bands running diagonally across the first grid corre-

Figure 4: Link Quality Comparison (Power=2)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0.00-10.00

10.00-20.00

20.00-30.00

30.00-40.00

40.00-50.00

50.00-60.00

60.00-70.00

70.00-80.00

80.00-90.00

90.00-100.00

Fr
eq

ue
nc

y

Packet Reception Rate (PRR)

ReliableComm
GenericComm

Figure 5: Link Quality Histogram (Power=2)

spond to mid-to-high-quality link regions within the net-
work. The dark gray bands correspond to regions of low
link quality. In the second figure, the light gray bands are
almost entirely white; the dark gray bands are almost en-
tirely black. This aggregate effect is summarized by the
histogram shown in Figure 5. In effect, ReliableComm
shifts mid-quality links to the highest link category, avoid-
ing the lowest-quality links. The end result is improved net-
work performance resulting from a three-fold increase in
the number of high-quality links, and potential energy sav-
ings resulting from the avoidance of low-quality links.

Figure 6: Link Quality Comparison (Power=4)

The second experiment was designed to investigate the
performance of ReliableComm in dense deployment sce-
narios. To simulate reduced geographic distribution (as



 0

 500

 1000

 1500

 2000

 2500

0.00-10.00

10.00-20.00

20.00-30.00

30.00-40.00

40.00-50.00

50.00-60.00

60.00-70.00

70.00-80.00

80.00-90.00

90.00-100.00

Fr
eq

ue
nc

y

Packet Reception Rate (PRR)

ReliableComm
GenericComm

Figure 7: Link Quality Histogram (Power=4)

compared to the first experiment), the radio power level of
each device was increased to 4 (from 2). Aside from this
change, the experimental setup was unmodified.
The results of the second experiment are detailed in Fig-

ure 6, and summarized in Figure 7. Unfortunately, the
results are surprisingly poor. The grid corresponding to
GenericComm shows that there are relatively few low-
or high-quality network links in the deployment. When
ReliableComm is installed, the number of high-quality
links increases (as evidenced by the increase in white cells),
but the increase in low-quality links far outweighs this in-
crease (as evidenced by the large increase in dark cells).
As a result, in this deployment context, ReliableComm
significantly degrades the performance of the network as a
whole.
In view of the component’s implementation, a careful

analysis of the performance data reveals a limitation: In
the dense deployment scenario, every mote is within the
same 1-hop neighborhood. Further, every mote is trans-
mitting at a rate of 4 messages per second. As a result,
network congestion is the critical limiting factor in achiev-
ing high link quality. When ReliableComm is used, the
retransmissions it introduces further degrade the quality of
most network links. Indeed, the quality reduction is sig-
nificant enough in many cases that mid-quality links under
GenericComm are reduced to low-quality links that are
periodically marked as dead by the ReliableComm link
monitor. This accounts for the increase in the number of
links in the lowest quality category. We will return to this
limitation with a proposed solution in Section 6.

4.2 Distributed Convergecast

The second evaluation context investigates the
end-to-end reliability improvements provided by
ReliableComm in multi-hop scenarios. The focus
is on distributed convergecast routing, generally used to
route messages from various points in a multi-hop network
to a well-known base station. Again, the experimental setup

required the development of a custom application deployed
using both GenericComm and ReliableComm. When
installed, the application initiates a variant of the TinyOS
Beaconing protocol [9] to construct a minimal spanning
tree over the 80 node network. When the tree has stabilized,
each node transmits messages to its parent at a specified rate
for a specified duration. Each message is tagged with the
sending node’s distance from the root (measured in hops).
The root node serves as an aggregation point, recording the
number of messages received from each network tier. As
in the first evaluation context, the application includes time
synchronization support to ensure count accuracy2.

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5

Fr
eq

ue
nc

y

Network Tier

ReliableComm
GenericComm

Figure 8: Packet Reception Count (Power=1)

When the experiment was executed, each mote was in-
structed to transmit at a rate of 4 messages per minute for
a duration of 10 minutes. The radio power level of each
device was configured to the lowest setting to simulate a
sparse distributed network. The results of the experiment
are summarized by the histogram shown in Figure 8. Each
vertical bar represents the number of messages received by
the root node from a particular network tier. As shown
in the figure, ReliableComm provides significant end-to-
end reliability improvements for tiers 2 through 5. There
is, however, a modest reliability reduction for nodes in the
first tier. The reason for this reduction is unclear. One pos-
sibility is based on the observation that tier-1 nodes forward
more packets than lower-tier nodes, resulting in higher ra-
dio utilization. The additional forwarding introduced by
ReliableComm could be causing a relatively higher per-
centage of messages originating from tier-1 to be lost. We
plan to investigate this possibility as part of future work.
Additional studies were performed to investigate dense

deployment scenarios. The convergecast experiment was
repeated at power levels 2, 3, and 4. ReliableComm sig-
nificantly outperformed GenericComm at power level 2,
and performed equally well at power levels 3 and 4. This
suggests that ReliableComm is suitable for a large class
of deployment scenarios, especially those that are sparse
and/or geographically distributed at large scales.

2The margin of error in the reported results is 0%.



5 Related Work
We are not the first to recognize the importance of link

quality in determining application correctness and perfor-
mance. Indeed, the literature is rich in this area. Due to
space limitations, we consider only four of the most rele-
vant elements of related work.
Kotz et al. [10] focus on analyzing radio stack models

and implementations in the context of wireless networks.
They address a range of issues, including link quality mea-
surement, connectivity assessment in lossy environments,
and transitional region analysis in low-power networks. The
authors focus on analysis activities, providing suggestions
for improving the design of experimental studies. Imple-
mentation techniques for improving link quality and avoid-
ing low-quality links are not considered.
Chakeres et al. [1] provide an implementation of the Ad

Hoc On-Demand Distance Vector (AODV) routing protocol
to examine the effectiveness of hello messages in moni-
toring link status in mobile networks. They show that a
number of factors influence tool-based monitoring accu-
racy. Similarly, Du et al. [5] present the Neighborhood
Link Quality Service for wireless networks (NLQS). NLQS
takes into account link asymmetry and timeliness concerns.
The implementation also distinguishes between inbound
and outbound neighbors, better accommodating the effects
of link asymmetry on link quality estimates. In contrast to
our work, neither of these authors consider the question of
how to improve link quality, nor of how to avoid transmis-
sions over low-quality links.
In Zhou et al. [13], the authors present a radio model to

bridge the discrepancy between spherical models (typically
used in simulation), and the physical reality of wireless sig-
nal propagation. They present a detailed study of the result
of radio irregularity on both MAC and routing protocols,
and suggest solutions. By contrast, our work tackles a two-
fold problem by improving the reliability of mid-to-high-
quality links, and by identifying (and avoiding transmis-
sions over) low-quality links. This approach reduces link
quality variation by way of an additional radio stack layer
for TinyOS.
6 Conclusion
The goal of our work is to ensure predictable system

performance by reducing the degree of link quality varia-
tion common to wireless embedded systems — with a fo-
cus on wireless sensor platforms. In support of this goal,
we presented an alternative radio stack implementation for
TinyOS [9] that improves the reliability of mid- to high-
quality links, and identifies (and avoids transmissions over)
low-quality links. We evaluated the performance of the im-
plementation in two representative routing contexts using a
fixed network deployment consisting of 80 Tmote Sky [11]
nodes. Our performance results show that the implementa-

tion provides significant reliability improvements for a large
class of systems, effectively reducing link quality variation
to two categories (i.e., dead links and high-quality links).
The results also show that the implementation is ill-suited
to certain deployments. In particular, the results suggest
that the implementation is ill-suited to highly congested net-
works, where retransmissions can further degrade link qual-
ity. As part of our future work, we plan to investigate ways
to remedy this limitation. One approach is to incorporate a
network congestion monitor that informs the packet retrans-
mission strategy.
Acknowledgements. This work was funded in part by a grant from the
National Science Foundation (CNS-0520222), and a grant from the South
Carolina Space Grant Consortium.

References

[1] I.D. Chakeres and E.M. Belding Royer. The utility of hello messages
for determining link connectivity. In The 5th International Sympo-
sium on Wireless Personal Multimedia Communications, volume 2,
pages 504–508. IEEE Computer Society Press, October 2002.

[2] K. Chintalapudi et al. Monitoring civil structures with a wireless
sensor network. IEEE Internet Computing, 10(2):26–34, 2006.

[3] A.R. Dalton and J.O. Hallstrom. An interactive, server-centric
testbed for wireless sensor systems. Technical Report CU-DSRG-08-
06-01, Clemson University (Dependable Systems Research Group),
2006.

[4] D.M. Doolin and N. Sitar. Wireless sensors for wildfire monitoring.
In SPIE Symposium on Smart Structures and Materials / NDE 2005,
pages 477–484. SPIE Press, March 2005.

[5] J. Du et al. Asymmetry-aware link quality services in wireless sen-
sor networks. In The 2005 IFIP International Conference on Embed-
ded and Ubiquitous Computing, pages 745–754. Springer, December
2005.

[6] E. Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[7] D. Gay et al. Software design patterns for TinyOS. In The 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 40–49. ACM Press, June 2005.

[8] C. Hartung et al. FireWxNet: a multi-tiered portable wireless system
for monitoring weather conditions in wildland fire environments. In
The 4th International Conference on Mobile Systems, Applications,
and Services. ACM Press, June 2006. (to appear).

[9] J. Hill et al. System architecture directions for networked sensors.
In The 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, volume 34, pages
93–104. ACM Press, November 2000.

[10] D. Kotz et al. The mistaken axioms of wireless-network research.
Technical report, Dartmouth College (Computer Science), 2003.

[11] Moteiv Corporation. Tmote Sky datasheet.
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf,
2006.

[12] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M.
Ruiz, and J. Lees. Deploying a wireless sensor network on an active
volcano. IEEE Internet Computing, 10(2):18–25, 2006.

[13] G. Zhou et al. Impact of radio irregularity on wireless sensor net-
works. In The 2nd International Conference on Mobile Systems,
Applications, and Services, pages 125–138. ACM Press, June 2004.


