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Abstract— Existing Byzantine fault tolerant distributed commit
algorithms are resilient to failures up to the threshold imposed
by the Byzantine agreement. A distributed transaction might not
commit atomically at correct participants if there are more faults.
In this paper, we report mechanisms and their implementations in
the context of a Web services atomic transaction framework that
significantly increase the probability of atomic commitment of
distributed transactions even when the majority of coordinator
replicas become faulty. The core mechanisms include a piggy-
backing mechanism, which limits the way a faulty coordinator
replica can do to cause confusion among correct participants,
and a voting mechanism, which enables fast agreement on the
transaction outcome under fault-free situation, and ensures that
the agreement is based on the messages from correct replicas with
high probability even if all but one coordinator replica becomes
faulty. Our performance study on an implemented prototype
system shows only 10% end-to-end runtime overhead under both
fault-free and faulty scenarios. This proves the practicality of
our mechanisms for use in real-world Web-based transactional
systems.

Index Terms— Distributed Transaction, Two Phase Commit,
Web Services, Fault Tolerance, Byzantine Agreement, Digital
Signature.

I. INTRODUCTION

Any transaction that spans across multiple sites requires a
distributed commit protocol to achieve atomic commitment.
The two-phase commit (2PC) protocol is the most widely used
distributed commit protocol in practical systems. The 2PC
protocol is designed with the assumptions that the coordinator
and the participants are subject only to crash fault, and the
coordinator can be recovered quickly if it fails. Consequently,
the 2PC protocol does not work if the coordinator is subject
to arbitrary faults (also known as Byzantine faults) because a
faulty coordinator might send conflicting decisions to different
participants. This problem is first addressed by Mohan et
al. in [17] by integrating Byzantine agreement and the 2PC
protocol. The basic idea is to replace the second phase of the
2PC protocol with a Byzantine agreement process that involves
with the coordinator, all the participants, and enough number
of redundant nodes.

Such Byzantine agreement based protocols can tolerant up
to f faulty members with 2f+1 total members in synchronous
systems, or 3f+1 members in asynchronous systems. If there
are additional Byzantine faults, either no agreement can be
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reached, or a wrong value is agreed upon. Even if the addi-
tional faults are crash-only faults, the protocols would block
until the faulty members recover. That is, these protocols are
not resilient to failures beyond their fault models. However,
in practical systems, there is no guarantee that the number of
faults will be within the limit that the Byzantine agreement
requires. Secondly, all transactions must incur the cost of
Byzantine agreement, even when there is no fault. The high
overhead perhaps is the main reason why these protocols are
not adopted in practical systems.

In this paper, we propose a set of mechanisms that protects
the data integrity of all correct participants despite arbitrary
fault in the coordinator for distributed transactions. To tolerate
the potential crash and Byzantine faults, the coordinator is
replicated and a novel voting mechanism is used to select
the output from correct replicas. The coordinator also keeps
an audit log of the votes from all participants to discourage
dishonest participants.

The main novelty of our design is the minimized runtime
overhead and the increased failure resiliency of distributed
commit under Byzantine faults. This is achieved by a piggy-
backing mechanism and a failure resilient voting mechanism.
According to the piggybacking mechanism, each message
disseminated by a coordinator is attached with a unforge-
able and verifiable security token that significantly limits the
ways a faulty coordinator replica can do to send conflicting
information to the participants. Under the fault-free condition
(which happens most frequently we believe), the prepare and
commit messages carry conclusive information, which enables
immediate delivery of these messages without going through
a lengthy voting process.

A voting process is needed only for the abort messages that
carry inconclusive information. To increase failure resiliency,
the voter does not rush to a decision when it has received
similar inconclusive abort messages from the majority of
the coordinator replicas. Instead, it waits until one of the
three conditions are satisfied: (1) a message with conclusive
information has arrived; (2) it has received messages from all
coordinator replicas; (3) a timer set for the transaction expires.
This voting mechanism minimizes the probability of making
a wrong decision based on the input from faulty coordinator
replicas when they become the majority. As long as the correct
coordinator replica sends its decision to all correct participants
before the timeout, the transaction is guaranteed to be com-
mitted or aborted atomically among correct participants.

The remaining of the paper is organized as follows. Sec-
tion II describes the system models. Section III presents the
core failure resiliency mechanisms. Section IV describes the
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implementation details for the distributed commit framework
for Web services. Section VI provides an overview of related
work. Section VII summarizes this paper and points out future
research directions.

II. SYSTEM MODELS

A. Architecture Model

We consider a Web portal that offers a set of Web services.
These Web services are in fact composite Web services that
utilize Web services provided by other departments or orga-
nizations. We assume that an end user uses the composite
Web service through a Web browser or directly invokes the
Web service interface through a standalone client application.
In response to each request from an end user, a distributed
transaction is started to coordinate the interactions with other
Web services.

Furthermore, we assume a flat distributed transaction model
for simplicity in our discussions. We believe that it is relatively
straightforward to extend our mechanisms for a hierarchical
transaction model. Each distributed transaction has an initiator
(i.e., the composite Web service that the user invokes directly),
a coordinator, and one or more other participants. The initiator
is regarded as a special participant. In later discussions we do
not distinguish the initiator and other participants unless it is
necessary to do so.

We assume that the transaction coordinator runs separately
from the participants, and it is replicated in several different
nodes. In this paper, we assume that the transaction initiator
and other participants are not replicated for simplicity. There
is no reason why they cannot be replicated for fault tolerance.

B. Fault Model

The coordinator has N replicas and at least one replica
remains to be correct. The safety of the two-phase commit
is guaranteed only when the number of faulty replicas is
less than N/2. If the number of faulty replicas exceeds this
threshold, the atomicity of a distributed transaction might
be violated, but only in very rare cases (we will discuss
this further in later sections). The coordinator replicas are
subject to arbitrary fault. The same assumption is made for
the transaction initiator and other participants, except that they
always multicast the same message (including the vote to
commit or abort) to all coordinator replicas. This assumption
is not as restrictive as it seems to be, e.g., we can easily
ensure this property by replicating the transaction initiator
and other participants and performs a majority voting at each
coordinator replica. Furthermore, most well-known Byzantine
fault tolerance frameworks [1], [8], [9], [24] have similar
assumption on the clients.

We assume that the coordinator and the transaction par-
ticipants fail independently. Furthermore, a failed coordinator
replica does not collude with any failed participant (including
the initiator). We do, however, allow failed coordinator replicas
to collude.

All messages between the coordinator and participants are
digitally signed. If confidentiality is needed, messages can be
further encrypted. We assume that the coordinator replicas and

the participants each has a public/secret key pair. The public
key is known to all of them, while the private key is kept
secret to its owner. We assume that the adversaries have limited
computing power so that they cannot break the encryption and
digital signatures.

C. Threat Model

In this section, we enumerate the threats that a compromised
coordinator and a participant can impose to the problem of
distributed commit.

A Byzantine faulty coordinator can
• Refuse to execute part or the whole distributed commit

protocol by not sending or responding with the intention
to block the execution of a distributed transaction.

• Choose to abort some transactions despite the fact that it
has received a yes-vote from every participant. To do this,
the coordinator omits some of the digitally signed yes-
vote and pretends that it has timed out those participants.
Note that a coordinator cannot fake a commit decision if
it does not receive a yes-vote from every participant.

• Send conflicting decisions to different participants. The
coordinator can do this only if it has received yes-vote
from every participant because it is obliged to piggyback
all the yes-votes with a commit decision. To fake an abort
decision, it has to omit the vote from some participants.
The intention is to corrupt the data integrity of correct
participants.

• Execute the distributed commit protocol correctly for
some transactions. In this case, the coordinator behaves
like a correct coordinator.

A Byzantine faulty participant can
• Refuse to execute part or the whole distributed commit

protocol by not sending or responding, this can cause the
abort of transactions that it involves.

• Vote abort but internally prepare or commit the transac-
tion.

• Vote commit but internally abort the transaction.
As can be seen, a fault participant cannot disrupt the con-
sistency of correct participants as long as the coordinator is
correct. To deter malicious participants, the coordinator keeps
an auditing log and records all the votes from all participants.
The logged information can be used to hold a faulty participant
accountable for lying. For example, if a participant refused to
ship a product that it has promised to do, the user and other
participants can sue it using the logged vote record from that
participant.

III. FAILURE RESILIENT DISTRIBUTED COMMIT

Traditional Byzantine fault tolerant algorithms, if applied to
the distributed commit problem, require at least 2f+1 coordina-
tor replicas to tolerate f faults. If the number of faulty replicas
exceeds f, either no agreement can be reached, or a wrong
value may be decided. If the majority of coordinator replicas
become faulty and they collude together, they can always
break the safety of the distributed commit by convincing some
correct participants to commit and some other to rollback the
transaction.
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In this section, we introduce failure resiliency mechanisms
that can significantly increase the safety of distributed commit
even when all but one coordinator replica become faulty.
Note that we do not guarantee 100% safety in this situation
due to the possible race conditions (to be discussed in detail
later). But for all practical purposes, the risk of violating
the transaction atomicity among correct participants can be
neglected.

A. Piggybacking Mechanism

In the 2PC protocol, the coordinator might send three
different messages to the participants: prepare, commit and
abort. Each message carries an unforgeable security token
to be verified by the receiver, i.e., the participant. If the
piggybacked token contains conclusive information that the
message must come from a correct replica, the message is
delivered immediately without resorting to voting.

This mechanism significantly restricts what a faulty coor-
dinator can do to compromise the atomicity of a distributed
transaction. A similar piggybacking idea is first mentioned
in [17]. However, it is not being exploited to increase the
failure resiliency of distributed commit and a full Byzantine
agreement process is still used for each transaction among all
coordinator replicas and transaction participants.

Prepare message. The coordinator can send a prepare mes-
sage to a transaction participant only after the transaction
initiator has asked the coordinator to commit the transaction.
Each prepare message carries a prepare-token. The token
contains the transaction identifier and the original commit
request. The token is signed by the transaction initiator, and
therefore, is not forgeable by any coordinator replica. The
prepare message together with the piggybacked prepare-token
are signed by the coordinator replica to prevent alteration of
the message during transit, and to ensure the nonrepudiation
property.

Upon receiving a prepare message, the mechanism checks
if a prepare-token is attached and verifies the token if one is
found. The message is discarded if no such token is found or
the token is invalid. A prepare message that possesses a valid
prepare-token is delivered immediate without voting. A valid
prepare-token must pass the following test:

1) The signature is valid (it is signed by the initiator).
2) The token contains a commit request.
3) The transaction identifier in the token must refer to a

current transaction.

Note that the coordinator cannot reuse the prepare-token for
a different transaction because the transaction identifier would
be different.

Commit message. The coordinator can send a commit mes-
sage only if it has received the yes-vote from all participants.
Each vote record consists of a transaction identifier and the
vote itself and is signed by the participant that placed the
vote. The commit-token is valid if

1) It contains the vote records of all participants, including
the commit request from the initiator.

2) The signature of each vote record is valid.
3) All the votes are yes-vote.

4) The transaction identifiers in the vote records are iden-
tical and match the identifier for the current transaction.

Again, a commit message with a valid commit-token is
delivered right away because the valid commit-token carries
conclusive information that it must have been sent by a correct
coordinator replica.

Abort message. A correct coordinator may send an abort
message in the following two scenarios:

1) The transaction initiator decided to abort the transaction.
2) The coordinator timed out some participants, or some

participants have voted to abort the transaction.
The abort message sent in scenario 1) happens during the first
phase of the distributed commit (there will be no 2nd phase
in this case). Such an abort message carries an abort-token
similar to the prepare-token. The only difference is that it now
contains an abort request from the initiator. The abort message
sent in scenario 2) happens during the second phase of the
distributed commit. The abort-token should contain a set of
records similar to those in the commit-token, one for each
participant that has responded to the prepare request, including
the initiator. In fact, the abort-token in both scenarios takes the
same form: A set of signed vote records from the participants.

The token verification process contains the following steps:
1) Check if the signature of each vote record is valid.
2) Match the transaction identifiers in each vote record with

the identifier for the current transaction.
3) Check if the token contains at least one no-vote, or

there is at least one missing vote from some participant
because a correct coordinator is obliged to commit
a transaction if it has collected yes-vote from every
participant. It is possible that the abort-token carries
no vote record at all, for example, if the transaction
initiator fails before it sends a commit/abort request to
the coordinator.

Unlike the tokens in the prepare and commit messages,
a valid abort-token in an abort message might not carry
conclusive information, in which case, immediate delivery of
the abort message will not be possible. A valid conclusive
abort-token is one that contains at least one no-vote. Note that
a faulty coordinator replica can abort a transaction only by
omitting votes from some participants if in fact all participants
have voted to commit the transaction.

The immediate benefit of using this mechanism is fast
distributed commit because the voting process is avoided in
most cases. However, the piggybacking mechanism by itself
does not increase the failure resiliency. The failure resiliency is
taken care of by a voting mechanism, which will be elaborated
below.

B. Voting Mechanism

The piggybacking mechanism prevents a faulty coordinator
from sending conflicting decision messages to different par-
ticipants without being detected, if some participants voted to
abort the transaction, or indeed has failed (no response). This
is because a commit decision message must carry a token
with a complete set of yes-vote and there is no way a faulty
coordinator replica can fabricate a yes-vote without knowing
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the private key of the corresponding participant. This is true
as long as the faulty coordinator does not collude with any
participant, which is our assumption.

Therefore, a faulty coordinator replica can possibly dissem-
inate conflicting decisions to the participants (without being
caught) only when all participants have voted to commit a
transaction. There are only two “legitimate” ways to do so:

1) The faulty replica sends a commit decision to some
participants, but an abort decision to some other by
falsely claiming that it did not receive the vote from one
or more participants. In fact, the faulty replica could send
the abort decision to a subset of participants as soon as
the distributed commit starts without going through the
first phase.

2) The faulty replica sends a commit decision to some
participants, but nothing at all to some other participants,
hoping that the subset of participants that does not
receive a decision to indefinitely hold valuable resources
for the transaction, or the participants to unilaterally
abort the transaction due to a timeout.

Note that the abort decision message sent by a correct
coordinator replica due to the timeout of a participant should
come much later than the beginning of the first phase of
the distributed commit. If a participant indeed has failed, the
voting process (on the decision message) at other participants
will inevitably take a long time because no decision messages
carry a conclusive token and consequently, no fast delivery
can be made if all coordinator replicas are correct.

However, if the majority of the replicas become faulty, they
could attack the mechanisms that rely on a simple majority
voting algorithm by sending false abort messages to some
participants as soon as these participants have responded with
a yes-vote in the first phase of the distributed commit, as
mentioned in case 1). If the simple majority voting algorithm
were to be used, such an attack would succeed in caus-
ing a nonatomic commitment of the distributed transaction.
Consequently, the simple majority voting algorithm must be
abandoned to achieve better failure resiliency. In the following,
we describe a more robust voting algorithm that can counter
such attacks.

Let T be the timeout parameter for a coordinator to timeout
a participant, and Tvoting be timeout parameter used by each
participant for the voting process. The voting timer T voting

is set to at least 3 ∗ T to allow unpredictable network and
processing delays so that the commit message, if any, from a
slow but correct coordinator replica has a reasonable chance to
reach the participant by the timeout of the voting process. (The
delay can also be caused by a slow participant.) A participant
starts a voting timer when it receives the first legitimate abort
message that carries an inconclusive vote token. (The timer is
not started if a participant receives a valid abort or commit
message that carries a conclusive vote token, because the
message can be delivered right away without going through the
voting process.) If the participant receives a decision message
containing a conclusive token, it cancels the timers and commit
or abort the transaction according to the conclusive decision
message. If the participant has collected the decision messages
from all coordinator replicas before the voting timer expires

(apparently all these decision messages contain inconclusive
information), it cancels the timer and abort the transaction
(recall that any valid commit message must carry a complete
yes-vote set, which will be delivered immediately without
voting). When the voting timer expires, the participant stops
collecting decision messages and aborts the transaction.

This novel voting algorithm virtually eliminates the pos-
sibility of nonatomic distributed commit with a reasonable
large voting timeout. However, due to the asynchrony of the
distributed computing environment, some rare race condition
could happen. For example, the commit message from a slow
coordinator replica reaches some participants before the voting
timer expires, but reaches other participants after the timer
expires.

IV. IMPLEMENTATION

We have implemented the failure resiliency mechanisms and
integrated them into a distributed commit framework for Web
services in the Java programming language. The architecture
of the failure resilient distributed commit framework is shown
in Figure 1. The framework is based on a number of Apache
Web services projects, including Kandula (an implementation
of the Web Services Atomic Transaction Specification) [4],
WSS4J (an implementation of the Web Services Security
Specification) [5], and Apache Axis (SOAP Engine) [3]. Most
of the failure resiliency mechanisms are implemented in terms
of Axis handlers that can be plugged into the framework
without affecting other components. Some of the Kandula code
is modified to enable the control of its internal state and to
enable voting. The failure resiliency mechanisms consist of
approximately 4000 lines of code.

In this section, we first introduce the architecture and the
normal operations of the distributed commit framework as
implemented in the Apache Kandula Project. This will provide
the necessary background information for further discussions.
Next, we describe the main components that implement the
failure resiliency mechanisms. Finally, we discuss a number of
important system-level issues related to integrating the failure
resiliency mechanisms into the distributed commit framework,
including reliable multicast, replica non-determinism control,
and the recovery of coordinator replicas.

A. Distributed Commit Framework for Web Services

The distributed commit framework provides a coordination
service for atomic distributed transactions in the Web services
paradigm, and implements the completion protocol and the
two-phase commit protocol defined in the Web Services Atom-
icTransaction Specification (WS-AT) [6]. As defined in WS-
AT, the coordination service consists of several coordinator-
side services and a couple of participant-side services. In the
following, we provide a brief summary of these services.

The coordinator side consists of the following services:

• Activation Service: This service is invoked at the be-
ginning of a distributed transaction by the initiator. The
activation service creates a coordination context for each
transaction and returns the coordination context to the
initiator. The coordination context contains a unique
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Fig. 1. Architecture of the failure resilient distributed commit framework.

transaction identifier and an endpoint reference 1 for the
Registration Service (to be introduced next). This co-
ordination context is included in all request messages
sent within the transaction boundary. Furthermore, a
coordinator object is created for the transaction.

• Registration Service: This service is provided to the trans-
action participants (including the transaction initiator)
to register their endpoint references for the associated
participant-side services. These endpoint references are
used by the coordinator to contact the participants during
the two-phase commit of the transaction.

• Coordinator Service: This service is invoked by transac-
tion participants (excluding the initiator) to place their
votes in response to a prepare request, and to send their
acknowledgement in response to a commit/abort request.
The participants obtains the endpoint reference of the
Coordinator Service during the registration step.

• Completion Service: This service is used by the transac-
tion initiator to signal the start of a distributed commit or
abort. The Completion service, together with the Comple-
tionInitiator service on the participant side, implement the
WS-AT completion protocol. The endpoint reference of
the Completion Service is returned to the initiator during
the registration step.

The set of coordinator services run in the same address
space. For each transaction, all but the Activation Service
are provided by a (distinct) coordinator object. Consequently,
we refer these services collectively as the coordinator in later
text for convenience. These services are replicated for fault

1The term endpoint reference is defined in [14]. An endpoint reference
typically contains a URL to a service and an identifier used by the service
to locate the specific handler object (it is referred to as a callback reference
in the Apache Kandula Project). It may also include identifier information
regarding a particular user of the endpoint reference. The endpoint reference
resembles the object reference in CORBA.

tolerance.
The participant-side services include:
• CompletionInitiator Service: This service is provided by

the transaction initiator so that the coordinator can inform
it the final outcome of the transaction, as part of the
completion protocol.

• Participant Service: This service is invoked by the coor-
dinator to solicit votes from, and to send the transaction
outcome to the participants according to the two-phase
commit protocol.

To get a better idea how the distributed commit frame-
work works, consider the banking example (adapted from
the Kandula project and used in our performance evaluation)
shown in Figure 2. In this example, a bank provides an online
banking Web service that a customer can access through a Web
browser, or a stand alone application. Assuming that the cus-
tomer has two accounts with the bank. The two accounts are
managed by different database management systems running
in distinct locations. Web services are used as the middleware
platform for all communications between different systems in
the bank (i.e., each system exposes a set of well-defined Web
services that others can invoke). Figure 2 shows the detailed
steps for a single Web service call from the customer on the
bank to transfer some amount of money from one account to
the other. Upon receiving the call from the customer, the bank
application initiates a new distributed transaction, invokes a
debit operation on one account, and a credit operation on the
other, all through Web services.

To start a new distributed transaction, the initiator (i.e., the
bank application) invokes the Activation Service. A unique
coordination context is created for the new transaction (or
transaction context in short) and is returned to the caller (steps
2 and 3). The initiator subsequently registers a Completion-
Initiator reference with the Registration Service so that the
coordinator can inform the outcome of the transaction at the
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Fig. 2. The sequence diagram showing the detailed steps for a banking example using WS-AT (replication is not shown.

end of the distributed commit process asynchronously (steps 4
and 5)2. The bank then invokes the debit operation on the Web
service provided by account A (steps 6 and 9). The account
A then registers a participant reference with the coordinator
(steps 7 and 8) for distributed commit. The steps for the credit
operation on account B is similar (steps 10-13). The two-phase
commit starts when the initiator asks the Completion Service
to commit the transaction (step 14). During the first phase, the
prepare requests are sent to the two participants (steps 15 and
16). When the two participants responded with yes votes (steps
17 and 18), the coordinator decides to commit the transaction
and notify both participants and eventually the initiator as well
(steps 19-23). Finally, the bank application replies back to the
customer (step 24).

In this paper, we regard the transaction initiator as a special
participant because it also involves with the two-phase commit
process in a way (even though the interaction between the
initiator and the coordinator follows the WS-AT completion
protocol). The initiator’s commit request can be considered
as a yes vote in response to an omitted prepare request. The
notification message (step 23) to the initiator is equivalent to
the decision message in the second phase of the distributed

2The registration step is actually carried out at the commit time. We show
the step here because it fits the logical order more naturally.

commit. Therefore, the vote from the initiator is included in
the signed vote collection. The signed vote collection is pig-
gybacked with the decision messages to both the participants
and the initiator.

B. Implementation of Failure Resiliency Mechanisms

The core failure resiliency mechanisms are implemented
collectively by the following components, as shown in Figure
1:

• 2PC Vote Collector. One vote collector object is created
for each coordinator object. The lifespan of the collector
object is identical to that of the coordinator object. The
collector object stores the digitally signed vote messages
sent by participants.

• Failure Resilient Voter. There is one voter object for
each participant. The voter object and the participant are
colocated in the same process. On receiving a message
from a coordinator replica, the message is first passed to
the voter for verification according to the criteria listed
in Section III-A. Only messages that have passed the test
are delivered to the participant.

• My Security Handler. This handler is invoked transpar-
ently according to the Apache Axis deployment descrip-
tor for message signing and verification. A message that
cannot be verified is discarded without further processing.
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• My Receiver. This is implemented as an Axis handler to
process the incoming messages and to suppress duplicate
messages. This handler replaces the default Axis RPC
handler. Upon receiving a message, the handler first
checks if the message is a duplicate or if it is an out-
of-order message. The message is discarded if it is a
duplicate, and is queued for future delivery if it has
arrived out-of-order (to be discussed further in Section
IV-C). Further actions depend on the type of the message:

– Vote messages (prepared/aborted messages from par-
ticipants, and commit/abort3 messages from the ini-
tiator). They are passed to the 2PC Vote Collector
for logging before they are delivered.

– Transaction decision messages (commit/abort mes-
sages from the coordinator to participants, or the
committed/aborted messages from the coordinator to
the initiator). They are first passed to the voter object
before delivery. A message is delivered only if the
voter indicates it is time to do so.

– Other messages arriving at the participant side, in-
cluding the response messages to the activation and
registration requests. They are delivered only if they
can pass a verification test. The verification test can
determine with certainty if the message is sent by
a correct service, i.e., if the message can pass the
test, it must be sent by a correct replica and all
correct replicas for the service are guaranteed to
return a response with the same information. An
invalid message is discarded. This is different from
failure resilient voting on the transaction decision
messages, in which case a message may be labeled
as uncertain. The simplicity of the verification test is
made possible by our deterministic identifier genera-
tion mechanism, to be discussed in detail in Section
IV-D.

– Other messages arriving at the coordinator side.
They are delivered immediately (they must pass the
signature verification check done by the security
handler).

• My Sender. It is implemented as an Axis handler to
replace the default HTTP Sender handler. This handler
performs source ordered reliable multicast based on static
membership information (to be discussed further in Sec-
tion IV-C). For the transaction decision messages, this
handler also piggybacks the vote set logged by the 2PC
Vote Collector.

C. Application-Assisted Ordered Reliable Multicast

To ensure the replica consistency of a stateful service,
all incoming requests to the service must be totally ordered
in general. This would require the use of a totally ordered
reliable multicast system. We see two problems in applying
this strategy to Web Services replication. First, such a multicast
system often dominates the overall performance cost of the

3In the Web Services AtomicTransaction Specification [6], the abort mes-
sage is referred to as rollback message. We use the term abort here for
consistency with other part of the paper.

fault tolerance infrastructure [27]. This is especially true for
totally ordered reliable multicast under the Byzantine fault
model. Second, the use of a totally ordered multicast system
strongly couples the participants and the replicated coordinator
services (the multicast system would introduce many shared
state and dependencies among its members). This seems to
contradict the design principles of Web Services.

Therefore, we designed and implemented a reliable mul-
ticast system that provides minimum ordering guarantee for
low runtime overhead and for loose coupling. This is made
possible by exploiting the application semantics. In this case,
the “application” is the two-phase commit framework. Recall
that only the coordinator-side services are replicated. The
activation service, which would create a coordinator object for
each distributed transaction, is stateless. Therefore, there is no
need to order the activation requests. The rest of the services
are stateful only within the boundary of a distributed transac-
tion. Because a unique coordinator object is created for each
transaction, only the requests to the same coordinator should
be ordered, i.e., requests to different coordinators are unrelated
and should not be ordered to reduce the runtime overhead.
Furthermore, we recognize that as long as the requests to the
same coordinator are causally ordered, the coordinator replicas
would remain consistent. Hence, our framework includes only
a causally ordered reliable multicast system.

The runtime overhead for a causally ordered reliable mul-
ticast system can still be significant if we were to use
a traditional approach such as the vector-timestamp based
method. To reduce the runtime cost, and also to minimize
the complexity of the multicast system, we choose to use
an application-assisted approach to control the ordering of
incoming requests to each coordinator replica. Our multicast
system requires the application (i.e., the coordinator) to help
determine if it is time to deliver a request through a plugin
interface. Upon receiving a request, the multicast system asks
the corresponding coordinator replica if it is time to delivery
the message. If the response is no, the message is queued.
Otherwise, the message is delivered. Periodically, the queue is
examined and the coordinator is consulted to see if a queued
message can be delivered in the right order.

We believe that the application can implement such a service
without much hassle because it can easily determine the causal
order of different requests based on the application logic. For
example, a coordinator would inform the multicast system
to defer the delivery of a “prepared” message if it has not
issued the corresponding “prepare” request to the transaction
participant.

By delegating the ordering task to the application, it is
sufficient to implement a source ordered reliable multicast
system. We decide to carry out the multicast using multiple
point-to-point messages on top of the SOAP protocol for
maximum interoperability. On the sending side, a thread pool
is used to concurrently send the multicast messages to their
destinations to achieve good performance. In fact, we need
only a partially source ordered reliable multicast, i.e., only
the messages sent to the same coordinator are source ordered.
If two participants from the same process send messages to
different coordinators (for different transactions), the messages
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from each participant are ordered separately.
For simplicity, our implementation of the reliable multicast

assumes static membership provided by a configuration file.

D. Replica Nondeterminism Control

a) Identifier Generation: In the WS-AT framework, each
distributed transaction is assigned a unique transaction identi-
fier. The identifier is generated when the transaction initiator
invokes the activation service for a new distributed transaction.
This identifier is included in all messages exchanged between
the coordinator and the participants of a transaction. In the
Apache Kandula implementation, the identifier is generated
as a Universally Unique Identifier (UUID) according to the
algorithm defined by the Open Group [21]. Obviously, we
must replace the default algorithm by a deterministic identifier
generation mechanism so that all replicas generate the same
identifier for the same transaction, and the identifier must be
unique with respect to those for other transactions. Otherwise,
the state of the coordinator replicas would diverge and dis-
tributed commit could not be carried correctly.

We choose to follow a pragmatical approach for determin-
istic generation of the transaction identifiers. A transaction
identifier is constructed by applying a secure hash function
on the following items concatenated together:

• A UUID generated by the transaction initiator.
• The timestamp of the activation request message (as-

signed by mechanism at the transaction initiator).

The initiator-generated UUID is used as the basis for the
transaction identifier. To enhance the uniqueness and the
freshness of the identifier, the second item is needed. Even
if the initiator is faulty and tries to supply a used UUID,
the timestamp will still guarantee the transaction identifier
to be different. Upon receiving an activation request, the
coordinator compares the timestamp of the request with the
current clock value. The message is discarded if the timestamp
differs from the coordinator’s clock by more than a predefined
threshold. This requires that the clocks at the coordinator
and the initiator nodes are approximately synchronized. With
the pervasiveness of the NTP service, it is not an unrealistic
assumption. Alternatively, we could replace the timestamp
with a monotonically increasing sequence number. However,
doing so would introduce additional state that spans across
difference transactions (the activation service would have to
remember what is the next expected sequence number). This
would increase the complexity of recovery mechanisms for
coordinator replicas and make it harder to perform server-side
load balancing.

Ideally, the activation service should make contribution to
the identifier as well so that no one can unilaterally decide on
the transaction identifier for maximum robustness. We did not
do so because it is not clear to us how to devise a method to
deterministically generate some information without imposing
additional assumptions on the activation service. For example,
if we can assume that the replicated activation service has
a pair of group keys, we could include the private group key
(or a key derived from the private key deterministically) in the
transaction identifier generation. Even without the contribution

from the activation service, the man-in-the-middle attack can-
not happen as long as the private key of the transaction initiator
is not compromised because all messages are protected by
digital signatures.

We should note that the deterministic identifier generation
mechanism does not work flawlessly in all circumstances.
For example, if the transaction initiator is faulty, it could
potentially send different timestamp and UUID with the acti-
vation request message to different coordinator replicas. This
would have negative impact on the voting mechanism at each
participant regarding the outcome of the transaction. If a par-
ticipant has accepted one of the transaction identifiers for the
current transaction, it would discard all messages (including
the transaction outcome messages) that carry other transaction
identifiers. This in effect reduces the voting set (potentially
to a single coordinator replica), and therefore, increases the
risk of nonatomic distributed commit. This problem can be
resolved by executing a Byzantine agreement protocol among
the coordinator replicas for the activation request message.
If no agreement can be reached, the activation message is
ignored.

In response to the registration request, the registration
service returns an endpoint reference for the coordinator
service (for 2PC participants), or an endpoint reference for the
completion service (typically for the transaction initiator). In
addition to the transaction identifier and the identifier for the
handler object for the corresponding service, each endpoint
reference contains a callback reference identifier assigned
to the caller. This identifier is to be used by the caller to
identify itself when it invokes the coordinator service and
the completion service, respectively. In the original Apache
Kandula implementation, a new UUID is generated and used
as the callback reference identifier. To ensure deterministic
response from the replicated registration service, we rewrote
the related code and implemented a mechanism similar to that
for transaction identifier generation, i.e., the caller designates
the identifier to be used as the callback reference identifier.
This also makes it possible for the callers (participants and
initiator) to verify the correctness of the registration responses.

b) Time Related Nondeterminism: The 2PC protocol uses
a number of timeout during its execution. Naturally, there is
a risk of getting into some race conditions that might lead
to nonatomic completion of a distributed transaction. This
situation may arise if some participants’ yes-votes arrive very
closely to the timeout set by the coordinator for the first phase
of the 2PC protocol. Some coordinator replica might accept the
votes and commit the transaction, while some other replicas
might time out these participants.

However, we decide not to control the time-related opera-
tions, for a number of reasons. First, it is extremely expensive
to ensure consistent clock readings by different replicas under
the Byzantine fault model. (It is very expensive even when
the crash-only model is used, as our previous work has
shown [25].) The coordinator replicas access local clocks very
often during the distributed commit process. For each clock
operation, a Byzantine agreement must be reached among
the replicas. Resorting to this type of control would render
our framework impractical. Second, our voting mechanism is



9

designed to prevent inconsistent commitment of distributed
transactions. As long as each participant receives a commit
decision message (with a valid commit-token), possibly sent
by different correct coordinator replicas, the atomicity is
guaranteed.

Note that all practical distributed transaction processing
systems use timeout as a way to avoid lengthy delay in case
of the coordinator failures, i.e., a transaction is aborted when
a predetermined timeout occurs, even if the transaction is
prepared. This practice has intrinsic risk of nonatomic com-
mitment of distributed transactions when the race condition
happens. We believe that our framework for distributed commit
do not incur noticeable higher risk than their nonreplicated
counterpart under this circumstance. For all practical purposes,
our failure resilient distributed commit is sufficiently robust.

E. Coordinator Replica Recovery

Replicas may fail over time, due to intrusion attacks,
or hardware/software failures. It is important to be able to
introduce new replicas, and recover repaired replicas into the
system to maintain the degree of replication. Due to our semi-
stateless design, a coordinator replica (new, or repaired) can be
introduced into the system at any time without the complexity
of Byzantine fault tolerant state transfer from existing replicas.
To understand this, consider a message that arrives at the new
replica. If it is not the activation request message, which would
cause the creation of a new transaction context and a new
coordinator object, the message would simply be discarded
because no target coordinator object is found in the replica.
If it is an activation request message, the replica processes
the request properly and join other replicas for this new
transaction.

V. PERFORMANCE EVALUATION

We have conducted extensive performance evaluation of
our prototype implementation. Our focus is to compare the
runtime overhead of the failure resiliency mechanisms during
both fault-free and various faulty scenarios. Our experiment is
carried out on a testbed consisting of 8 Dell SC1420 servers
connected by a 100Mbps Ethernet. Each server is equipped
with two Intel Xeon 2.8GHz processors and 1GB memory
running SuSE 10.0 Linux. The framework and the mechanisms
are implemented using the Java programming language. The
failure resiliency mechanisms consist of approximately 4000
lines of code.

The test application is the banking Web service example that
we have shown in Figure 2. The coordinator-side services are
replicated on up to 3 computers. The transaction initiator and
other participants are not replicated. The client for the banking
Web service, the transaction initiator and all other participants
run on distinct computers. The same client is used for all tests,
where it invokes a fund transfer operation on the banking Web
service within a loop without any “think” time in between two
consecutive calls. In each run, 10000 samples are obtained.
The end-to-end latency for the fund transfer operation is
measured at the client. In addition, the latency for the two-
phase commit is measured at the replicated coordinator. The

latency information for each call is temporarily stored in
memory and is flushed into a file at the end of each run.

A. Fault-Free Runtime Overhead

To evaluate the runtime overhead of our failure resiliency
mechanisms, we compare the performance of the original WS-
AT implementation and the modified one that contains our
failure resiliency mechanisms with various replication degrees.
The results for different configurations are shown as bar charts
in Figure 3. The end-to-end latency result is shown in the left
hand side of figure (Figure 3(a)), and the two-phase commit
latency result is displayed in the right hand side.

The end-to-end latency for the original WS-AT implemen-
tation without message signing ranges from 180-280 millisec-
onds for 2-4 participants. When the framework is configured
to use digital signature for all messages transmitted over the
network, which should be a basic requirement for secure com-
munication over the Internet, the latency increases dramatically
to the range of 600-890 milliseconds. We believe it is fair
to use this configuration as the reference to compare with
the performance of our failure resilient framework (termed
as “Secure 2PC” in Figure 3). As shown in Figure 3(a), the
end-to-end latency increases only modestly to the range of
640-990 milliseconds when our failure resilient distributed
commit framework is used. This amounts to approximately
10% overhead, which is very reasonable from the end users’
point of view. Furthermore, the increase of the replication
degree from 1 to 3 does not introduce noticeable higher
overhead.

The latency results for the two-phase commit illustrated
in Figure 3(b) exhibit a similar trend. Comparing with
the message-signing-only configuration, our failure resilient
framework incurs about 20% overhead, which is higher than
that for the end-to-end latency. This is not surprising because
our major effort is to harden the two-phase commit protocol.

B. Performance Under Faulty Scenarios

We instrumented the coordinator code to simulate coordi-
nator fault. We do not study the impact of faulty participants
for two reasons. First if a participant has a benign crash
fault, the transaction is guaranteed to be aborted because no
coordinator can fabricate a vote from this faulty participant due
to our strong cryptography assumption. Second, if a malicious
faulty participant sends different vote to different coordinator
replicas, it requires a full scale Byzantine agreement process
among all participants and all coordinator replicas to ensure
the atomicity of a transaction, therefore, it may be too expen-
sive to use in practical systems, especially for Web services
applications.

We simulate the first scenario described in Section III-B
because it is the most effective way that a faulty coordinator
replica can use to cause nonatomic transaction commit. We do
not consider coordinator crash fault because it is masked by
replication in a trivial manner. The fault is injected when all
participants have voted to commit a transaction. A (simulated)
faulty coordinator replica requests some participants to commit
and directs some others to abort the transaction by omitting
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Fig. 3. The measurements of the end-to-end latency (a) and the two-phase commit latency (b) under different fault-free scenarios.
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Fig. 4. The measurements of the end-to-end latency (a) and the two-phase commit latency (b) under different number of coordinator fault for 2-4 participants.
The no-fault performance result is included as a reference.

some yes-votes. With 3 coordinator replicas, we simulate up
to 2 faults.

Figure 4 shows the end-to-end latency measured by the
client and the two-phase commit latency measured by a correct
coordinator replica, when there are 2-4 participants (including
the transaction initiator) and 0-2 faulty coordinator replicas.
It may be counter-intuitive to see that the latency is actually
smaller when there are faults. This is in fact caused by the
lower computation cost on signature verification for the abort
messages sent by faulty coordinator replicas (recall that the
faulty replica did this by omitting some vote records).

We performed numerous runs in the faulty scenarios, each
run contains 10000 transactions. All transactions are commit-
ted successfully on all participants, even when two out of three
coordinator replicas are faulty. This shows the robustness of
our failure resiliency mechanisms for distributed commit.

VI. RELATED WORK

This work is inspired by [23]. Even though [23] is about
sensor networks and the failure resiliency mechanisms in [23]
are completely different from those discussed in this paper,

the very idea of restricting the impact of compromised node
is the same. In [23], the security keys for sensor nodes are
based on the nodes’ locations. Therefore, a compromised node
cannot fabricate false report about events in other regions. In
this paper, we resort to a piggybacking mechanism to limit
the behavior of a compromised coordinator for distributed
commit. Consequently, a faulty coordinator cannot fabricate
a participant’s vote without being detected. Furthermore, we
invented a novel voting mechanism that significantly increases
the resiliency of distributed commit when the majority coor-
dinator replicas become faulty.

Byzantine agreement and Byzantine fault tolerance in dis-
tributed systems have been studied over the past several
decades. The Byzantine agreement problem was first formu-
lated by Lamport [16]. Since then, many different algorithms
have been proposed and many Byzantine fault tolerance sys-
tems have been proposed. In particular, the recent progress in
practical Byzantine fault tolerance made by Castro et al. [8],
[9] has triggered widespread interest in this topic. Yin et al.
[24] proposed a method to reduce the number of replicas used
to achieve Byzantine fault tolerance by separating agreement
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and execution. Adya et al. [2] applied the Byzantine fault toler-
ance technique to Internet based storage systems. However, all
these approaches require that the number of faulty nodes does
not exceed a threshold (i.e., (n-1)/3, or (n-1)/2 with separate
agreement nodes, for n number of replicas). If the number of
fault exceeds this threshold, either no Byzantine agreement
can be reached, or a wrong agreement is decided. Therefore,
they are resilient to failures only up to that threshold. A very
interesting exception is the BAR system proposed by Aiyer
et al. [1], which considers fault tolerance in the presence
of additional selfish nodes beyond the Byzantine agreement
threshold. They resorted to game-theory based mechanisms to
counter the threats from the selfish nodes.

The subject of Byzantine fault tolerant distributed commit
can be viewed as an application of general Byzantine fault
tolerance to the domain of distributed transactions [10], [12],
[17]. There are methods proposed shortly after the introduction
of the two-phase commit protocol [13] and the Byzantine
agreement problem [16]. The first comprehensive proposal for
Byzantine fault tolerant distributed commit is due to Mohan et
al. [17]. It uses possibly two rounds of Byzantine agreement
to ensure the atomicity of distributed commit. Even though
this method can cope with both coordinator and participants
failure, it will stop working if the number of fault exceeds
the Byzantine agreement threshold, as mentioned before. Fur-
thermore, the high runtime overhead makes it impossible to
be used in practical systems. Rothermel et al. [22] addressed
the challenges of ensuring atomic distributed commit in open
systems where participants (may also serve as subordinate
coordinators) may be compromised. However, [22] assumes
that the root coordinator is trusted. Therefore, [22] does not
address the main concern of this work.

The latest investigation on fault tolerant distributed commit
is reported in [12]. In [12], Gray and Lamport proposed a novel
algorithm, termed as Paxos commit algorithm, to achieve fault
tolerant commitment of distributed transactions. The Paxos
commit algorithm is an application of the Paxos algorithm,
which is a well-known distributed consensus algorithm, to
the distributed commit problem. The Paxos commit algorithm
does not tolerate Byzantine faults, so it is not directly compa-
rable with our protocol.

Our piggybacking mechanism is very similar to that men-
tioned in [17]. In both mechanisms, the commit message
carries the vote records collected during the prepare phase.
However, there are subtle differences. In [17], both the coor-
dinator and the participants, and other nodes that are present
in the cluster (serves as the coordinator replicas) participate
a Byzantine agreement protocol to decide on the outcome of
a transaction. If a participant detects a discrepancy between
its vote and the one included in the commit message, it starts
a second Byzantine agreement process. In our approach, only
a single voting step is used at each participant instead of a
full scale Byzantine agreement. Furthermore, we recognize
that the piggybacked vote records in the commit message may
provide conclusive information, in which case, the participant
can safely commit the transaction immediately without waiting
for the commit messages from other coordinator replicas.

A similar piggybacking mechanism is used in [22] to

prevent a Byzantine faulty subordinate coordinator from lying
about its participants’ votes. However, [22] assumes that the
root coordinator is trusted, i.e., it is only subject to non-
malicious fault and it can recover quickly from fault. This
assumption negates the necessity to replicate the coordinator
for fault tolerance, and also avoids running any Byzantine
agreement process to achieve atomic commitment. However,
this assumption might not be realistic for Web services appli-
cations.

Both [17] and [22] supports transactions with hierarchical
participants, i.e., some participants may serve as subordinate
coordinators, while our current work assumes a flat transac-
tion. However, it is straightforward to extend our mechanisms
to cope with hierarchical structured transactions.

We are not aware of any work directly related to our failure
resilient voting mechanism. Majority voting has been known
for many years and used widely in many applications. A
distributed majority voting mechanism has been proposed in
[15] as an alternative to the two-phase commit in distributed
systems. However, the majority voting is not resilient to
failures if the majority of the voting members become faulty.

Last, but not least, we have yet to see system-level work
on Byzantine fault tolerant distributed commit frameworks.
So far, the related work on distributed commit cited above
has mostly focused on the algorithmic aspect. To put a fault
tolerant distributed commit algorithm into practical use, one
must consider many complexities in real transactional systems,
such as the ones we discussed in Section IV. There are a num-
ber of system-level work on fault tolerant distributed commit,
such as [11], [19], [26]. However, they all use a benign fault
model. Such systems do not work if the coordinator is subject
to intrusion attacks.

VII. CONCLUSION

In this paper, we described two core mechanisms, namely,
the piggybacking mechanism and the voting mechanism, to
achieve failure resilient atomic commit for distributed transac-
tions. Unlike other Byzantine fault tolerant distributed commit
algorithms, our mechanisms ensure successful atomic commit
of transactions with high probability, even if the majority of
the coordinator replicas are compromised, as long as at least
one replica remains to operate correctly.

Furthermore, we implemented the failure resiliency mech-
anisms in a distributed commit framework for Web services
atomic transactions. We addressed many system-level issues
in incorporating the mechanisms into the framework, such as
replica non-determinism control and efficient reliable message
multicast with minimum required ordering guarantees.

We verified the correctness of our mechanisms design
and their efficiency with a suite of tests, both under fault-
free and simulated fault scenarios. Our measurement shows
only 10% runtime overhead as seen by an end user under
all circumstances that we have tested. It is our hope that
both researchers and practitioners will find our mechanisms
interesting and useful.

We believe that the failure resiliency mechanisms introduced
in the context of distributed commit can be extended to other
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application domains. In addition, we are looking into the
possibility of building a higher-level abstraction on failure
resiliency mechanisms so that they can be applied to many
other applications in a systematic manner.
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