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Abstract
This paper describes an approach to track multiple targets

using wireless sensor networks. In most of previously pro-
posed approaches, tracking algorithms have access to the sig-
nal fromindividual target for tracking by assuming (a) there
is only one target in a field, (b) signals from different targets
can be differentiated, or (c) interference caused by signals
from other targets is negligible because of attenuation. We
propose a general tracking approach based onblind source
separation, a statistical signal processing technique widely
used to to recover individual signals from mixtures of sig-
nals. By applying blind source separation algorithms tomix-
ture signals collected from sensors, signals fromindividual
targets can be recovered. By correlatingindividual signals
recovered from different sensors, the proposed approach can
estimate tracks of multiple targets. To improve tracking per-
formance, our approach utilizes both temporal information
and spatial information available for tracking. We evaluate
the proposed approach through extensive experiments. Ex-
periment results show that the proposed approach can track
multiple objects both accurately and precisely.

1 Introduction
Tracking moving targets with wireless sensors is one of

prominent applications of wireless sensor networks. Sen-
sors, also called as “smart dust” [1], are small devices known
for their simplicity and low cost. Using a network of sensors
with wireless communication capability enables both cost-
effective and performance-effective approaches to track tar-
gets because of the availability of large amount of data col-
lected by sensors for tracking targets. Depending on the ap-
plications, sensors with different sensing modalities such as
acoustic, seismic, infrared, radio, and magnetic can be de-
ployed for tracking different type of targets.

In general, data collected by sensors isaggregatedata. In
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the signal processing language, signals received by sensors
are generallymixturesof signals fromindividualtargets. For
example, an acoustic sensor in a field of interest may receive
sound signals from more than one targets. Obviously track-
ing targets based on mixture signals can result in inaccurate
results when interference from targets other than the one of
interest is not negligible. Without loss of generality, we use
the termaggregate signalto mean the signal received by
sensor, i.e., data collected by sensors andindividual signal
to mean the signal transmitted from or caused by individual
targets in the rest of the paper.

Aggregate signals collected by sensors networks pose
a big challenge to target-tracking solutions. The problem
space of the target-tracking problem is divided and special
cases of the target-tracking problem have been well studied:

• Single-target case: In this case, it is assumed that only
one target exists in a field of interest. So signals re-
ceived by sensors are essentiallyindividual signals.

• Negligible interference case: Some researches assume
that interference from targets other than the one of in-
terest is negligible. The assumption is legitimate for ap-
plications in which signal from a target attenuates dra-
matically when distance between the target and sensor
increases.

• Distinguishable target case: Sensors can distinguish tar-
gets by tags embedded in signals or by having different
targets to send signals using different channels such as
using different frequency bands.

All these special cases assume that tracking algorithms can
have access to individual signals. Singh et al. [2] propose a
general approach to track multiple targets indistinguishable
by sensors. The approach is based on binary proximity sen-
sors which can only report whether or not there are targets
in sensing area. The approach is based on simple device, the
binary proximity sensors with the cost of limitation that itis
only applicable to to track targets in smooth paths [2].

We propose an approach based on blind source separa-
tion, a methodology from statistical signal processing to re-
cover unobserved ”source” signals from a set of observed
mixtures of the signals. Blind source separation model was
originally defined to solvecocktail party problem: The blind
source separation algorithms can extract one persons voice
signal given the mixtures of voices in a cocktail party. Blind
source separation algorithms solve the problem based on the
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independence between voices from different persons. Sim-
ilarly, in the target-tracking problem, it is generally safe to
assumeindividual signalsfrom different targets are indepen-
dent. So we can use blind source separation algorithms to
recoverindividual signalsfrom aggregate signalscollected
by sensors. For the cases in whichindividual signalsare de-
pendent, blind source separation algorithms based on timing
structure [3–5] ofindividual signalscan be used.

The proposed algorithm utilizes both temporal informa-
tion and spatial information available to track targets. Ap-
plying blind source separation algorithms on aggregate sig-
nals collected by sensors can recoverindividual signals. But
the output of blind source separation algorithms includes not
only recovered individual signals, but also noise signals,ag-
gregate signals and partial signals which contain individual
signals in different time durations. Clustering is used in our
algorithm to pick out the individual signals from signals out-
put by the blind source separation algorithms. A voting step
based on spatial information is used to further improve the
performance of the algorithm.

The contributions of this paper can be summarized as fol-
lows:

• We proposed a general approach to track multiple tar-
gets in a field. The approach can be applied in real-
world applications where targets are indistinguishable
and interference from other targets other than the one
of interest is not negligible.

• We evaluate our approach with extensive experiments
and analyze the effect of parameters used in the pro-
posed approach experimentally and theoretically.

• We propose metrics to evaluate performance of target-
tracking algorithms. The metrics originate from the
general metrics used to evaluate performance of an esti-
mator in statistics since essentially target tracking algo-
rithmsestimatethe paths based on data collected from
sensor networks.

• According to our knowledge, we are the first to apply
blind source separation to process data collected from
wireless sensor networks. Blind source separation al-
gorithms are useful tools for processing data collected
from wireless sensor networks since essentially data
collected from sensors are allaggregatedata. In this pa-
per we focus on applying blind source separation in the
target-tracking problem. The blind source separation
algorithms can also be used to process data in other ap-
plications of wireless sensor networks such as location
detection and factor analysis. For most applications of
wireless sensor networks, analysis based onindividual
signals can yield more accurate results.

The rest of the paper is organized as follows. Section 3 ex-
plains about our network model and assumptions. In Section
5, we describe our approach in details. Section 6 theoreti-
cally analyzed the performance of our approach and effect of
parameters used in our approaches. we report performance
evaluation results of our approaches in Section 7. We con-
clude our paper in Section 9.

2 Related work
Wireless sensor networks have been proposed or de-

ployed to track targets in various applications. The examples
are tracking robots with infrared signal [6], tracking vehi-
cles with infrared signals [7], tracking ground moving tar-
gets with seismic signals [8], tracking moving vehicles with
acoustic sensors [9], tracking people with RF signals [10].
Location detection, equivalent as tracking static targets, have
also been studied extensively. The topic has been investi-
gated in different wireless networks such as wireless sensor
networks [11, 12], wireless LANs [13], and wireless ad-hoc
networks [14,15].

Most proposed approaches to track targets and detect lo-
cation are based on characteristics of physical signals such
as angle of arrival (AOA) [16–18], Time of Arrival (TOA)
[19, 20], Time Difference of Arrival (TDOA) [21, 22] and
Received Signal Strength (RSS) [23, 24]. Receiver signal
strength is widely used in tracking targets with wireless sen-
sor networks [25, 26]. Lots of work focuses on tracking
a single target [27–29] or assume targets are distinguish-
able [30]. Tracking multiple targets in a field is a challenging
problem in comparison with tracking single target. Various
advanced techniques have been applied to solve the prob-
lem. The examples are signal processing techniques such as
wavelet [31], FFT [7, 32], Kalmn filter [33, 34], statistical
techniques such as principle component analysis [35].

A string of researches on tracking targets with wire-
less sensor networks are based on binary proximity sensors
which can only report whether there are targets within sens-
ing area. Initial work [27–29] on binary proximity sensors
focus on tracking single target. Singh et al. [2] extended
the approach to track multiple indistinguishable targets by
applying particle filtering algorithms. Approaches based on
binary proximity sensors have two obvious advantages: (a)
The sensors are very simple since they only report binary in-
formation. (b) The approaches are robust since interference
from other targets are essentially filtered out by an equiva-
lent low-passed filter [29]. The cost of using these simple
devices is loss of information which is helpful to accurately
track targets due to the filtering effect. So approaches based
on binary proximity sensors can not track target in path with
high-frequency variations [29]. We propose a general ap-
proach to track multiple indistinguishable targets. The ap-
proach is based on blind source separation algorithms which
can recover individual signals from aggregate signals. So
the challenging problem of tracking multiple targets become
a much easier problem equivalent as tracking single target.
Since individual signals can be fully recovered, our approach
can track targets following paths with high-frequency varia-
tions.

3 Network Model and Assumptions
A general model of tracking targets using wireless sensor

networks is shown in Figure 1. Wireless sensors are ran-
domly deployed in the field of interest. Generally a wireless
sensor can receive individual signals from multiple sources.
For example, suppose acoustic sensors are deployed in Fig-
ure 1, SensorO1 can receive audio signals from Targets1, s2,
ands3 during one time duration. Following are the assump-
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Figure 1. Network Model

tions made in this general model:

• Sensors have no capability to distinguish targets. This
assumption is important for deploying sensors in un-
cooperative or hostile environment as tracking enemy
soldiers with wireless sensor networks.

• The location of each sensor in the sensor network is
known. Location information can be gathered in a vari-
ety of ways. For example, the sensors may be planted,
and their location marked. Alternatively, sensors may
have GPS capabilities. Finally, sensors may locate
themselves through one of severals schemes that rely
on sparsely located anchor sensor nodes [36].

• Aggregate signals collected by wireless sensors can be
gathered for processing by a sink or gateway. Data com-
pression or coding schemes designed for sensor net-
works such as ESPIHT [37, 38] can be used to reduce
the data volume that is caused by remaining spatial re-
dundancy across neighboring nodes or temporal redun-
dancy at individual nodes.

• Targets are moving under a speed limit. Obviously it
is impossible to track a high-speed target which only
generates a small amount of data when passing the field
of interest. We analyze the speed limit in Section 6.

4 Application of Blind Source Separation Al-
gorithms in Tracking Target

In this section, we introduce blind source separation and
rationale of applying blind source separation to the multiple
target tracking problem using wireless sensor networks.

4.1 Blind Source Separation
Blind Source Separation (BSS) is a methodology in sta-

tistical signal processing to recover unobserved “source”sig-
nals from a set of observed mixtures of the signals. The
separation is calledblind to emphasize that the source sig-
nals are not observed and that the mixture is a black box
to the observer. While no knowledge is available about the
mixture, in many cases it can be safely assumed that source
signals are independent. In its simplest form [39] , the
blind source separation model assumes n independent sig-

nals S1(t), · · ·, Sn(t) and n observations of mixtureO1(t),
· · ·, On(t) whereOi(t) = ∑n

j=1ai j Sj(t). The goal of BSS is to
reconstruct the source signalsSj(t) using only the observed
dataOi(t), the assumption of independence among the sig-
nalsSj(t). Given the observationsOi(t), BSS techniques es-
timate the signalsSj(t) by maximizing the independence be-
tween the estimated signals. A very nice introduction to the
statistical principles behind BSS is given in [39]. The com-
mon methods employed in blind source separation are min-
imization of mutual information [40, 41], maximization of
nongaussianity [42,43], maximization of likelihood [44,45].
Timing-structure based algorithms [3–5] can be used to re-
cover source signals when source signals are dependent.
4.2 Recover Individual Signals for Target-

Tracking with Blind Source Separation
Algorithms

In our tracking approach, blind source separation algo-
rithms are used to recoverindividual signals, i.e., source
signals as in Section 4.1 fromaggregate signals, i.e., ob-
servations as in Section 4.1. Suppose acoustic sensors are
deployed in the field shown in Figure 1, SensorO1 can re-
ceive audio signals from targetsS1, S2, andS3 and SensorO2
can receive audio signals from targetss2 ands5. If we repre-
sent the signal received by SensorOi asOi(t) and the signal
from TargetSi asSi(t), we can have following two equations:
O1(t) = S1(t)+S2(t)+S3(t), O2(t) = S2(t)+S5(t). In gen-
eral, form neighboring sensors andn targets, we can rewrite
the problem in vector-matrix notation,
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whereAm×n is calledmixing matrix in the BSS literature.
Since the individual signals are independent from each other
- they come from different targets - we can use any of the
algorithms mentioned in Section 4.1 to recover individual
signalsS1(t), · · · ,Sn(t).

While the goal of BSS in this context is to re-construct
the original signalsSi(t) , in practice the separated signals
are sometimes only loosely related to the original signals.
We categorize these separated signals into four types: In the
first case, the separated signal is correlated to actual individ-
ual signalsSi(t). The separated signal in this case may have
a different sign than the original signal. We call this type of
separated signal as individual separated signal. In the second
case a separated signal may be correlated to an aggregate of
signals from several targets. This happens when signals from
more than two targets can be “heard” by all the sensors. In
such a case, the BSS algorithm would not be able to fully
separate the signal mixture into the individual separated sig-
nals. Rather, while some individual signals can be success-
fully separated, others remain aggregated. In the third case,
separated signals may be correlated to one original signal in
the beginning part and correlated to another original signal
in the rest. We call this type of separated signal as partial
separated signal. This happens when a target moves out of
one sensing range and enter into another sensing range. In



the fourth case, separated signals may represent noise sig-
nals. Noise in our case can be caused by attenuation because
of the distance between sensor and targets. When a target
is moving, the attenuation will change depending on the dis-
tance between the target and the sensor of interest. So two
neighboring sensors may receive different individual signals
from one target. The difference can be separated out as noise
separated signals.

5 Blind Source Separation Algorithm
5.1 Tracking Algorithm

The tracking algorithms consists of six steps: In the first
step, aggregate signals collected from sensors are grouped
and segmented and these segmented signals are fed to the
second step, blind source separation step. The output of
blind source separation step are the separated signals. As
described in Section 4, these separated signals contain indi-
vidual separated signals, aggregate separated signals, noise
separated signals, and partial separated signals. Clustering
step will cluster these separated signals. Based on the cluster
information, center selection step selects separated signals
which are closest to actual individual signals. Intersection
step estimates segments of paths based on separated signals
selected from the previous step. Voting step outputs the esti-
mated paths by voting on path segments generated in the in-
tersection step. The details of these fives steps (preparation,
separation, clustering, center selection, intersection,voting)
are described below.
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Figure 2. Grouping (ngroup= 5)

5.2 Preparation Step
To fully utilize information collected from wireless sensor

networks, aggregate signals are grouped spatially and seg-
mented temporally. As shown in Figure 2, sensors in the
field are grouped into sensor groups. Each group hasngroup
neighboring sensors. Aggregate signals collected from each
sensor group are segmented according to time slots shown
in Figure 3. Time slots are of lengthlseg. The step size be-
tween two successive time slots islstep. So two successive
signal segments have a common part of lengthlseg− lstep. A
BSS algorithm will be applied on grouped aggregate signals
sequentially, i.e., segment by segment in the next step.

Original Aggregate Signal

Step size

Signal Segment

Figure 3. Signal Segments

We represent the segment group fromith sensor block and
jth time slot asOGi, j . The pth segment in the group is de-
noted asOp

i, j . In set theory notation,OGi, j = {Op
i, j : p =

1, · · · ,ngroup}. The output of the preparation step is segment
groupsOGi, j .

Redundancy is created during grouping and segmenting.
In grouping, a sensor can be grouped into more than one
sensor groups. In segmenting, two successive time slots have
overlap. The redundancy will be utilized in the following
steps.

Since after the preparation step, signals are all in unit of
segments. We use actual segments, individual segments, ag-
gregate segments, partial segments, noise segments to mean
segments of original individual signals, individual separated
signals, aggregate separated signals, partial separated sig-
nals, and noise separated signals respectively.

5.3 Separation Step
The separation step applies a BSS algorithm on segments

contained inOGi, j . The output of the separation step is sepa-
rated segments in groups denoted bySG′i, j , i.e., the group of
segments separated fromOGi, j .

5.4 Clustering Step
Clustering step is used to eliminate noise segments, ag-

gregate segments, and partial segments. The heuristic behind
this step is: If a separated signal represents an individualsig-
nal, similar signals will be separated in at least similar forms
by more than one neighboring sensor groups. In contrast, a
separated signal that was generated because of attenuation
or some interference has likely been generated by a single
group only.

Based on the heuristic we identify cluster of similar sepa-
rated signal segments by using the correlation coefficient as
measure of similarity, and define the distance between two
separated segments as follows:

D(S
′p
i, j ,S

′q
h, j) = 1−||corr(S

′p
i, j ,S

′q
k, j)|| , (2)

where S
′p
i, j denotes thepth segment in separated segment

groupSG′i, j , andcorr(x,y) denotes the correlation coefficient
of segmentsx andy. We use the absolute value of the corre-
lation coefficient because the separated segments may be of
different sign than the actual segment. Clustering will only



cluster segments of same time slots as indicated in the dis-
tance measure defined in Equation 2.

The highly-correlated (similar) segments will cluster to-
gether. Figure 4 use a two-dimensional representation to fur-
ther illustrate the rationale for the clustering approach in this
step. As shown in this figure, the individual segments form
clusters. The aggregate segments and partial segments on
the other hand scatter in-between these clusters. The noise
segments are distant both from each other and from the other
segments.

In summary, the input of the clustering step isSG′i, j and
the output of this step is clusters formed in each time slots.
We useClstij to denote theith cluster formed in thejth time
slot.
5.5 Center Selection Step

The goal of center selection step is to select center seg-
ments as shown in Figure 4 from clusters formed in the pre-
vious step. Center segments are the segments in the center of
each cluster formed according to distance measure defined in
Equation 2. The heuristic behind the step is: When a target
is moving, neighboring sensor groups along the path can re-
ceive common part of the individual signal from the target.
But for segments created from noise, the heuristic will not
hold. For example, suppose theith andkth sensor groups are

neighboring sensor groups and segmentsS
′p
i, j andS

′q
k, j+1 sep-

arated from these two sensor groups are related to the same

individual signal from a target, the latter part ofS
′p
i, j should

be very similar as the beginning part ofS
′q
k, j+1. More spe-

cific, the partial segmentS′i, j(lstep, lseg) should be highly cor-
related with the partial segmentS′k, j+1(0, lseg− lstep). (Please

note: we useS
′p
i, j(x,y) to denote the the part of segmentS

′p
i, j

from t = x to t = y.) The heuristic still holds for segments
separated from the same sensor block, i.e.,i = k. Link cor-

relation1 ρ(S
′p
i, j ,S

′q
k, j+1) is defined based on the heuristics as

follows:

ρ j(S
′p
i, j ,S

′q
k, j+1)= ||corr(S

′p
i, j(lstep, lseg),S

′q
k, j+1(0, lseg− lstep))||

(3)
where ρ(S

′p
i, j ,S

′q
k, j+1) denotes the link correlation between

segmentsS
′p
i, j andS

′q
k, j+1. Absolute value is used in link cor-

relation definition because the separated segments may be of
different sign than the actual segments.

Center segments are selected based on the link correla-
tion: The center segment inClstij is the segment that has the
highest link correlation with one of the center segments se-
lected in j +1th time slot. To make center selection more ro-
bust against aggregate and partial segments, we use summa-
tion of link correlation betweennslot consecutive time slots,
i.e.,ρ = ∑ j+nslot

i= j ρi.
The input to the center selection step isClstij and the out-

put is center segmentsCi
j which denotes theith center seg-

ment in thejth time slot. The number of center segments in

1We use the term link correlation because it is used to “link”
segments in twosuccessivetime slots.

each time slot isK which is the number of targets in the field.
The value ofK is either known a priori or can be estimated
by using Principle Component Analysis.

v
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Figure 4. Clustering

5.6 Intersection Step
We estimate a segment of path by intersecting the sensing

ranges of sensor groups that are likely to “hear” the target.
For this we select sensor groups that have separated segments
that are closely correlated with the likely individual segments
from the targets in the area. The rationale is that for the
sensors in a sensor group to hear a target, they must have
sensed a signal that is at least similar to the signal generated
by the target. This means that sensor groups with separated
segments that correlate with any of theK center segments are
likely to hear a target. We therefore determine the likely path
segment taken by a target by geographically intersecting the
sensing areas of the sensors in those sensor groups that have
highly correlated separated segment with a center segment
determined in the preceding center selection step.

The input of this step is center segmentsCi
j . For each

center segment, an intersection areaareai
j is generated as

output of this step. These generated areas are estimated path
segments.
5.7 Voting Step

The voting step selects best estimated path segments for
each time slot and concatenates the best estimated path seg-
ments to form an estimated path.

The criteria used in selecting best estimated path seg-
ments are based on the distance between path segments, i.e.,
intersection areas. The distance between two intersectionar-
eas is defined as the distance between two closest points from
each area. If two areas overlap, their distance is zero. In our
algorithm, the best estimated segments in one time slot have
the smallest total distance with all the estimated segmentsin
current time slot, previous four time slots, and following four
time slots.

6 Theoretical Analysis
In this section, we analyze the effect of signal attenuation,

tracking resolution, effect of moving speed, and complexity
of the algorithm.



input : Clstij - ith cluster formed injth time slot
( j = 1, · · · ,v), K - number of center segments
in each time slot,v is number of time slots
available.

output: Ck
j - kth center segment selected fromjth

time slot( j = 1, · · · ,v)
InitializeClstFlagi

j = 0 for all i and j;1

InitializeCk
j = 0 for all k and j;2

for r← 1 to v−1 do3

foreachseparated segment S′a in rth time slotdo4

foreachseparated segment S′b in (r +1)th5

time slotdo
calculate link correlationρr(S′a,S

′
b)6

according to Equation 3;
end7

end8

includeρr(S′a,S
′
b) into the setρr ;9

end10

for s← 1 to K do11

for r ← 1 to v do12

if r == 1 then13

while Cs
r == 0 do14

find segmentsS′a andS′b which have15

the largest link correlationρr(S′a,S
′
b)

in the setρr ;
find Clstxr so thatS′a ∈Clstxr ; /* S′a16

belongs to rth time slot. */
find Clstyr+1 so thatS′b ∈Clstyr+1;17

if ClstLabelxr ==18

0&&ClstLabelyr+1 == 0 then
Cs

r = S′a;19

Cs
r+1 = S′b;20

removeρr(S′a,S
′
b) from the setρr ;21

SetClstLabelsr = 1;22

end23

else24

removeρr(S′a,S
′
b) from the setρr ;25

Continue;26

end27

end28

end29

if r > 1 then30

while Cs
r == 0 do31

find segmentsS′m in the(r +1)th time32

slot which has the largest link
correlation withCs

r in the setρr ;
find Clstzr+1 so thatif33

ClstLabelzr+1 == 0 then
Cs

r = S′b;34

Cs
r+1 = S′m;35

removeρr(Cs
r ,S
′
m) from the setρr ;36

Setclulabelzr+1 = 1;37

end38

else39

removeρr(Cs
r ,S
′
m) from the setρr ;40

Continue;41

end42

end43

end44

end45

end46

Algorithm 1 : Select Center Segments from First Time

Path
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d

Figure 5. Setup for Experiments on Signal Attenuation

6.1 Signal Attenuation
Signal attenuation is a natural consequence of signal

transmission over long distances. It is a function of trans-
mission distance.

When tracking static targets, signal attenuation will not
affect tracking performance. Since targets are static, thedis-
tance between targets and sensors does not change over time.
So the attenuation can be modeled as a constant. For the
same individual signal from a target, different sensors will
observe different attenuation because of different transmis-
sion distance. So individual signals received by different
sensors from the same target can be different by a scaling
factor. The difference because of a scaling factor can be ab-
sorbed by the mixing matrix defined in the BSS model as
Equation 1. So attenuation does not affect tracking static tar-
gets by our approach.

When tracking moving targets, signal attenuation may
cause noise signals in the output of separation step. When
targets are moving, the difference between individual signals
received by different sensors is not just a scaling factor. Be-
cause when a target is moving, the attenuation changes with
the transmission distance between the target and a specific
sensor. So the difference can not be absorbed by the mixing
matrix. The consequences of the difference are: (a) Noise
segments can be generated during separation because of the
difference (b) Separated individual signals are less correlated
with original individual signals. Clustering step, centerse-
lection step and voting step are designed with consideration
of these consequences.

We did a simple experiment to show the effect of signal
attenuation on the separation performance when targets are
moving. The setup is as shown in Figure 5: Ten randomly
placed sensors form a sensor group. Three targets are mov-
ing in the sensing range of the sensor group. We fixed the
path of two targets in our experiment and increase the verti-
cal distance between center of the sensor group and the path
taken by the target of interest. Figure 6 shows the maximum
correlation between separated signals and the actual individ-
ual signal from the target of interest. As we can observe
that when the vertical distance increases, the correlationwith
original individual signal is higher. So the separation perfor-
mance is better when vertical distance increases. The reason
is: When the vertical distance increase, the range of attenua-
tion change decreases. In turn, attenuated individual signals
received by different sensors are less different. From thisex-
periment, we can also infer the effect of sensor density. More



sensor deployed in a field, more likely to have a sensor group
both covering the path segment of interest and distant from
the target at the same time. So higher sensor density can lead
to better separation performance.
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Figure 6. Effect of Attenuation

6.2 Tracking Resolution
We analyze tracking resolution of the algorithm in this

section. The purpose of analysis is to estimate achievable
performance of the proposed tracking algorithm. We focus
on the intersection step in the analysis.

Actual Target Path

Estimated Intersection Area

derr

Figure 7. An Example

First, we defineerror distanceas follows:
Definition The error distance between a point in one inter-
section area and the path segment of interest is the minimal
distance between the point and any point on the path seg-
ment.
Tracking resolution is defined based on the error distance
definition:
Definition Tracking resolution is defined as the average of
error distance between all the points inside an intersection
area and a path segment of interest.
As can be seen in Figure 7 actual target path and estimated
intersection area. Error distancederr is the minimum dis-
tance between point inside estimated intersection area (rep-
resented with dot) and points on the path segment of interest.
Tracking resolution is average error distance of all the points
inside an estimated intersection area.

We focus on linear path segments in theoretical analysis
for the following reasons: (a) Any path can be formed with
linear segments. (b) In practice the segment size used in the
proposed algorithm is small so that path segments are close
to linear. To simplify the analysis of tracking resolution we
assume the path segment of interest fit inside the intersection
area and perpendicular to the line joining of center of two
sensor groups. We assume the sensors are uniformly dis-
tributed over the field. So sensor groups are also uniformly
distributed over the field.

We assumeN sensors are deployed in an field of sizea
meter byb meter and sensing range of each sensor isR. Both
average tracking resolution and the finest tracking resolution
are analyzed below.
6.2.1 Finest Tracking Resolution

Finest tracking resolution is defined as the achievable
minimal mean error distance.

We assume sensor groups are located within a circle of
radiusr on average. So we have

Sensor Density =
N

a×b

=
ngroup

πr2

wherengroup is the number of sensors in each sensor group.
Thus the average radiusr is

r =

√

ngroupab
πN

(4)

THEOREM 6.1. Finest tracking resolution of tracking a lin-

ear path segment of length l is

l
2
∫

0
{( y

tanθ2
)− ( y

tanθ1
)}dy where

θ1 = tan−1( y
√

(R+r)2−( l
2 )2

) andθ2 = sin−1( y
R+r ).

PROOF. The finest tracking resolution is achieved when the
path segment of interest fits exactly into the intersection area
of two sensing ranges as shown in Figure 8. In Figure 8, line
segmentAC is the linear path segment of lengthl . So the
path segment of interest is perpendicular to the line joining
of center of sensor groups. The distancederr is the distance
between sample point on the path denoted withG and the
point on the perimeter of the sensing range denoted withF.
Sincederr is the shortest distance fromF to any points on the
path segment,derr is also the error distance between pointF
and the path segment.

Suppose in Figure.8 the distance between centers of two
neighbor sensor groups is 2x. The value ofx can be derived
as follows.4OABis a right angle triangle,OA= R+ r which
is the sensing radius of sensor group andAB is l

2 which is
half of the segment lengthl . From4OAB

(R+ r)2 = x2 +(
l
2
)2

x =

√

(R+ r)2− (
l
2
)2 (5)

Thus distance between neighbor sensor groups 2x =

2
√

(R+ r)2− ( l
2)2.

The error distancederr can be derived as follows:
From4DGE as shown in Figure.8.

tanθ1 =
y
x2

x2 =
y

tanθ1
(6)

Now from4FDE, FD = R+ r which is sensing radius of
sensor group andDE = y as can be seen in Figure.8. Where
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y is the distance between the pointsG and B as shown in
Figure.8.

sinθ2 =
y

R+ r

θ2 = sin−1(
y

R+ r
) (7)

tanθ2 =
y

derr +x2

derr =
y

tanθ2
−x2

(8)

Wherex2 is from Equation6 andθ2 is from Equation7.

derr =
y

tanθ2
−

y
tanθ1

(9)

For all the points on the line segmentFG, the average
error distance isderr

2 .
To calculate average of error distance for all the points

within the intersection area, we integratederr
2 with y between

the limits 0 andl
2.

Thus the finest tracking resolution is12

l/2
∫

0
{( y

tanθ2
) −

( y
tanθ1

)}dy Where θ2 = sin−1( y
R+r ) and θ1 =

tan−1( y
√

(R+r)2−( l
2 )2

).

COROLLARY 6.2. When finest tracking resolution is
achieved, the distance between the two neighboring sensor

blocks is2
√

(R+ r)2− ( l
2)2

The proof of Corollary is contained in the proof of Theorem
.
6.2.2 Average Tracking Resolution

Average tracking resolution predicts the average tracking
accuracy achievable by the proposed tracking algorithm. Itis

the mean error distance averaged over all the possible cases.
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THEOREM 6.3. Average tracking resolution of tracking

a linear path segment of length l is
Z
∫

R+r

l
2
∫

0
{( y

tanθ2
) −

( y
tanθ1

)}dydx where Z= 2×
√

(R+ r)2− ( l
2)2 which is the

distance between centers of neighbor sensor groups in case
of the finest tracking resolution, R+ r is the distance between
centers of neighbor sensor groups in case of the worst case
tracking resolution,θ2 = sin−1( y

r+R) andθ1 = tan−1( y
x).

PROOF. As shown in Figure 8, suppose the distance
between the center of two sensor groups is 2x. Average
tracking resolution can be derived by integral of mean error
distance over possiblex where x is half of the distance
between the center of two sensor groups. Lower limit ofx
value is from the worst tracking resolution and upper limit is
from the finest tracking resolution. The worst case tracking
resolution is explained as follows:
Sensor groups are uniformly distributed over the sensor
field. Let us say three sensor groupss1, s2 ands3 are placed
along a line as shown in Figure10(a), wheres1,s2 ands2,s3
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Figure 10. An Example

have coverage intersection respectively. And let us say the
distance between centers of two neighbor sensor groups is
same as in case of finest tracking resolution. Now vary the
distance betweens2 ands3 by movings3 closer tos2 as can
be seen in Figure10(b). We achieve the worst case when the
distance between centers ofs2 ands3 is R+ r, since s1 and
s3 begin to have intersection in their coverage.
We derived the error distancederr in section 6.2.1.

derr =
y

tanθ2
−

y
tanθ1

(10)

whereθ1 = tan−1( y
x) and θ2 = sin−1( y

r+R). So the mean

error distance is12
l/2
∫

0
{(y/ tanθ2)− (y/ tanθ1)}dy.

From Corollary 6.2.1, we know the distance between the
center of two sensor groups when the finest tracking res-
olution is achieved. The worst-case tracking resolution is
achieved when the distance between the centers of two sen-
sor groups isR+ r. The average tracking resolution can be
derived by integral of mean error distance over possiblex, the
half of the distance between the centers of two sensor groups.

So the average tracking resolution is1
2

Z
∫

R+r

l
2
∫

0
{(y/ tanθ2)−

(y/ tanθ1)}dydx where Z = 2×
√

(R+ r)2− ( l
2)2, θ1 =

tan−1( y
x), andθ2 = sin−1( y

r+R)

6.3 Effect of Moving Speed
Targets’ moving speed affects performance of tracking al-

gorithm. Tracking algorithms track moving targets by ob-
serving changes in sensing signals collected from sensors.If
a target moving through a sensor-deployed field with infinity
speed, then sensors are not able to observe enough change
in sensing signals for tracking. On the other hand, signals
reported by sensors are digitized, i.e., sampled from original
sensing signals. If a sensor can sample sensing signals with
a high sampling rate, the sensing data collected from sen-
sors can possibly capture enough changes for tracking fast-
moving targets. To make moving speed discussed in this pa-
per independent from the sampling rate, we use meter per
sample interval as the unit for speed.

The effect of moving speed on the performance of the pro-
posed tracking algorithm is twofold: (a) The algorithm pro-
cesses collected signals in signal segments. When moving
speed is low, the signal segments will be long for time slots

of same length. In the separation step, the separation per-
formance for longer signal segments is generally better than
for shorter signal segments. So in turn, low moving speed
can lead to better tracking performance. (b) Long signal seg-
ments correspond to long path segment finished by targets.
Longer path segments has less chance to be covered entirely
in the sensing range of one sensor block. So it is less likely
to recover the whole signal segment for longer signal seg-
ments. In our experiments, we find separation performance
and overall tracking performance is satisfactory when signal
segments have 100 data samples. Obviously the longest path
segment which can be fitted into a sensing range with radius
(R+ r) is of length 2(R+ r). So the proposed algorithm can
generate satisfactory result when moving speed is belowR+r

50
meter per sample interval.

6.4 Complexity vs. Tracking Performance
The complexity of the algorithm is largely determined by

the step size shown in Figure 3. To decrease complexity,
we can increase the step size. The cost will be less reliable
link correlation because of shorter common part between two
successive time slots. In the mean time, when step size in-
creases, the estimated path may not be continuous since (a)
An estimated path is composed by a series of intersection ar-
eas estimated based on signal segments. (b) These intersec-
tion areas may not have overlap when the step size is large.

7 Performance Evaluation
We evaluate the performance of the proposed tracking al-

gorithm with extensive simulations with Matlab. We assume
acoustic sensors are deployed in the field of interest for track-
ing purpose.

7.1 Experiment Setup
In the following experiments, the simulated field is a

1600m× 1600m square area. Sensors are randomly de-
ployed in the field. The movement of targets is restricted
to a 1000m× 1000mcenter areato eliminate boundary ef-
fects. The signals used for tracking are real bird signals
downloaded from website of Florida Museum of Natural
History [46]. The attenuation of sound signals is according
to atmospheric sound absorption model [47, 48]. The sens-
ing range of sensors is 230m. Paths followed by targets are
generated randomly if not mentioned. The number of sen-
sors in each sensor groupngroup is 10 if not specified. In the
following experiments, targets are moving at a speed below
0.15 meter per sample interval.



7.2 Performance Metrics
As described in Section 5.6 and 5.7, the output of the

target-tracking algorithm is the concatenated intersection
area. To evaluate the performance according to the concate-
nated intersection area, we quantize the whole area using
10m× 10m tiles. The intersection area is represented by
a set of points inside the area, each point representing the
corner of the corresponding tile. Two metrics are used to
evaluate the area: One is themean error distance. It is based
on the error distance defined in Section 6.2. The mean error
distance is the mean of error distance between all points in-
side concatenated intersection areas and the actual path taken
by a target. The other is thestandard deviation of the error
distancebetween the points inside the concatenated intersec-
tion area and the actual path taken by a target. The first one
measures the accuracy of the tracking algorithm and the sec-
ond measures the precision of the tracking algorithm. If we
cast the evaluation of the estimation algorithm in terms of
evaluating a statistical estimator, the accuracy corresponds
to the bias of the estimator and the precision corresponds to
the variance of the estimator.

As described in Section 6.4, step size can affect both
tracking performance and computational complexity. A big
step size can reduce computation time with the cost of hav-
ing gaps between concatenated intersection areas. We use
percentage of coverageto measure the discontinuity in es-
timated paths. It is equal to one minus the ratio between
sum of distance between neighboring intersection areas and
length of the actual path. The distance between two inter-
section areas is defined as in Section 5.7: It is the distance
between two closest points in each intersection area. If two
intersection areas have overlap, the distance is zero.

7.3 A Typical Example
An example of typical results of our tracking algorithm

is shown in Figure 11. The paths taken by these targets are
shown in Figure 11(a). We include a zigzag path in this ex-
ample since zigzag path is one kind of path with high fre-
quency variation. Figure 11(b) shows paths estimated by our
algorithm. The estimated paths are drawn in red dots.

7.4 Sensor Density vs Performance
As analyzed in Section 6, sensor density can greatly af-

fect tracking performance. In this series of experiments, we
increase the number of sensors in the field from 100 to 1000.
The length of signal segment used in this set of experiments
is 100 samples. The step size is 10 samples. We will use
these algorithm parameters in the following experiments if
not explicitly specified.

Figure 12(a) and 12(b) shows the tracking performance
under different sensor density. From Figure 12(a), we can
observe: (a) The tracking algorithm can both accurately and
precisely track targets even when the sensor density is not
high. (b) When sensor density increases, the error distance
decreases. This is because of two reasons: (a) When sensor
density increases, more sensor groups can sense the target of
interest. So intersecting sensing areas of more sensor groups
can lead to smaller error distance. (b) When sensor density is
high, better separation is possible as analyzed in Section 6.1.
Figure 12(b) shows that percentage of coverage decreases

when sensor density increases. In other words, when sensor
density increases, more gaps exist in the estimated paths. It
is because of smaller or more precise intersection areas are
estimated when sensor density increases. So the distance be-
tween two neighboring intersection areas increases and more
gaps are created in this way.
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Figure 13. Comparison between Experimental Results
and Theoretical Results

We compared theoretical results and experimental results
through a series of experiments. The results are shown in
Figure 13. In this set of experiment, targets are moving at
the speed of 0.03 meter per sample. We can observe the
experimental curve follows the theoretical curve of average
tracking resolution. The experiments results are in the same
order of theoretical results.
7.5 Number of Targets

In this set of experiments, we vary the number of tar-
gets moving in the field. The results are shown in Figure
14. From Figure 14(a), we can observe: (a) When the field is
crowded with targets, our algorithm can still track target with
reasonable accuracy and precision. (b) The error distance in-
creases when number of targets increases. It is because our
separation step can not perfectly separate out all the signals
when the number of moving target increases. As shown in
Figure 14(b), the percentage of coverage decreases when the
number of targets increases. The decrease is caused by the
decrease in separation performance so that intersection areas
from different slots are not consistently covering the actual
paths.
7.6 Moving Speed

In this set of experiments, we investigate the effect of
moving speed on tracking performance. As shown in Fig-
ure 15, the error distance increases when moving speed in-
creases. The reasons are as analyzed in Section 6.3: speed
increase can lead to decrease of separation performance and
less number of sensor groups sensing enough signal for
tracking.
7.7 Segment Length(lseg)

This set of experiments focus on the length of signal seg-
ments used in tracking algorithm. In this set of experiments,
we fix step size and vary segment length. Since the tracking
algorithm process signal in the unit of segments, segment
length is a critical parameter for the algorithm. The exper-
iment results are shown in Figure 16. As shown in Figure
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Figure 12. Tracking Performance for Different Sensor Density

16(a), the error distance increases when the segment length
increases. It is because of less number of sensor groups
which can sense thew whole segment in their sensing range.
The decrease in the number of sensor group also causes the
decrease in percentage of coverage as shown in Figure 16(b).

7.8 Step Size(lstep)
In this set of experiments, we fix segment length and vary

the step length. As shown in Figure 17(a), error distance in-
crease with step size. This is because for a certain segment
length, larger step size reduces the length of common part
of two successive time slots. So the link correlation is less
reliable. Obviously when step size is small, the percentage
of coverage is around 100 percent. When step size is compa-
rable with segment length, the percentage of coverage is also
high. It is because of larger intersection areas caused by less
reliable link correlation.

7.9 Effect of Parameternslot in Center Selec-
tion Step

As described in Section 5.5, the parameternslot is used in
center select step to select center segments. The parameter
determines the number of successive time slots in considera-
tion for picking center segments. We investigate the parame-

ter with a set of experiments with differentnslot. The results
are shown in Figure 18. From Figure 18(a), we can observe
the sudden decrease in error distance whennslot is larger
than one. It shows that increasingnslot can significantly in-
crease the tracking performance by considering more succes-
sive time slots for picking center segments. The performance
does not change significantly whennslot is larger than four.
We can also observe less percentage of coverage whennslot
is four in Figure 18. It is because the intersection areas is
smaller.

7.10 Effect of Number of Sensors in Sensor
Groups

In this subsection, we describe our experiments on the
parameterngroup, i.e., the number of sensors in each sensor
group. The results are shown in Figure 19. As shown in
the figure, error distance is larger whenngroup is too small
or too large. Whenngroup is small, the number of targets
can be larger than the number of sensors. Generally BSS al-
gorithms perform better when the number of observations is
larger than the number of individual signals. So more sensors
in a sensor group can lead to better separation performance.
But when the number of sensors in sensor group increase, the
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Figure 14. Tracking Performance for Different Number of Targets
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Figure 16. Effect of Signal Segment Length(lseg) on Tracking Performance

sensing range also increases. This lead to larger intersection
areas when intersecting larger sensing areas.
7.11 Paths with High-Frequency Variation

In this set of experiments, we experiment on the per-
formance of tracking targets following paths with high-
frequency variations. In the experiments, we focus on the
path between two points with distance of 300m from each
other. The path between these two points is zigzag path.
We vary zigzag period in our experiments. From the results
shown Figure 20, we can observe the tracking algorithm can
track targets following zigzag paths successfully. We be-
lieve the slight increase of error distance with the number
of zigzag periods is largely because of higher speed to finish
longer paths. This experiments demonstrate the benefit of
applying BSS algorithm in tracking targets. It enable track-
ing algorithm to have richer information for target-tracking.
So the proposed algorithm can successfully track targets fol-
lowing paths with high-frequency variations.

8 Discussion
In this paper, we assume the sensors are placed randomly

in the field. From the analysis in Section 6, we know that

better separation performance can be achieved when sensor
groups can be both distant from targets and sense targets.
So we can possibly reduce the number of sensors needed for
tracking by placed sensors in a better way such as in clusters.
This is one of the topics in our future work.

In this paper, we use BSS algorithms for tracking purpose.
The algorithms can also be used to process data collected by
sensor networks for other applications. Since data collected
by sensors are essentially aggregate data and BSS algorithms
can recover data generated by different sources from aggre-
gate data, analysis based on BSS algorithms can be more
accurate.

9 Conclusion
We propose a general approach to track multiple targets

using wireless sensor networks. The approach is based on
blind source separation (BSS) algorithms. By applying BSS
algorithms on aggregate signals collected from sensors, we
can recover individual signals from targets for tracking. The
proposed tracking algorithm fully utilize both spatial and
temporal information available for tracking. We evaluate the
proposed tracking algorithm both experimentally and theo-
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Figure 17. Effect of Step Size(lstep) on Tracking Performance
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Figure 18. Effect of Parameternslot on Tracking Performance

retically. The tracking algorithm can track targets both ac-
curately and precisely. Because of richer information made
available by BSS algorithms, the proposed algorithm can
also track paths with high-frequency variations.
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