
Byzantine Fault Tolerance for Nondeterministic Applications

Wenbing Zhao
Department of Electrical and Computer Engineering

Cleveland State University
2121 Euclid Ave, Cleveland, OH 44115

wenbing@ieee.org

Abstract

All practical applications contain some degree of non-
determinism. When such applications are replicated to
achieve Byzantine fault tolerance (BFT), their nondetermin-
istic operations must be sanitized to ensure replica consis-
tency. To the best of our knowledge, only a specific type of
nondeterminism, namely, the type whose values can be inde-
pendently chosen by the primary and verified by other repli-
cas prior to the execution of a request, has been success-
fully addressed under the Byzantine fault model. There are
other types of nondeterminism in many practical applica-
tions. Some of them require the collaboration of all correct
replicas, while others require a post-determination of a con-
sistent set of nondeterministic values after the execution of
a request at a particular replica. This paper points out the
inadequacy of current approaches in handling such types of
replica nondeterminism, and presents a systematic solution
for the problem in the context of a unified BFT framework.

Keywords: Byzantine Fault Tolerance, Intrusion Tolerance,
Security, Fault Tolerance Middleware

1. Introduction

Today’s society has increasing reliance on services pro-
vided over the Internet. These services are expected to
be highly dependable, which requires the applications that
provide such services to be carefully designed and im-
plemented, and rigorously tested. However, considering
the intense pressure for short development cycles and the
widespread use of commercial-off-the-shelf software com-
ponents, it is not surprising that software systems are no-
toriously imperfect. The vulnerabilities due to insufficient
design and poor implementation are often exploited by ad-
versaries to cause a variety of damages, e.g., crashing of the
applications, leaking of confidential information, modifying
or deleting of critical data, or injecting of erroneous infor-

mation into the application data. These malicious faults are
often modeled as Byzantine faults. One approach to tackle
such threats is to replicate the server-side applications and
employ a Byzantine fault tolerance algorithm as described
in [8, 9, 10, 11].

Byzantine fault tolerance algorithms require the replicas
to operate deterministically, i.e., given the same input un-
der the same state, all replicas produce the same output and
transit to the same state. However, all practical applications
contain some degree of nondeterminism. When such ap-
plications are replicated to achieve fault and intrusion tol-
erance, their nondeterministic operations must be sanitized
to ensure replica consistency. To the best of our knowl-
edge, only a specific type of nondeterminism, namely, the
type whose values can be independently chosen by the pri-
mary replica and verified by other replicas prior to the exe-
cution of a client’s request, has been successfully addressed
in the past [8, 9, 10, 11]. The mechanisms designed to han-
dle this type of nondeterminism either are not effective in
guaranteeing replica consistency and/or are not effective in
masking Byzantine fault, if the application to be replicated
exhibits other types of nondeterministic behavior.

For example, in online poker games, such as Blackjack
[1] and Texas Hold’em [18], pseudo-random number gener-
ators are used to shuffle the cards. The nature of the pseudo-
random number generator is that if the seed remains the
same, it will generate the same set of numbers in the same
sequence. This means that once the seed is known, the or-
der of the cards after shuffling, and consequently, the hands
of each player, can be predicted deterministically. There-
fore, the seed constitutes the most essential and confidential
state of online poker applications. Considering the popular-
ity of online poker games and the potential financial stakes
involved, preventing cheating is urgent and a huge task for
online gaming service providers. (Even though the cheat-
ing incidents are rarely reported.) As described in [1, 18],
the primary cheating method is through estimating the seed
by exploiting the weakness of the game server design, or
through altering the server software with the help of collud-

ing insiders. Such threats can be countered by replicating
the server application and running a Byzantine fault toler-
ance algorithm that ensures the use of a seed collectively
contributed by all replicas for each shuffle operation. The
traditional primary-based seed determination method does
not work here because the backup replicas in general can-
not verify the correctness of the seed proposed by the pri-
mary replica, which means that the primary can unilaterally
decide on the seed value. (One might think that the time-of-
day can be used as the seed, which the backup replicas can
verify the value proposed by the primary. Unfortunately,
this has been proved to be a bad idea because the seed can
be easily estimated [18].) If the primary replica has been
compromised, it may propose a seed that can be predicted
by a colluding player.

Another type of nondeterminism is that caused by multi-
threading, which has become the more pervasive program-
ming method used to build modern online applications.
(This trend will only accelerate in light of the rapid devel-
opment and deployment of multi-core processors.) The rea-
son why the traditional method cannot handle this type of
nondeterminism is that it is virtually impossible to prede-
termine the interleaving of threads before the execution of
a request, considering the complexity and dynamic nature
of the applications. Consequently, the primary replica is in
no position to propose any thread ordering before it finishes
processing a request, let alone for backup replicas to verify
the correctness of such ordering.

In this paper, we introduce a classification of common
types of replica nondeterminism present in many applica-
tions. We describe a set of mechanisms that can be used
to sanitize these types of nondeterministic operations, and
integrate them seamlessly with existing mechanisms in the
seminal Byzantine fault tolerance (BFT) framework devel-
oped by Castro, Rodrigues, and Liskov [8, 9, 10, 11].

In summary, this paper makes the following research
contributions:

• We provide two types of motivating applications to il-
lustrate the inadequacy of current approaches to the
problem of replica nondeterminism.

• We provide a classification of common types of replica
nondeterminism useful both for Byzantine fault toler-
ance and benign fault tolerance.

• We propose a unified framework to ensure consistent
Byzantine fault tolerant replication for applications ex-
hibiting the nondeterministic behaviors we have clas-
sified.

• We provide a preliminary implementation of the uni-
fied framework based on the original BFT framework
and report the performance evaluation results of our

prototype on handling different types of replica non-
determinism.

The remaining of the paper is organized as follows. Sec-
tion 2 provides a brief introduction of the BFT technology
developed by Castro, Rodrigues, and Liskov [8, 9, 10, 11]
so that readers unfamiliar with this subject knows the con-
text of the work described in this paper. Section 3 presents a
classification of common types of replica nondeterminism.
Section 4 presents a unified framework for Byzantine fault
tolerant replication of nondeterministic applications. The
focus is on our extensions to the original BFT algorithm.
We also include in-depth discussions of two specific types
of applications as potential target applications in applying
our mechanisms and the associated security benefits. Sec-
tion 5 describes our implementation and performance eval-
uation results. Section 6 provides an overview of related
work. Finally, Section 7 summarizes this paper and points
out future research directions.

2. Byzantine Fault Tolerance

This work is built on top of the BFT framework devel-
oped by Castro, Rodrigues, and Liskov [8, 9, 10, 11]. We
use the same assumptions and system models as those of the
BFT framework. For completeness, we briefly summarize
the BFT framework here.

The BFT framework supports client-server applications
running in an asynchronous distributed environment with a
Byzantine fault model, i.e., faulty nodes may exhibit arbi-
trary behavior. This requires the use of 3f+1 replicas to tol-
erate up to f faulty nodes. (In a recent publication [19], Yin
et al. proposed a method to reduce the number of replicas
to 2f+1 by separating the executing and agreement nodes.)

The BFT framework assumes that the replicas are single-
threaded and all non-deterministic operations and their val-
ues are known a priori and verifiable by replicas prior to the
execution of a request. The primary replica determines the
values to be used for all replicas and disseminates them to
the backup replicas The backup replicas subsequently ver-
ify the proposed values. If the primary replica is detected
to be faulty, a view change is initiated. To prevent a faulty
replica from intentionally initiating view changes, which is
very expensive and may lead to denial-of-service attacks,
the BFT algorithm starts a view change only if at least f+1
replicas have suspected the primary replica.

The BFT framework is implemented as a library to be
linked to the application code (both the server and the client
sides), as shown in Figure 1. In general, on the server side,
we use the term replica to refer to the combined entity of
the server application and the BFT library. On the client
side, we use the term client to refer to the combined en-
tity of the client application and the client-side BFT library.

2

invoke()

Client Application

Send a request

BFT Library

execute()
propose_value()
check_value()

Deliver a request
Get and verify
nondeterministic values

Server Application

BFT Library

Figure 1. The positioning of the application
and the BFT library, and the interfaces be-
tween the two components. Only the APIs
directly related to this work are shown here.

Sometimes, however, it is necessary to distinguish the two
parts explicitly. As shown in Figure 1, the client-server ap-
plication and the BFT mechanisms (residing in the BFT li-
brary) interact via a set of Application Programming Inter-
faces (APIs). The APIs consist of a number of downcalls
to be invoked by the application for a number of purposes,
for example, to initialize the BFT library with appropriate
parameters and callback functions, for the client to send re-
quests to the server replicas, for the server replicas to start
the event loop managed by the BFT library, and for mem-
ory management. The APIs also consist of a number of up-
calls to be implemented and supplied by the application, so
that the BFT mechanisms can deliver a request to the server
application, retrieve and verify nondeterministic values (if
applicable), and retrieve and restore application state. Fig-
ure 1 includes a subset of the APIs directly related to this
work.

In the BFT framework, a replica is modeled as a state
machine. The replica is required to run (or rendered to run)
deterministically. The state change is triggered by remote
invocations on the methods offered by the replica. In gen-
eral, the client first sends its request to the primary replica.
The primary replica then broadcasts the request message to
the backup replicas and also determines the execution order
of the message. To prevent a faulty primary replica from in-
tentionally delaying a message, the client starts a timer after
it sends out a request. It waits for f+1 identical replies from
different replicas. Because at most f replicas are faulty, at
least one reply must have come from a correct replica. If
the timer expires before it receives a correct reply, the client
broadcasts the request to all server replicas. This enables
correct replicas to detect the primary failure so that a new
primary can be elected (through a view change). All cor-
rect replicas must agree on the same set of request messages
with the same execution order. In other words, the request
messages must be delivered to the server application at all
replicas reliably in the same total order.

In the BFT framework, a three-phase algorithm, often
referred to as the BFT algorithm, is used to ensure the to-
tal ordering of the requests received from different clients.

The first phase is called the pre-prepare phase, where the
primary replica multicasts a PRE_PREPARE message con-
taining the ordering information, the client’s request (or the
digest of the request if it is large), and the nondeterministic
values (if any) to all backup replicas. The backup replica
then verifies the ordering information, the nondeterminis-
tic values, and the validity of the request message. If the
backup replica accepts the PRE_PREPARE message, it mul-
ticasts to all other replicas a PREPARE message containing
the ordering information and the digest of the request mes-
sage being ordered. This starts the second phase, i.e., the
prepare phase. When a replica has collected at least 2f valid
PREPARE messages for the request from other replicas, it
multicasts a COMMIT message. This is the start of the third
phase. When a replica has received at least 2f matching
COMMIT messages from other replicas, the request message
has been totally ordered and it is ready to be delivered to the
server application. This concludes the third phase, i.e., the
commit phase, of the BFT algorithm. In the BFT frame-
work, all messages are protected by a digital signature, or
an authenticator [7] to ensure their integrity.

3. Classification of Replica Nondeterminism

We distinguish replica nondeterminism into the follow-
ing three major categories:

• Wrappable nondeterminism. This type of replica
nondeterminism can be easily sanitized by using an
infrastructure-provided or application-provided wrap-
per function, without explicit inter-replica coordina-
tion. For example, information such as hostnames,
process ids, file descriptors, etc. can be determined
group-wise. It is also possible to allow each replica
to use its local ids. When such replica-dependent ids
are to be propagated to external entities, they are trans-
lated to the group-wise values by a wrapper function
(i.e., there exists a deterministic mapping between the
local values and the group-wise values). Another situ-
ation is when all replicas are implemented according to
the same abstract specification, in which case, a wrap-
per function can be used to translate between the local
state and the group-wise abstract state, as described in
[11].

• Pre-determinable nondeterminism. This is a type of
replica nondeterminism whose values can be known
prior to the execution of a client’s request and it re-
quires inter-replica coordination to ensure replica con-
sistency.

• Post-determinable nondeterminism. This is a type
of replica nondeterminism whose values can only be
recorded after the request is submitted for execution

3

and the nondeterministic values won’t be complete un-
til the end of the execution. It also requires inter-
replica coordination to ensure replica consistency.

In this paper, we will not have further discussion on the
wrappable replica nondeterminism because it can be dealt
with using a deterministic wrapper function without inter-
replica coordination, and also because it has been thor-
oughly studied in [11]. Instead, we will focus on the rest
of two types of replica nondeterminism that require inter-
replica coordination.

Based on if a replica can verify the nondeterministic
values proposed (or recorded) by another replica, replica
nondeterminism can be further classified into the following
types:

• Verifiable nondeterminism. The type of replica nonde-
terminism whose values can be verified by other repli-
cas.

• Non-verifiable nondeterminism. The type of replica
nondeterminism whose values cannot be completely
verified by other replicas. Note that a replica might be
able to partially verify some nondeterministic values
proposed by another replica. This would help reduce
the impact of a faulty replica.

Overall, our classification gives four types of replica
nondeterminism of our interest:

• Verifiable pre-determinable nondeterminism. This
type of replica nondeterminism has be successfully
dealt with in the original BFT framework [8]. We
briefly summarize their mechanism as part of the uni-
fied framework in Section 4.1.

• Non-verifiable pre-determinable nondeterminism.
This type of replica nondeterminism is discussed in
this paper. If the application exhibits this type of non-
determinism, the replicas must collectively determine
the nondeterministic values to prevent a single faulty
replica from compromising the integrity of the service
provided by the replicas. More discussion will follow
in Section 4.2.

• Verifiable post-determinable nondeterminism. We
have yet to identify a commonly used application that
exhibits this type of nondeterminism. For complete-
ness reason, we provide the mechanism needed to han-
dle this type of nondeterminism as part of the unified
framework in Section 4.3.

• Non-verifiable post-determinable nondeterminism.
This type of replica nondeterminism is discussed in
this paper. Ideally, the replicas should collectively
determine the set of nondeterministic values to prevent

a single faulty replica from compromising the health
and integrity of other replicas. However, it is not
clear if it is always feasible for the replicas to apply
a deterministic algorithm to decide on a common set
of values from those reported by individual replicas,
as in the case of multithreading. Furthermore, it
would require a test execution of every request at
every replica, which might be too expensive to be
practical. Therefore, our current solution is to rely on
the information reported by a single replica (i.e., the
primary replica) and to employ additional recovery
mechanisms to minimize the impact of a faulty replica,
as elaborated in Section 4.4.

4. A Unified Framework for Sanitizing Replica
Nondeterminism

In this section, we present extensions to the BFT frame-
work in handling all common types of replica nondeter-
minism. The unified framework requires intimate collab-
oration between the BFT mechanisms and the applications
being replicated. Comparing with the APIs used in the BFT
framework [11], the following server upcalls (i.e., callback
functions registered by the server application) are modified:

int propose_value(Seqno seqno, Byz_req *req,
int *ndet_type, Byz_buffer *ndet);

Where seqno is the sequence number assigned to the
client’s request under consideration, req is a pointer to the
request message, ndet_type is a pointer to the type of
the nondeterminism the replica might exhibit when execut-
ing the request, and ndet is a pointer to the buffer that
stores the nondeterministic values. This function returns
appropriate values to indicate if the call is successful. Both
ndet_type and ndet are out-parameters, which means
the application is expected to set their values.

int check_value(Seqno seqno, Byz_req *req,
int *ndet_type, Byz_buffer *ndet);

This function is invoked when a backup replica wants to
verify the type of nondeterminism (always the case) and,
if applicable, the nondeterministic values received from the
primary replica. The parameters are the same as those for
the propose_value() function. The only difference is
that ndet_type and ndet are now used as in-parameters,
which means that the information is passed to the applica-
tion. The verification result is returned back to the caller in
the return value.

The following upcall signature is not modified, but the
interpretation of one of its parameters is changed:

int execute(Byz_req *req, Byz_rep *rep,
Byz_buffer *ndet, int cid, bool ro);

4

The first parameter req is a pointer to the request message.
The second parameter rep is a pointer to the reply message
to be generated by the replica. The third parameter ndet is
originally defined as a pointer to the nondeterministic val-
ues obtained from the primary replica and to be used by all
replicas, i.e., it is intended to be used as an in-parameter.
It is now reinterpreted as an in-out parameter. Depending
on the type of replica nondeterminism, it might be an in-
parameter as before, or, it might be an out-parameter when a
replica has post-determinable nondeterminism and the func-
tion is invoked at the primary replica.

The following four types of replica nondeterminism are
defined in the form of four constant integer values:

• VERIFIABLE_PRE_DETERMINABLE,

• NONVERIFIABLE_PRE_DETERMINABLE,

• VERIFIABLE_POST_DETERMINABLE,

• NONVERIFIABLE_POST_DETERMINABLE.

The constant names are self-explanatory.
The BFT algorithm is modified in the following ways.

When a client’s request arrives at the primary replica,
if it is ready to order the message (when the number
of ordered but not-yet executed messages is smaller than
the window threshold), the primary replica invokes the
propose_value() callback function registered by the
application layer. The application supplies the type of non-
determinism that would be involved in the execution of the
request, and if applicable, the nondeterministic values. De-
pending on the type of nondeterminism returned by the ap-
plication, the modified BFT algorithm operates differently
according to the mechanisms described from Section 4.1
through Section 4.4.

The modified BFT algorithm introduces two new types
of control messages, namely, PRE_PREPARE_UPDATE and
POST_COMMIT. The PRE_PREPARE_UPDATE message is
used in the additional phase for the replicas to reach a
Byzantine agreement on the collection of the nondeter-
ministic values contributed by different replicas when non-
verifiable pre-determinable nondeterminism is present. The
POST_COMMIT message is used in the additional phase for
the replicas to reach a Byzantine agreement on the non-
deterministic values recorded by the primary replica after
it has executed a request message (and hence, the name
POST_COMMIT) when post-determinable nondeterminism is
present.

4.1. Verifiable pre-determinable
nondeterminism

If the nondeterminism for the operation at the primary
replica is of type VERIFIABLE_PRE_DETERMINABLE, the

Request

Replica 0

ND type =
Propose ND values

VERIFIABLE_PRE_DETERMINABLE

Verify ND
type and values

Execute request
with ND values

Pre-prepare
Phase

PRE_PREPARE

PREPARE

COMMIT

Prepare
Phase

Commit
Phase

Execution
Phase

Reply

Replica 1 Replica 2 Replica 2

Figure 2. Normal operations of the modi-
fied BFT algorithm in handling verifiable pre-
determinable nondeterminism. In the fig-
ure, ND is an acronym for nondeterminism,
Replica 0 is the primary replica, and Replica
1 through 3 are the backup replicas.

application provides the nondeterministic values in the
ndet parameter. The obtained information is included
in the PRE_PREPARE message, and it is multicast to the
backup replicas.

On receiving the PRE_PREPARE message, a backup
replica invokes the check_value() callback function.
The replica passes the information received regarding the
nondeterminism type and data values to the application
layer so that the application can verify the following:

• The type of nondeterminism for the client’s request is
consistent with what is reported by the primary replica.

• The nondeterministic values proposed by the primary
replica is consistent with its own values (not necessar-
ily identical).

If either check turns out to be false, the check_value()
call returns an error code, the backup replica then suspects
the primary replica.

If it verifies the type of nondeterminism and the values
proposed by the primary replica, and it accepts the client’s
request and the ordering information specified by the pri-
mary replica, the backup replica logs the PRE_PREPARE

message and multicasts a PREPARE message to all other
replicas. From now on, the algorithm works the same as
that of the original BFT framework. The normal operations
of the modified BFT algorithm is illustrated in Figure 2.

5

Request

Replica 0

ND type = NONVERIFIABLE_PRE_DETERMINABLE
Propose ND values

Verify ND type
Propose ND values

Verify ND type
Propose ND values

Verify ND type
Propose ND values

Replace ND values in
recordPRE_PREPARE

Collect
ND values

Execute request
with ND collection

Replace ND values in
recordPRE_PREPARE

Pre-prepare
Phase

PRE_PREPARE

PRE_PREPARE_UPDATE

PRE_PREPARE_UPDATE

PREPARE

COMMIT

Pre-prepare-
update Phase

Prepare
Phase

Commit
Phase

Execution
Phase

Reply

Replica 1 Replica 2 Replica 2

Figure 3. Normal operations of the modified
BFT algorithm in handling non-verifiable pre-
determinable nondeterminism.

4.2. Non-verifiable pre-determinable
nondeterminism

If the nondeterminism for the operation at the primary
replica is of type NONVERIFIABLE_PRE_DETERMINABLE,
the application at the primary replica proposes its share of
nondeterministic values in the ndet parameter. The type
of nondeterminism and the nondeterministic values are in-
cluded in the PRE_PREPARE message, and it is multicast to
all backup replicas.

On receiving the PRE_PREPARE message, a backup
replica checks the client’s request and the ordering in-
formation as determined by the primary replica. If the
PRE_PREPARE message passes the check, the backup
replica subsequently invokes the check_value() call-
back function to verify the nondeterminism type infor-
mation supplied by the primary replica. If the ver-
ification is successful, the backup replica invokes the
propose_value() function to obtain its share of non-
deterministic values. The backup replica then builds a
PRE_PREPARE_UPDATE message including its own nonde-
terministic values, and sends the message to the primary
replica.

When the primary replica receives at least 2f
PRE_PREPARE_UPDATE messages from different backup
replicas (for the same client’s request), it builds a PREPARE
message, including the 2f+1 sets of nondeterministic
values, each protected by the proposer’s digital signature

or authenticator. The PREPARE message itself is further
protected by the primary replica’s signature or authenti-
cator. The primary replica then multicasts the message
to all backup replicas. From now on, the BFT algorithm
operates according to the original algorithm, except that
the 2f+1 sets of nondeterministic values are delivered to
the application layer as part of the execute() upcall.
Alternatively, the application could register a deterministic
averaging function on the 2f+1 sets of nondeterministic
values. A replica could invoke this callback function and
delivers the average values to the application layer. The
normal operations of the modified BFT algorithm for this
type of nondeterminism is illustrated in Figure 3.

Having described the mechanism to be used to handle
this type of replica nondeterminism, it is worthwhile to fur-
ther discuss the type of applications that exhibit such nonde-
terminism and how our mechanism can be used to enhance
the security and dependability of the applications.

For applications such as online porker games, the source
of replica nondeterminism is often the most crucial state
that should be protected because such values are used as the
seeds to pseudo-random number generators for their opera-
tions, such as shuffling the cards. In fact, such applications
rely on the randomness of the values to operate correctly.
The process of retrieving such nondeterministic values is of-
ten called entropy gathering (in information theory, entropy
is defined as a measure of uncertainty in the data collected).
The values can be obtained either from a hardware device,
such as a Geiger counter that counts the number of radioac-
tive decays detected, or using a software solution, such as
through sampling keyboard or mouse events in a computer
[18]. On the other hand, if such values are not obtained
from a high-entropy source, they may become predictable,
and consequently, the system may be cheated [18].

Here we assume that a faulty replica cannot transmit the
confidential state to its colluding clients in real time. This
can be achieved by using an application-level gateway, or a
privacy firewall as described by Yin et al.[19], to filter out il-
legal replies. A compromised replica may, however, replace
a high entropy source to which it retrieves the nondetermin-
istic values with a deterministic algorithm, and convey such
algorithm via out-of-band or covert channels to its colluding
clients.

To counter such threats, such applications must be repli-
cated using a Byzantine fault tolerant algorithm. Further-
more, each replica must use a different methodology to gen-
erate its nondeterministic values. In this case, a replica is in
no position to verify the nondeterministic values proposed
by another replica. Ideally, a replica should not even know
how other replicas generate their nondeterministic values,
let alone to verify them.

For each operation that requires nondeterministic input,
the replicas should collectively determine the input by ap-

6

Request

Replica 0

ND type = VERIFIABLE_POST_DETERMINABLE

Verify ND type Verify ND typeVerify ND type

Execute request
with ND values

Execute request and
collect ND data

Pre-prepare
Phase

PRE_PREPARE

PREPARE

COMMIT

Post-commit
Phase

Prepare
Phase

Commit
Phase

Execution
Phase

Reply

Reply

Replica 1 Replica 2 Replica 2

POST_COMMIT

Verify ND values Verify ND values Verify ND values

Figure 4. Normal operations of the modified
BFT algorithm in handling verifiable post-
determinable nondeterminism.

plying the mechanism described in this Section. This is very
important, because otherwise, a single replica might be able
to compromise the whole service (despite the fact that there
are at least 3f+1 replicas employed), which would defeat
the purpose of providing Byzantine fault tolerance to appli-
cations.

4.3. Verifiable post-determinable
nondeterminism

If the nondeterminism at the primary replica for the op-
eration is of type VERIFIABLE_POST_DETERMINABLE, the
application indicates the type in the ndet_type param-
eter and does not propose any nondeterministic values (it
could not do so anyway per our definition). The primary
replica includes the nondeterminism type information in the
PRE_PREPARE message (without any nondeterministic val-
ues) and multicasts the message to the backup replicas.

On receiving the PRE_PREPARE message, a backup
replica performs the check_value() upcall if it has ver-
ified the client’s request and the ordering information. If the
application at the backup replica confirms the type of non-
determinism associated with the client’s request, the BFT
algorithm proceeds to the commit phase as usual. Other-
wise, the backup replica suspects the primary.

When the primary replica is ready to deliver the request
message, it proceeds to performing the execute() up-

call and expects to receive both the reply message (in the
rep out-parameter) and the recorded nondeterministic val-
ues (in the ndet out-parameter). Once the execute()
upcall returns, the primary replica builds a POST_COMMIT

message containing the identity information for the client’s
request and the post-determined nondeterministic values.
Then the primary replica multicasts the POST_COMMITmes-
sage to the backup replicas and sends the reply message to
the client.

A backup replica cannot, however, deliver a request
message immediately after the commit phase, instead, it
must wait until the end of the post-commit phase. When
it receives the POST_COMMIT message from the primary
replica, a backup replica verifies the received nondetermin-
istic values through the check_value() upcall. If the
verification succeeds, the backup replica re-multicasts the
POST_COMMIT message with its own signature or authen-
ticator to the rest of the replicas. Otherwise, the replica
suspects the primary.

When it receives at least 2f POST_COMMIT messages
with matching nondeterministic values from different repli-
cas, a backup replica delivers the request message through
the execute() upcall, together with the verified nonde-
terministic values. The backup replica then sends the reply
to the client when the execute() call returns.

The normal operations of the modified BFT algorithm in
handling this type of replica nondeterminism is summarized
in Figure 4.

4.4. Non-verifiable post-determinable
nondeterminism

The handling of non-verifiable post-determinable nonde-
terminism involves with the same steps as those described
in the previous Section until the start of the post-commit
phase.

The primary replica performs the execute() upcall
and gets the reply and the nondeterministic values from the
application. It sends the reply message to the client im-
mediately. It then builds and multicasts a POST_COMMIT

message with the following information:

• The identity information for the request message such
as the sequence number assigned to the message, the
view number, and the digest of the message.

• The recorded nondeterministic values.

• The digest of the reply message.

When a backup replica receives the POST_COMMIT mes-
sage and verifies the request information, it re-multicasts the
message with its own signature or authenticator to all repli-
cas. When it has collected at least 2f POST_COMMIT mes-
sages with matching non-deterministic values from other

7

Request

Replica 0

ND type = NONVERIFIABLE_POST_DETERMINABLE

Verify ND type Verify ND typeVerify ND type

Execute request
with ND values

Execute request and
collect ND data

Launch
monitoring process

Pre-prepare
Phase

PRE_PREPARE

PREPARE

COMMIT

Post-commit
Phase

Prepare
Phase

Commit
Phase

Execution
Phase

Reply

Reply

Replica 1 Replica 2 Replica 2

POST_COMMIT

Verify reply Verify reply Verify reply

Figure 5. Normal operations of the modi-
fied BFT algorithm in handling non-verifiable
post-determinable nondeterminism.

replicas, the backup replica prepares for the upcoming exe-
cution of the request message.

A faulty primary replica could disseminate a wrong set
of nondeterministic values hoping to either confuse the
backup replicas, or to block them from providing useful
services to their clients. For example, if the nondetermin-
istic data contains thread ordering information, a faulty pri-
mary replica can arrange the ordering in such a way that
it may lead to the crash of the backup replicas (e.g., if the
primary replica knows the existence of a software bug that
leads to a segmentation fault), or it may cause a deadlock
at the backup replicas (it is possible for a replica to perform
a deadlock analysis before it follows the primary’s ordering
to prevent this from happening).

Because in general the replica cannot completely verify
the correctness of the nondeterministic values until it actu-
ally executes the request, it is important for a backup replica
to launch a separate monitoring process prior to invoking
the execute() call. Should the replica run into a dead-
lock or a crash failure, the monitoring process can restart
the replica and suspect the primary replica.

If the backup replica can successfully complete the
execute() upcall, it compares the digest of its own re-
ply message with that received from the primary replica.
If the two do not match, the backup replica suspects the
primary. Regardless of the comparison result, the backup

replica sends the reply message to the client. It is safe to do
so because if all correct backup replicas produce the same
reply using the same set of nondeterministic values (even if
they might be different from the set actually used by the pri-
mary replica, which implies that the primary replica is lying
and will be suspected), the result is valid.

The normal operations of the modified BFT algorithm in
handling this type of replica nondeterminism is shown in
Figure 5.

A good example of this type of nondeterminism is that
of multithreaded applications. When such applications are
replicated, we must ensure different threads to access the
shared data in the same order, otherwise, the state of dif-
ferent replicas may diverge. Due to the complexity and dy-
namic nature of multithreaded applications, it is virtually
impossible to pre-impose an access ordering prior to the ex-
ecution of a request. The only practical solution appears to
be executing a request at one replica, recording the access
ordering of threads on shared data, and propagating the or-
dering to other replicas so that they follow the same thread
ordering, as described above.

4.5. Discussion

In practical applications, the execution of a request
often involves with more than one type of nondeter-
minism, for example, both time-related nondetermin-
ism (which is of verifiable pre-determinable type) and
multithreading-related nondeterminism (which is of non-
verifiable post-determinable type). To accommodate this
complexity, a bitmask should be used instead of an inte-
ger value to capture the nondeterminism type information in
the propose_value() and check_value() upcalls.
However, the data structure used to store the nondetermin-
istic values does not need to be made more sophisticated
because it is the application’s duty to generate and interpret
them. The modified BFT algorithm can readily cope with
this complexity as well. Using the same example, the time-
related nondeterministic values can be determined during
the pre-prepare-update phase. The multithreading-related
nondeterminism can be resolved in the post-commit phase,
as described in Section 4. The ndet parameter would con-
tain both time-related and multithreading-related nondeter-
ministic values when the execute() upcall is invoked by
a backup replica.

5. Implementation and Performance
Evaluation

We implemented the unified framework for nondeter-
ministic applications by extending the BFT framework [8,
9, 10, 11] in C++. The current implementation is of proof-
of-concept nature. There is significantly more work to be

8

carried out to improve the quality of the code and perfor-
mance of the unified framework to be on par with those of
the original BFT framework. Furthermore, we have yet to
implement the facilities needed to capture and control the
thread ordering on access to shared data. Consequently, the
experiments described below are focused on the evaluation
of the cost for providing Byzantine fault tolerance to nonde-
terministic applications in the BFT layer. The cost associ-
ated with recording nondeterministic values, verifying such
values, and replaying such values in the application layer is
not studied in this work.

The development and test platform consists of 5 personal
computers each equipped with a Pentium 4 processor and
384 MB of RAM running RedHat 8.0 Linux. The comput-
ers are connected via a 100Mbps local area network. Fig-
ure 6 shows the summary of the end-to-end latency mea-
surements for a simple client-server application under nor-
mal operations. The server is replicated on four of the com-
puters and the client is running on the remaining computer.
In each iteration, the client issues a request to the server
replicas and waits for the corresponding reply. There is no
waiting time between consecutive iterations. The size of
each request and reply is fixed at 1KB. The type of non-
determinism and the size of nondeterministic values varies
in different experiments. In each run, we measure the to-
tal elapsed time for 10,000 consecutive iterations. From the
measured time, we derive the average end-to-end latency
for each request-reply iteration.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

E
nd

-t
o-

E
nd

 L
at

en
cy

 in
 m

ill
is

ec
on

ds

Size of Nondeterministic Data in kilobytes

Verifiable Pre-Determinable
Non-Verifiable Pre-Determinable

Post-Determinable

Figure 6. End-to-end latency for calls with dif-
ferent types of replica nondeterminism under
normal operations.

As shown in Figure 6, we performed latency mea-
surements for three different types of replica nondeter-
minism: verifiable pre-determinable, non-verifiable pre-
determinable, and non-verifiable post-determinable non-

determinism. Since the cost for handling verifiable and
non-verifiable post-determinable nondeterminism are simi-
lar under normal operations, we refer the measurement data
for non-verifiable post-determinable nondeterminism sim-
ply as post-determinable in the figure and in the discussion
below.

The handling of both non-verifiable pre-determinable
and post-determinable nondeterminism involves with one
additional phase of Byzantine agreement on the nondeter-
ministic values. As such, the end-to-end latency is notice-
ably larger than that of verifiable pre-determinable nonde-
terministic operations, if there are large quantity of nonde-
terministic values. The results shown in Figure 6 are ob-
tained after a number of optimizations to the mechanisms
described in Section 4. Without these optimizations, the la-
tency is significantly larger.

In the pre-prepare-update phase, which is needed to han-
dle non-verifiable pre-determinable nondeterminism, each
backup replica multicasts its contribution of the nondeter-
ministic values to all other replicas, and the primary replica
decides on the collection (must include the contributions
from at least 2f+1 replicas, including its own) to be used
to calculate the final nondeterministic values. Instead of
multicasting the collection of nondeterministic values, the
primary replica disseminates the collection of the digests of
the nondeterministic values from each replica. This sharply
reduces the message size if the quantity of nondeterministic
values is large. Since each replica can log the nondetermin-
istic values received from other replicas, a (backup) replica
can verify the digests provided by the primary replica with
its local copies.

During the post-commit phase, which is needed to han-
dle post-determinable nondeterminism, the primary replica
disseminates the recorded nondeterministic values to all
backup replicas, and each backup replica multicasts the di-
gest of the received values instead of the values themselves
to reduce the cost.

It is straightforward to understand why the cost of han-
dling non-verifiable pre-determinable nondeterminism is
much higher than that of handling post-determinable non-
determinism when there are large quantity of nondetermin-
istic values. With the above optimization, the pre-prepare-
update phase involves with at least 2 large messages (sent by
the backup replicas) while the post-commit phase involves
with only one large message (sent by the primary replica).

6. Related Work

Replica nondeterminism has been studied extensively
under the benign fault model [2, 3, 4, 5, 6, 13, 14, 15, 16,
17, 20]. However, there is a lack of systematic classification
of the common types of replica nondeterminism, and even
less so on the unified handling of such nondeterminism.

9

[4, 5, 6, 17] did provide a classification of some types of
replica nondeterminism. However, they largely fall within
the types of wrappable nondeterminism and verifiable pre-
determinable nondeterminism, with the exception of nonde-
terminism caused by asynchronous interrupts, which we do
not address in this work.

The replica nondeterminism caused by multithreading
has been studied separately from other types of nonde-
terminism, again, under the benign fault mode only, in
[2, 3, 13, 14, 15, 16]. However, these studies provided valu-
able insight on how to approach the problem of ensuring
consistent replication of multithreaded applications. It is
realized that what matters in achieving replica consistency
is to control the ordering of different threads on access of
shared data. The mechanisms to record and to replay such
ordering have been developed. So do those for checkpoint-
ing and restoring the state of multithreaded applications (for
example, [12]). Even though these mechanisms alone are
not sufficient to achieve Byzantine fault tolerance for mul-
tithreaded applications, they can be adapted and used for
this goal. This work is an attempt to integrate such mech-
anisms with the BFT algorithm to render multithreaded ap-
plications Byzantine fault tolerant.

Under the Byzantine fault model, the main effort on the
subject of replica nondeterminism handling so far is to cope
with wrappable and verifiable pre-determinable replica non-
determinism [8, 9, 10, 11], In [8], Castro and Liskov pro-
vided a brief guideline on how to deal with the type of non-
determinism that requires collective determination of the
nondeterministic values. The guideline is very important
and useful, as we have followed in this work. However, we
made substantial new contributions on top of their work.
First, we made a strong case for the need of collective de-
termination of nondeterministic values and its benefits for a
type of practical applications. Second, we provided signif-
icantly more in-depth discussions and mechanisms on how
to handle such type of nondeterminism. Third, we further
considered the handling of multithreading-related replica
nondeterminism, which has not been addressed in current
literature under the Byzantine fault model. Finally, we also
provided a classification of common types of replica nonde-
terminism and proposed a unified Byzantine fault tolerant
framework to handle these types of nondeterminism.

7. Conclusion and Future Work

In this paper, we provided two types of motivating ap-
plications, namely, online poker applications and multi-
threaded applications, to illustrate the need for better mech-
anisms to handle the nondeterministic behaviors in such ap-
plications. We showed that if the traditional method is used,
a compromised primary replica can easily break the Byzan-
tine fault tolerance algorithm and destroy the integrity of the

replicated service. Rather than providing ad-hoc solutions
to the replica nondeterminism problems, we chose to follow
a systematic approach. To do so, we first classified all com-
mon types of replica nondeterminism. Then, we presented
the mechanisms needed to handle these types of replica
nondeterminism under the context of a unified BFT frame-
work for nondeterministic applications. Furthermore, we
provided a proof-of-concept implementation of our mecha-
nisms by extending the BFT framework [8, 9, 10, 11].

Our current implementation of the unified BFT frame-
work is still in its early stage. We envisage that there are a
lot of opportunities for us to optimize our implementation.
For example, by piggybacking nondeterministic values with
regular BFT messages, we may be able to eliminate the ad-
ditional phases we introduced in some cases. We also plan
to implement tools to help applications record, verify (if ap-
plicable), and replay nondeterministic values.

Acknowledgement

The author wishes to thank Professor Lorenzo Alvisi
and his students for providing a bug-fix version of the BFT
framework source code, and his help in understanding the
BFT algorithm.

This work is sponsored by Cleveland State University
through a Faculty Research Development award.

References

[1] B. Arkin, F. Hill, S. Marks, M. Schmid, and T. J. Walls.
How we learned to cheat at online poker: A study in soft-
ware security. http://www.developer.com/java/other/ arti-
cle.php/10936 616221 1, September 1999.

[2] C. Basile, K. Whisnant, and R. Iyer. A preemptive deter-
ministic scheduling algorithm for multithreaded replicas. In
Proceedings of the IEEE International Conference on De-
pendable Systems and Networks, pages 149–158, San Fran-
cisco, CA, June 2003.

[3] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer. Loose
synchronization of multithreaded replicas. In Proceedings
of the International Symposium on Reliable Distributed Sys-
tems, pages 250–255, Suita, Japan, October 2002.

[4] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. And.
Fault tolerance under Unix. ACM Transactions on Computer
Systems, 7(1):1–24, 1989.

[5] T. Bressoud. TFT: A software system for application-
transparent fault tolerance. In Proceedings of the IEEE
28th International Conference on Fault-Tolerant Comput-
ing, pages 128–137, Munich, Germany, June 1998.

[6] T. Bressoud and F. Schneider. Hypervisor-based fault toler-
ance. ACM Transactions on Computer Systems, 14(1):80–
107, February 1996.

[7] M. Castro and B. Liskov. Authenticated Byzantine fault tol-
erance without public-key cryptography. Technical Report
MIT-LCS-TM-589, MIT, June 1999.

10

[8] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation, New Orleans, USA,
February 1999.

[9] M. Castro and B. Liskov. Proactive recovery in a Byzantine-
fault-tolerant system. In Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementation, San
Diego, USA, October 2000.

[10] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance and proactive recovery. ACM Transactions on Com-
puter Systems, 20(4):398–461, November 2002.

[11] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. ACM Transactions on
Computer Systems, 21(3):236–269, August 2003.

[12] W. R. Dieter and J. E. Lumpp. User-level checkpointing
for LinuxThreads programs. In Proceedings of the USENIX
Technical Conference, Boston, Massachusetts, June 2001.

[13] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo. De-
terministic scheduling for transactional multithreaded repli-
cas. In Proceedings of the IEEE 19th Symposium on Reliable
Distributed Systems, pages 164–173, Nurnberg, Germany,
October 2000.

[14] L. Moser and M. Melliar-Smith. Transparent consistent
semi-active and passive replication of multithreaded appli-
cation programs. US Patent Application No. 20040078618,
2004.

[15] L. Moser and M. Melliar-Smith. Consistent asynchronous
checkpointing of multithreaded application programs based
on semi-active or passive replication. US Patent Application
No. 20050034014, 2005.

[16] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. En-
forcing determinism for the consistent replication of multi-
threaded CORBA applications. In Proceedings of the IEEE
18th Symposium on Reliable Distributed Systems, pages
263–273, Lausanne, Switzerland, October 1999.

[17] D. Powell. Delta-4: A Generic Architecture for Dependable
Distributed Computing. Springer-Verlag, 1991.

[18] J. Viega and G. McGraw. Building Secure Software.
Addison-Wesley, 2002.

[19] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for byzan-
tine fault tolerant services. In Proceedings of the ACM Sym-
posium on Operating Systems Principles, pages 253–267,
Bolton Landing, NY, USA, 2003.

[20] W. Zhao, L. E. Moser, , and P. M. Melliar-Smith. Deter-
ministic scheduling for multithreaded replicas. In Proceed-
ings of the IEEE International Workshop on Object-oriented
Real-time Dependable Systems, pages 74–81, Sedona, Ari-
zona, February 2005.

11

