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Abstract

the signal processing language, signals received by sensor

This paper describes an approach to track multiple targetsare generallynixturesof signals fromindividualtargets. For

using wireless sensor networks. In most of previously pro-
posed approaches, tracking algorithms have access tagthe si
nal fromindividualtarget for tracking by assuming (a) there
is only one target in a field, (b) signals from different tasge
can be differentiated, or (c) interference caused by sgynal

example, an acoustic sensor in a field of interest may receive
sound signals from more than one targets. Obviously track-
ing targets based on mixture signals can result in inaceurat

results when interference from targets other than the one of
interest is not negligible. Without loss of generality, weeu

from other targets is negligible because of attenuation. We the termaggregate signato mean the signal received by

propose a general tracking approach basetlom source
separation a statistical signal processing technique widely
used to to recover individual signals from mixtures of sig-
nals. By applying blind source separation algorithmsnig-

ture signals collected from sensors, signals frivdividual
targets can be recovered. By correlatindividual signals
recovered from different sensors, the proposed approach ca
estimate tracks of multiple targets. To improve tracking pe
formance, our approach utilizes both temporal information
and spatial information available for tracking. We evatuat

sensor, i.e., data collected by sensors emlilvidual signal
to mean the signal transmitted from or caused by individual
targets in the rest of the paper.

Aggregate signals collected by sensors networks pose
a big challenge to target-tracking solutions. The problem
space of the target-tracking problem is divided and special
cases of the target-tracking problem have been well studied

e Single-target case: In this case, it is assumed that only
one target exists in a field of interest. So signals re-
ceived by sensors are essentiafiglividual signals

the proposed approach through extensive experiments. Ex-

periment results show that the proposed approach can track ®

multiple objects both accurately and precisely.

1 Introduction

Tracking moving targets with wireless sensors is one of
prominent applications of wireless sensor networks. Sen-
sors, also called as “smart dust” [1], are small devices know
for their simplicity and low cost. Using a network of sensors
with wireless communication capability enables both cost-
effective and performance-effective approaches to track t

Negligible interference case: Some researches assume
that interference from targets other than the one of in-
terest is negligible. The assumption is legitimate for ap-
plications in which signal from a target attenuates dra-
matically when distance between the target and sensor
increases.

e Distinguishable target case: Sensors can distinguish tar-
gets by tags embedded in signals or by having different
targets to send signals using different channels such as
using different frequency bands.

gets because of the availability of large amount of data col- a|| these special cases assume that tracking algorithms can
lected by sensors for tracking targets. Depending on the ap-naye access to individual signals. Singh et al. [2] propose a
plications, sensors with different sensing modalitieshsa®  general approach to track multiple targets indistinguiha

acoustic, seismic, infrared, radio, and magnetic can be de-by sensors. The approach is based on binary proximity sen-

ployed for tracking different type of targets.
In general, data collected by sensoraggiregatedata. In
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classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

sors which can only report whether or not there are targets
in sensing area. The approach is based on simple device, the
binary proximity sensors with the cost of limitation thaist

only applicable to to track targets in smooth paths [2].

We propose an approach based on blind source separa-
tion, a methodology from statistical signal processingeto r
cover unobserved "source” signals from a set of observed
mixtures of the signals. Blind source separation model was
originally defined to solveocktail party problemThe blind
source separation algorithms can extract one persons voice
signal given the mixtures of voices in a cocktail party. Blin
source separation algorithms solve the problem based on the
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independence between voices from different persons. Sim-2 Related work

ilarly, in the target-tracking problem, it is generally sab Wireless sensor networks have been proposed or de-
assumendividual signalsrom different targets are indepen-  ployed to track targets in various applications. The exaspl
dent. So we can use blind source separation algorithms toare tracking robots with infrared signal [6], tracking vehi
recoverindividual signalsfrom aggregate signalsollected  cles with infrared signals [7], tracking ground moving tar-

by sensors. For the cases in whindividual signalsare de-  gets with seismic signals [8], tracking moving vehicleshwit
pendent, blind source separation algorithms based ongimin acoustic sensors [9], tracking people with RF signals [10].
structure [3-5] ofndividual signalscan be used. Location detection, equivalent as tracking static tardetse

The proposed algorithm utilizes both temporal informa- also b.een.studied gxtensively. The topic has. been investi-
tion and spatial information available to track targets.- Ap gated in different wireless networks such as wireless senso

plying blind source separation algorithms on aggregate sig networks [11, 12], wireless LANs [13], and wireless ad-hoc

nals collected by sensors can recaveividual signals But networks [14, 15].
the output of blind source separation algorithms includzs n Most proposed approaches to track targets and detect lo-
only recovered individual signals, but also noise sigres, cation are based on characteristics of physical signals suc

gregate signals and partial signals which contain indidu s angle of arrival (AOA) [16-18], Time of Arrival (TOA)
signals in different time durations. Clustering is usedim o [19, 20], Time Difference of Arrival (TDOA) [21, 22] and
algorithm to pick out the individual signals from signalgou  Received Signal Strength (RSS) [23, 24]. Receiver signal
put by the blind source separation algorithms. A voting step Strength is widely used in tracking targets with wireless-se

based on spatial information is used to further improve the SOr networks [25, 26]. Lots of work focuses on tracking
performance of the algorithm. a single target [27-29] or assume targets are distinguish-

o ) , able [30]. Tracking multiple targets in a field is a challeTmi
The contributions of this paper can be summarized as fol- proplem in comparison with tracking single target. Various
lows: advanced techniques have been applied to solve the prob-
lem. The examples are signal processing techniques such as

gets in a field. The approach can be applied in real- Wavelet [31], FFT [7, 32], Kalmn filter [33, 34], statistical
world applications where targets are indistinguishable techniques such as principle component analysis [35].

and interference from other targets other than the one A String of researches on tracking targets with wire-
of interest is not negligible. less sensor networks are based on binary proximity sensors

) ) ) which can only report whether there are targets within sens-
e We evaluate our approach with extensive experimentsing area. Initial work [27—29] on binary proximity sensors
and analyze the effect of parameters used in the pro-focus on tracking single target. Singh et al. [2] extended
posed approach experimentally and theoretically. the approach to track multiple indistinguishable targsts b

e We propose metrics to evaluate performance of target- applying particle filtering algorithms. Approaches based o
tracking algorithms. The metrics originate from the binary proximity sensors have two obvious advantages: (a)
general metrics used to evaluate performance of an esti-The sensors are very simple since they only report binary in-
mator in statistics since essentially target tracking-algo formation. (b) The approaches are robust since interferenc
rithms estimatethe paths based on data collected from from other targets are essentially filtered out by an equiva-
sensor networks. lent low-passed filter [29]. The cost of using these simple

devices is loss of information which is helpful to accuratel

track targets due to the filtering effect. So approachestbase
on binary proximity sensors can not track target in path with
high-frequency variations [29]. We propose a general ap-
proach to track multiple indistinguishable targets. The ap
proach is based on blind source separation algorithms which
can recover individual signals from aggregate signals. So
the challenging problem of tracking multiple targets beeom

a much easier problem equivalent as tracking single target.

“Since individual signals can be fully recovered, our apphoa

can track targets following paths with high-frequency &ari

tions.

e We proposed a general approach to track multiple tar-

e According to our knowledge, we are the first to apply
blind source separation to process data collected from
wireless sensor networks. Blind source separation al-
gorithms are useful tools for processing data collected
from wireless sensor networks since essentially data
collected from sensors are aljgregateadata. In this pa-
per we focus on applying blind source separation in the
target-tracking problem. The blind source separation
algorithms can also be used to process data in other ap
plications of wireless sensor networks such as location
detection and factor analysis. For most applications of
wireless sensor networks, analysis basedhdividual
signals can yield more accurate results. 3 Network Model and Assumptions

The rest of the paper is organized as follows. Section 3ex- A general model of tracking targets using wireless sensor
plains about our network model and assumptions. In Sectionnetworks is shown in Figure 1. Wireless sensors are ran-
5, we describe our approach in details. Section 6 theoreti-domly deployed in the field of interest. Generally a wireless
cally analyzed the performance of our approach and effect of sensor can receive individual signals from multiple sosirce
parameters used in our approaches. we report performancé&or example, suppose acoustic sensors are deployed in Fig-
evaluation results of our approaches in Section 7. We con-ure 1, SensoD; can receive audio signals from Targets,,
clude our paper in Section 9. andsgz during one time duration. Following are the assump-



nalsSi(t), ---, Sy(t) and n observations of mixtur®,(t),

-, On(t) whereOi(t) = 3'_; aj Sj(t). The goal of BSS is to
reconstruct the source sign&gt) using only the observed
dataG;(t), the assumption of independence among the sig-
nalsS;j(t). Given the observatiors;(t), BSS techniques es-
timate the signal$§;(t) by maximizing the independence be-
tween the estimated signals. A very nice introduction to the
statistical principles behind BSS is given in [39]. The com-
mon methods employed in blind source separation are min-
imization of mutual information [40, 41], maximization of
nongaussianity [42,43], maximization of likelihood [45]4
Timing-structure based algorithms [3-5] can be used to re-
cover source signals when source signals are dependent.
4.2 Recover Individual Signals for Target-

- Tracking with Blind Source Separation
Figure 1. Network Model Algorithms
In our tracking approach, blind source separation algo-
) . ) rithms are used to recovémdividual signals i.e., source
tions made in this general model: signals as in Section 4.1 fromggregate signalsi.e., ob-

e Sensors have no capability to distinguish targets. This Servations as in Section 4.1. Suppose acoustic sensors are
assumption is important for deploying sensors in un- deployed in the field shown in Figure 1, Sen€rcan re-
cooperative or hostile environment as tracking enemy ceive audio signals from targess, S, andS; and Senso®;
soldiers with wireless sensor networks. can receive audio signals from targstandss. If we repre-

sent the signal received by Sen§yrasO;(t) and the signal

from TargetS asS(t), we can have following two equations:
O1(t) = Su(t) + S(t) + Sa(t), Oa(t) = Sp(t) + Ss(t). In gen-
'eral, form neighboring sensors amttargets, we can rewrite
the problem in vector-matrix notation,

e The location of each sensor in the sensor network is
known. Location information can be gathered in a vari-
ety of ways. For example, the sensors may be planted
and their location marked. Alternatively, sensors may
have GPS capabilities. Finally, sensors may locate
themselves through one of severals schemes that rely Oa(t) Si(t)
on sparsely located anchor sensor nodes [36]. Oa(t) S(t)

e Aggregate signals collected by wireless sensors can be : = Amn : @)
gathered for processing by a sink or gateway. Data com- Om(t) Sh(t)
pression or coding schemes designed for sensor net- . . . .
works such as ESPIHT [37,38] can be used to reduce W_hereAmX_n is _called mixing matrixin the BSS literature.
the data volume that is caused by remaining spatial re- Since the individual signals are independent from eachrothe

dundancy across neighboring nodes or temporal redun-- they come from different targets - we can use any of the
dancy at individual nodes. a_lgorlltgsrln(?)meng)(r:)ed in Section 4.1 to recover individual
. .. . . Sighal Ty .
e Targets are moving under a speed limit. Obviously it “\hile the goal of BSS in this context is to re-construct
is impossible to track a high-speed target which only the original signals§(t) , in practice the separated signals
generates a small amount of data when passing the fieldyre sometimes only loosely related to the original signals.

of interest. We analyze the speed limitin Section6. e categorize these separated signals into four typesein th
4 Application of Blind Source Separation Al- first case, the separated signal is correlated to actuaiidhdi
gorithms in Tracking Target ual signalsS (t). The separated signal in this case may have

a different sign than the original signal. We call this tyge o
separated signal as individual separated signal. In thenskec
case a separated signal may be correlated to an aggregate of
signals from several targets. This happens when signats fro

In this section, we introduce blind source separation and
rationale of applying blind source separation to the midtip
target tracking problem using wireless sensor networks.

4.1 Blind Source Separation more than two targets can be “heard” by all the sensors. In
Blind Source Separation (BSS) is a methodology in sta- such a case, the BSS algorithm would not be able to fully
tistical signal processing to recover unobserved “sousitg” separate the signal mixture into the individual separatgd s

nals from a set of observed mixtures of the signals. The nals. Rather, while some individual signals can be success-
separation is calledlind to emphasize that the source sig- fully separated, others remain aggregated. In the third,cas
nals are not observed and that the mixture is a black box separated signals may be correlated to one original signal i
to the observer. While no knowledge is available about the the beginning part and correlated to another original digna
mixture, in many cases it can be safely assumed that sourcen the rest. We call this type of separated signal as partial
signals are independent. In its simplest form [39] , the separated signal. This happens when a target moves out of
blind source separation model assumes n independent sigone sensing range and enter into another sensing range. In



the fourth case, separated signals may represent noise sig- Ori gi nal \Aggregate Si gnal
nals. Noise in our case can be caused by attenuation because
of the distance between sensor and targets. When a target

is moving, the attenuation will change depending on the dis- 2”"’" Segg“
tance between the target and the sensor of interest. So two
neighboring sensors may receive different individual algn ‘Avﬂﬁﬁv%%d
from one target. The difference can be separated out as noise .
separated signals. Step size | A
5 Blind Source Separation Algorithm
5.1 Tracking Algorithm
The tracking algorithms consists of six steps: In the first ‘ \ A ACO)
step, aggregate signals collected from sensors are grouped _ )
and segmented and these segmented signals are fed to the Figure 3. Signal Segments

second step, blind source separation step. The output of
blind source separation step are the separated signals. As )
described in Section 4, these separated signals contdin ind Ve represent the segment group frismsensor block and
vidual separated signals, aggregate separated signigs, no 1th time slot as0G; ;. The pth segment in the group is de-
separated signals, and partial separated signals. Ghgster noted aSOi',)j- In set theory notationQG j = {ij “p=
step will cluster these separated signals. Based on thieclus 1,---,ngroupt. The output of the preparation step is segment
information, center selection step selects separatedlsign groupsOG, ;.
which are closest to actual individual signals. Intersecti Redundancy is created during grouping and segmenting.
step estimates segments of paths based on separated signdls grouping, a sensor can be grouped into more than one
selected from the previous step. Voting step outputs the est sensor groups. In segmenting, two successive time sloés hav
mated paths by voting on path segments generated in the inoverlap. The redundancy will be utilized in the following
tersection step. The details of these fives steps (preparati  steps.
separation, clustering, center selection, intersectioting) Since after the preparation step, signals are all in unit of
are described below. segments. We use actual segments, individual segments, ag-
gregate segments, partial segments, noise segments to mean
T @ T T I segments of original individual signals, individual segted
[— == ————— I signals, aggregate separated signals, partial sepatigted s
f % : ® . nals, and noise separated signals respectively.
' G

i

1

1

5.3 Separation Step
! The separation step applies a BSS algorithm on segments
gy I I P a contained ir0G j. The output of the separation step is sepa-

i rated segments in groups denotecﬂiﬂ!j, i.e., the group of
- -i ————— segments separated fraD; ;.

i

1

5.4 Clustering Step
Clustering step is used to eliminate noise segments, ag-
gregate segments, and partial segments. The heuristiedehi
this step is: If a separated signal represents an indivilgal
nal, similar signals will be separated in at least similanfs
by more than one neighboring sensor groups. In contrast, a
separated signal that was generated because of attenuation
or some interference has likely been generated by a single
group only.
5.2 Preparation Step Based on the heuristic we identify cluster of similar sepa-
To fully utilize information collected from wireless senso ~ fated signal segments by using the correlation coefficient a
networks, aggregate signals are grouped spatially and segmeasure of similarity, and define the distance between two
mented temporally. As shown in Figure 2, sensors in the Separated segments as follows:
field are grouped into sensor groups. Each groupngas y o J
neighbor?ng s%nsors. Aggreggte si%nals coll%cteg?rodg eac D( H’Sn(?j) =1~ |lcorr( ﬂ’Sk?j)H ’ @
sensor group are segmented according to time slots shown o )
in Figure 3. Time slots are of lengths, The step size be- Where S denotes thepth segment in separated segment
tween two successive time slotsligp So two successive groupsq’j, andcorr(x,y) denotes the correlation coefficient
signal segments have a common part of lefgdf- lstep A of segments andy. We use the absolute value of the corre-
BSS algorithm will be applied on grouped aggregate signals lation coefficient because the separated segments may be of
sequentially, i.e., segment by segment in the next step. different sign than the actual segment. Clustering willyonl

Figure 2. Grouping (Ngroup=15)



cluster segments of same time slots as indicated in the dis-each time slot i which is the number of targets in the field.

tance measure defined in Equation 2. The value oK is either known a priori or can be estimated
The highly-correlated (similar) segments will cluster to- by using Principle Component Analysis.

gether. Figure 4 use a two-dimensional representatiorrio fu

ther illustrate the rationale for the clustering approacthis 000 +

step. As shown in this figure, the individual segments form + %o

clusters. The aggregate segments and partial segments on o

the other hand scatter in-between these clusters. The noise

segments are distant both from each other and from the other o

segments. A oeo
In summary, the input of the clustering stepS'@{lj and A 4 2 o

the output of this step is clusters formed in each time slots. Y

We useCIst} to denote théth cluster formed in thgth time

slot. o ©

5.5 Center Selection Step o e
The goal of center selection step is to select center seg- o o :

ments as shown in Figure 4 from clusters formed in the pre- o Partial Signals

vious step. Center segments are the segments in the center of + noise Signals

each cluster formed according to distance measure defined in A

Equation 2. The heuristic behind the step is: When a target

is moving, neighboring sensor groups along the path can re-

ceive common part of the individual signal from the target. .

But for segments created from noise, the heuristic will not 5.6  Intersection Step

hold. For example, suppose thie andkth sensor groups are We estimate a segment of path by intersecting the sensing

neighboring sensor groups and Segmﬂ/ﬁsmdsfjﬂ sep- ranges of sensor groups that are likely to “hear” the target.

For this we select sensor groups that have separated segment
arated from these two sensor groups are related to the SaMat are closely correlated with the likely individual segyrts

. . . . /
individual signal from a target, the latter part§f, should  from the targets in the area. The rationale is that for the

be very similar as the beginning part a/fjﬂ_ More spe- sensors in a sensor group to hear a target, they must have

o . : sensed a signal that is at least similar to the signal gesterat
cific, the partial segmer§ j (Isiep Iseg) Should be highly cor- 40 o get This means that sensor groups with separated

related with the partial segmest; . ; (0,lseg—Istep). (Please  segments that correlate with any of theenter segments are

Center of Individual Signals

| ndi vi dual Signal s

Aggregate Signals

Figure 4. Clustering

note: we uséﬁ/p-(x y) to denote the the part of segméﬂ likely to hear a target. We therefore determine the likelhpa

' S - ’ segment taken by a target by geographically intersectiag th
fromt =xtot =y.) The heuristic still holds for segments S€9M y atarget by geographically 9
separated from the same sensor block, i.e. k. Link cor- sensing areas of the sensors in those sensor groups that have

, / i ) L highly correlated separated segment with a center segment
P g ST . ;
relation’ p(§5,S.,1) is defined based on the heuristics s getermined in the preceding center selection step.

follows: The input of this step is center segmefis For each
DJ(S,?SEJH): ||Corr(55(|step|seg)aSK?j+1(oa|seg_|step))|| center segment, an intersection amfadj Is generqted as
(3) output of this step. These generated areas are estimated pat

/ / . . ts.

where P sd denotes the link correlation between SIMEN'S.
p(s,’;) S“*J“,)q _ a 5.7 \oting Step

segr.nentﬁ,j ?ll"dsk,jﬂ- Absolute value is used in link cor- The voting step selects best estimated path segments for
relation definition because the separated segments may be ofach time slot and concatenates the best estimated path seg-
different sign than the actual segments. ments to form an estimated path.

Center segments are selected based on the link correla- The criteria used in selecting best estimated path seg-
tion: The center segment @Ist; is the segment that has the ments are based on the distance between path segments, i.e.,
highest link correlation with one of the center segments se- intersection areas. The distance between two interseation
lected inj + 1th time slot. To make center selection more ro- eas is defined as the distance between two closest points from
bust against aggregate and partial segments, we use summasach area. If two areas overlap, their distance is zero. in ou
tion of link correlation betweengot consecutive time slots,  algorithm, the best estimated segments in one time slot have

ie.,p= Eij:*jnslot Oi. the smallest total distance with all the estimated segnients
The input to the center selection step:ist} and the out- ;:iumréesl':gttlsrne slot, previous four time slots, and followingf

put is center segmen(ﬁ' which denotes théh center seg-

ment in thejth time slot. The number of center segments in 6 Theoretical Analysis

In this section, we analyze the effect of signal attenuation

We use the term link correlation because it is used to “link” tracking resolution, effect of moving speed, and compjexit
segments in twesuccessivéime slots. of the algorithm.




input :Clst} - ith cluster formed irjth time slot
(j=1,---,v), K- number of center segment
in each time sloty is number of time slots
available.
output: Cﬁf - kth center segment selected frgth
timeslot(j =1,---,v)
1 Initialize ClstFlag; = O for alli andj;
2 Initialize C¥ = 0 for all k and;

3 forr— 1ltov—1do
4 foreachseparated segmenf 8 rth time slotdo

5 foreachseparated segment # (r + 1)th
time slotdo
6 calculate link correlatiop, (S,, S))
according to Equation 3;

7 end

8 end

9 includep; (S,, S,) into the sepy;
10 end

11 for s« 1toK do
12 forr —1tovdo

13 if r == 1then

14 while G ==0do

15 find segments, andS, which have
the largest link correlatiop, (S,,S,)
in the setpy;

16 find Clst* so thatS, € CIst’; /* S,
belongs to rth time slot. */

17 find Clst/, ; so that§, € Clst’_ ;;

18 if ClstLabef ==
0&&ClstLabe} ; == 0then

19 C=8;

20 Crii= S

21 removep, (S,,S,) from the sepy;

22 SetClstLabef = 1;

23 end

24 else

25 removep,(S,,S,) from the sepy;

26 Continue;

27 end

28 end

29 end

30 if r > 1then

31 while CZ==0do

32 find segments,, in the (r + 1)th time

slot which has the largest link
correlation withC? in the sefpy;

33 find Clst’, ; so thatf
ClstLabef,; == 0then
34 G =S,
35 Ci1=Sw
36 removep, (Cf, S,,) from the sepy;
37 Setclulabef, ; = 1;
38 end
39 else
40 removep, (CF, S,,) from the sepy;
2 Continue;
42 end
43 end
a4 end
45 end
46 end
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Figure 5. Setup for Experiments on Signal Attenuation

6.1 Signal Attenuation

Signal attenuation is a natural consequence of signal
transmission over long distances. It is a function of trans-
mission distance.

When tracking static targets, signal attenuation will not
affect tracking performance. Since targets are staticdithe
tance between targets and sensors does not change over time.
So the attenuation can be modeled as a constant. For the
same individual signal from a target, different sensorg wil
observe different attenuation because of different trasism
sion distance. So individual signals received by different
sensors from the same target can be different by a scaling
factor. The difference because of a scaling factor can be ab-
sorbed by the mixing matrix defined in the BSS model as
Equation 1. So attenuation does not affect tracking static t
gets by our approach.

When tracking moving targets, signal attenuation may
cause noise signals in the output of separation step. When
targets are moving, the difference between individualaign
received by different sensors is not just a scaling facter. B
cause when a target is moving, the attenuation changes with
the transmission distance between the target and a specific
sensor. So the difference can not be absorbed by the mixing
matrix. The consequences of the difference are: (a) Noise
segments can be generated during separation because of the
difference (b) Separated individual signals are less taierée
with original individual signals. Clustering step, censer
lection step and voting step are designed with consideratio
of these consequences.

We did a simple experiment to show the effect of signal
attenuation on the separation performance when targets are
moving. The setup is as shown in Figure 5: Ten randomly
placed sensors form a sensor group. Three targets are mov-
ing in the sensing range of the sensor group. We fixed the
path of two targets in our experiment and increase the verti-
cal distance between center of the sensor group and the path
taken by the target of interest. Figure 6 shows the maximum
correlation between separated signals and the actualdadiv
ual signal from the target of interest. As we can observe
that when the vertical distance increases, the correlatitn
original individual signal is higher. So the separationfper
mance is better when vertical distance increases. Themeaso
is: When the vertical distance increase, the range of adtenu
tion change decreases. In turn, attenuated individuahtsgn
received by different sensors are less different. Frometkis
periment, we can also infer the effect of sensor density.eMor



sensor deployed in a field, more likely to have a sensor group  We assumeéN sensors are deployed in an field of s&e
both covering the path segment of interest and distant from meter byb meter and sensing range of each sensBr Both
the target at the same time. So higher sensor density can leadverage tracking resolution and the finest tracking resoiut
to better separation performance. are analyzed below.
6.2.1 Finest Tracking Resolution

Finest tracking resolution is defined as the achievable
minimal mean error distance.

We assume sensor groups are located within a circle of
radiusr on average. So we have

0.

o
9
8

N
axb
Ngroup
—)
wherengroup is the number of sensors in each sensor group.
Thus the average radiuss
% 8‘0 \% tical Dist: d(l

. 110 /3)0 .170 200 ngrou Fﬁb
Figure 6. Effect of Attenuation =\ 5N (4)

THEOREM 6.1. Finest tracking resolution of tracking a lin-
|

Sensor Density =

Correlation
°
2
8

0.86)

6.2 Tracking Resolution

We analyze tracking resolution of the algorithm in this 2.y y
section. The purpose of analysis is to estimate achievable®a" Path segment of length lgs{(tarﬁz) N (ta—rﬂl)}dyWhere
performance of_the proposed trackin_g algorithm. We focus B, = tan¥( y ) and@; = Sinfl(RL).
on the intersection step in the analysis. (Rt1)2—(})2 +
PROOF The finest tracking resolution is achieved when the
path segment of interest fits exactly into the intersectiea a
Estimated Mytersection Area of two sensing ranges as shown in Figure 8. In Figure 8, line

: segmentAC is the linear path segment of length So the

path segment of interest is perpendicular to the line jginin

N Actual Target Path i . _
—t = of center of sensor groups. The distawngg is the distance
Figure 7. An Example between sample point on the path denoted v@tiand the
point on the perimeter of the sensing range denoted kith
First, we definesrror distanceas follows: Sincedgr is the shortest distance fromto any points on the

Definition The error distance between a point in one inter- path segmentle; is also the error distance between pdint
section area and the path segment of interest is the minimaland the path segment.

distance between the point and any point on the path seg- Suppose in Figure.8 the distance between centers of two
ment. o ] ) neighbor sensor groups i.2The value of can be derived
Tracking resolution is defined based on the error distance 55 follows.AOABIs a right angle triangléQA= R+r which

defi.ni.tion: . L i is the sensing radius of sensor group #®&lis '§ which is
Definition Tracking resolution is defined as the average of |5 of the segment length From AOAB

error distance between all the points inside an intersectio

area and a path segment of interest. 2 2 2

As can be seen in Figure 7 actual target path and estimated (R+r)® = x4+ (5)

intersection area. Error distandg; is the minimum dis- I

tance between point inside estimated intersection ar@a (re X = (R+r1)2—(2)2 (5)
resented with dot) and points on the path segment of interest 2

Tracking resolution is average error distance of all th@fsoi  Thus distance between neighbor sensor groups=2

inside an estimated intersection area.
2,/ (R+1)2—(5)2.

We focus on linear path segments in theoretical analysis _ )
for the following reasons: (a) Any path can be formed with The error distancée, can be derived as follows:
linear segments. (b) In practice the segment size used in theerom ADGE as shown in Figure.8.

proposed algorithm is small so that path segments are close y

to linear. To simplify the analysis of tracking resolutioe w tand; = %

assume the path segment of interest fit inside the inteosecti 2y

area and perpendicular to the line joining of center of two X2 = tand; (6)

sensor groups. We assume the sensors are uniformly dis-
tributed over the field. So sensor groups are also uniformly Now from AFDE, FD = R+ r which is sensing radius of
distributed over the field. sensor group anBE =y as can be seen in Figure.8. Where



Figure 8. Finest Tracking Resolution

y is the distance between the poirdssand B as shown in the mean error distance averaged over all the possible.cases
Figure.8.

; y
sinG, = ——
thes R+r
0, — sin (-t 7 AN . B
tand, = oy € Bl — D _____ %-
derr +X2 IR A !
_ y > )(_91___ 2
derr = t—an92 — X2 dw(?_ f__f‘E____L
(8)
Wherex; is from Equation6 ané; is from Equation?.
d y y ) Figure 9. Average Tracking Resolution
er tand, tanf;

For all the points on the line segmeRG, the average THEOREM 6.3. Average tracking resolut|orl1 of tracking

error distance i€ez. . Zoz
2 . . _Y_y
To calculate average of error distance for all the points a linear path segment of length | IF?L g{(tanez)

within the intersection area, we mtegrﬁ? with y between (ﬁ)}dydx where Z 2 x /(R—i— 2 (%)2 which is the

e [
the limits 0 and; . 12 distance between centers of neighbor sensor groups in case

Thus the finest tracking resolution %lf () - of the finest tracking resolution,Rr is the distance between
o U tam; centers of neighbor sensor groups in case of the worst case
(mp)}dy Where 8, = sinl(g%) and 6; = tracking resolutionf, = sin-*(25) and@; =tan *(¥).
tanX( y ). O PROOF As shown in Figure 8, suppose the distance
[(Rirz—(h)2” between the center of two sensor groups xs ZAverage

COROLLARY 6.2. When finest tracking resolution is tracking resolution can be derived by integral of mean error

achieved, the distance between the two neighboring sensodistance over possiblg where x is half of the distance
between the center of two sensor groups. Lower limik of

blocks is2y/(R+1)2 — (5)? value is from the worst tracking resolution and upper lirsit i

The proof of Corollary is contained in the proof of Theorem from the finest tracking resolution. The worst case tracking

. resolution is explained as follows:

6.2.2 Average Tracking Resolution Sensor groups are uniformly distributed over the sensor
Average tracking resolution predicts the average tracking field. Let us say three sensor groupss, ands; are placed

accuracy achievable by the proposed tracking algorithia. It along a line as shown in FigurelO(a), wheges, andsy,s3
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(a) In case of Finest Tracking resolution (b) In case of Waratking Resolution

Figure 10. An Example

have coverage intersection respectively. And let us say theof same length. In the separation step, the separation per-
distance between centers of two neighbor sensor groups iformance for longer signal segments is generally bettar tha
same as in case of finest tracking resolution. Now vary the for shorter signal segments. So in turn, low moving speed
distance betwees andsz by movingss closer tos, as can can lead to better tracking performance. (b) Long signal seg
be seen in Figure10(b). We achieve the worst case when thements correspond to long path segment finished by targets.
distance between centers®fandss is R+r, since sl and  Longer path segments has less chance to be covered entirely
s3 begin to have intersection in their coverage. in the sensing range of one sensor block. So it is less likely
We derived the error distancl,; in section 6.2.1. to recover the whole signal segment for longer signal seg-
ments. In our experiments, we find separation performance
and overall tracking performance is satisfactory whenaign
y y segments have 100 data samples. Obviously the longest path
derr = tand, tan; (10) segment which can be fitted into a sensing range _vvith radius
. (R+r) is of length ZR+r). So the proposed algorithm can
where®; = tan '(¥) and 8, = sin"!(fg). So the mean generate satisfactory result when moving speed is b&jgw
meter per sample interval.

error distance i% Ijz{(y/ tanBy) — (y/tan61) }dy.
0

From Corollary 6.2.1, we know the distance between the 6.4 Comple_xny VS. Trac_kmg_ Performance_

center of two sensor groups when the finest tracking res-  The complexity of the algorithm is largely determined by

olution is achieved. The worst-case tracking resolution is the step size shown in Figure 3. To decrease complexity,

achieved when the distance between the centers of two senWe can increase the step size. The cost will be less reliable

sor groups iR+ r. The average tracking resolution can be link correlation because of shorter common part between two

derived by integral of mean error distance over possijtiee successive time slots. In the mean time, when step size in-

half of the distance between the centers of two sensor groupsCreases, the estimated path may not be continuous since (a)
| An estimated path is composed by a series of intersection ar-

Z 2 . . L
So the average tracking resolution%s[ [ {(y/tanB,) — eas estimated based on signal segments. (b) Thesg intersec-
Rir 0 tion areas may not have overlap when the step size is large.

— 2_ (2 -
(y/fnsl)}dydx where 2 X REM*=()% 8= 7 performance Evaluation
tan (%), andéz = sin (=) O We evaluate the performance of the proposed tracking al-
6.3 Effect of Moving Speed gorithm with extensive simulations with Matlab. We assume
Targets’ moving speed affects performance of tracking al- acoustic sensors are deployed in the field of interest fokira
gorithm. Tracking algorithms track moving targets by ob- ing purpose.
serving changes in sensing signals collected from senkors. .
a target moving through a sensor-deployed field with infinity 7.1 EXperiment Setup
speed, then sensors are not able to observe enough change In the following experiments, the simulated field is a
in sensing signals for tracking. On the other hand, signals 1600m x 1600m square area. Sensors are randomly de-
reported by sensors are digitized, i.e., sampled frommaigi  ployed in the field. The movement of targets is restricted
sensing signals. If a sensor can sample sensing signals witlto a 1000mx 1000mcenter areao eliminate boundary ef-
a high sampling rate, the sensing data collected from sen-fects. The signals used for tracking are real bird signals
sors can possibly capture enough changes for tracking fast-downloaded from website of Florida Museum of Natural
moving targets. To make moving speed discussed in this pa-History [46]. The attenuation of sound signals is according
per independent from the sampling rate, we use meter perto atmospheric sound absorption model [47,48]. The sens-
sample interval as the unit for speed. ing range of sensors is 230m. Paths followed by targets are
The effect of moving speed on the performance of the pro- generated randomly if not mentioned. The number of sen-
posed tracking algorithm is twofold: (a) The algorithm pro- sors in each sensor grougoupis 10 if not specified. In the
cesses collected signals in signal segments. When movindollowing experiments, targets are moving at a speed below
speed is low, the signal segments will be long for time slots 0.15 meter per sample interval.



7.2 Performance Metrics when sensor density increases. In other words, when sensor
As described in Section 5.6 and 5.7, the output of the density increases, more gaps exist in the estimated pdths. |
target-tracking algorithm is the concatenated intersacti is because of smaller or more precise intersection areas are
area. To evaluate the performance according to the concateestimated when sensor density increases. So the distance be
nated intersection area, we quantize the whole area usingween two neighboring intersection areas increases ane mor
10m x 10m tiles. The intersection area is represented by gaps are created in this way.
a set of points inside the area, each point representing the
corner of the corresponding tile. Two metrics are used to
evaluate the area: One is theean error distancelt is based 1
on the error distance defined in Section 6.2. The mean error
distance is the mean of error distance between all points in-
side concatenated intersection areas and the actual gath ta Ta
by a target. The other is thetandard deviation of the error )
distancebetween the points inside the concatenated intersec-
tion area and the actual path taken by a target. The first one 1
measures the accuracy of the tracking algorithm and the sec- .
ond measures the precision of the tracking algorithm. If we
cast the evaluation of the estimation algorithm in terms of k
evaluating a statistical estimator, the accuracy cornedpo R S S Y S i
to the bias of the estimator and the precision corresponds to Sensor Densty
the variance of the estimator. Figure 13. Comparison between Experimental Results
As described in Section 6.4, step size can affect both @hd Theoretical Results
tracking performance and computational complexity. A big
step size can reduce computation time with the cost of hav-
ing gaps between concatenated intersection areas. We usgj.
percentage of coverag® measure the discontinuity in es- '

—e—theoretical
- m - experimental

Error Distance

We compared theoretical results and experimental results
rough a series of experiments. The results are shown in
gure 13. In this set of experiment, targets are moving at

timated paths. It is equal to one minus the ratio betweenthe speed of 0.03 meter per sample. We can observe the

sum of distance between neighboring intersection areas amﬁ;ﬁiiﬁ\m?gts%llﬁﬁgf I?Algvg)s( tg(reir:]heen?[;ertelzcsilltcs u;\:: icr)l f t?l\gZ%
length of the actual path. The distance between two inter- order ng’ theoretical. results P
section areas is defined as in Section 5.7: It is the distance '

between two closest points in each intersection area. If two /-2 Number of Targets

intersection areas have overlap, the distance is zero. In this set of experiments, we vary the number of tar-
. gets moving in the field. The results are shown in Figure
7.3 ATypical Example 14. From Figure 14(a), we can observe: (a) When the field is

~ An example of typical results of our tracking algorithm  crowded with targets, our algorithm can still track targehw
is shown in Figure 11. The paths taken by these targets arereasonable accuracy and precision. (b) The error distance i
shown in Figure 11(a). We include a zigzag path in this ex- creases when number of targets increases. It is because our
ample since zigzag path is one kind of path with high fre- separation step can not perfectly separate out all thelsigna
quency variation. Figure 11(b) shows paths estimated by ourwhen the number of moving target increases. As shown in
algorithm. The estimated paths are drawn in red dots. Figure 14(b), the percentage of coverage decreases when the
7.4 Sensor Density vs Performance number of targets ir]creases. The decreasg is causgd by the
As analyzed in Section 6, sensor density can greatly af- decrease in separation performance so that intersecgas ar
fect tracking performance. In this series of experiments, w from different slots are not consistently covering the akttu
increase the number of sensors in the field from 100 to 1000.Paths. ,
The length of signal segment used in this set of experiments7-6 Moving Speed
is 100 samples. The step size is 10 samples. We will use In this set of experiments, we investigate the effect of
these algorithm parameters in the following experiments if moving speed on tracking performance. As shown in Fig-
not explicitly specified. ure 15, the error distance increases when moving speed in-
Figure 12(a) and 12(b) shows the tracking performance creases. The reasons are as analyzed in Section 6.3: speed
under different sensor density. From Figure 12(a), we can increase can lead to decrease of separation performance and
observe: (a) The tracking algorithm can both accurately andless number of sensor groups sensing enough signal for
precisely track targets even when the sensor density is nottracking.
high. (b) When sensor density increases, the error distance/.7 ~ Segment Lengthlgeg)
decreases. This is because of two reasons: (a) When sensor This set of experiments focus on the length of signal seg-
density increases, more sensor groups can sense the target ments used in tracking algorithm. In this set of experiments
interest. So intersecting sensing areas of more sensopgrou we fix step size and vary segment length. Since the tracking
can lead to smaller error distance. (b) When sensor dessity i algorithm process signal in the unit of segments, segment
high, better separation is possible as analyzed in Section 6 length is a critical parameter for the algorithm. The exper-
Figure 12(b) shows that percentage of coverage decreaseBnent results are shown in Figure 16. As shown in Figure
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Figure 12. Tracking Performance for Different Sensor Dengly

16(a), the error distance increases when the segment lengther with a set of experiments with differen;. The results
increases. It is because of less number of sensor groupsre shown in Figure 18. From Figure 18(a), we can observe
which can sense thew whole segment in their sensing rangethe sudden decrease in error distance whgg is larger
The decrease in the number of sensor group also causes ththan one. It shows that increasingq: can significantly in-
decrease in percentage of coverage as shown in Figure 16(b)crease the tracking performance by considering more succes
7.8 Step Sizdfep sive time slots for picking center segments. The perforraanc

In this set of experiments, we fix segment length and vary does not change significantly whego is larger than four.
the step length. As shown in Figure 17(a), error distance in- We can also observe less percentage of coverage mfign
crease with step size. This is because for a certain segments four in Figure 18. It is because the intersection areas is
length, larger step size reduces the length of common partSmaller.
of two successive time slots. So the link correlation is less 7.10 Effect of Number of Sensors in Sensor
reliable. Obviously when step size is small, the percentage Groups
of coverage is around 100 percent. When step size is compa-
rable with segment length, the percentage of coverageads als
hig_h. It i§ because qf larger intersection areas causedsiy le group. The results are shown in Figure 19. As shown in
reliable link correfation. _ the figure, error distance is larger whegoup is too small
7.9 Effect of Parameterngqt in Center Selec-  or too large. Whemggup is small, the number of targets

tion Step can be larger than the number of sensors. Generally BSS al-

As described in Section 5.5, the parametgy; is used in gorithms perform better when the number of observations is
center select step to select center segments. The parametdarger than the number of individual signals. So more sensor
determines the number of successive time slots in considerain a sensor group can lead to better separation performance.
tion for picking center segments. We investigate the parame But when the number of sensors in sensor group increase, the

In this subsection, we describe our experiments on the
parametengrup, i.€., the number of sensors in each sensor
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sensing range also increases. This lead to larger inteysect better separation performance can be achieved when sensor

areas when intersecting larger sensing areas. groups can be both distant from targets and sense targets.

7.11 Paths with High-Frequency Variation So we can possibly reduce the number of sensors needed for
In this set of experiments, we experiment on the per- tracking by placed sensors in a better way such as in clusters

formance of tracking targets following paths with high- This is one of the topics in our future work. _

frequency variations. In the experiments, we focus on the  Inthis paper, we use BSS algorithms for tracking purpose.

path between two points with distance of 300m from each The algorithms can also be used to process data collected by

other. The path between these two points is zigzag path.Sensor networks for oyher applications. Since data celd:ta(_:t

We vary zigzag period in our experiments. From the results by sensors are essentially aggregate data and BSS algsrithm

shown Figure 20, we can observe the tracking algorithm cancan recover data generated by different sources from aggre-

track targets following zigzag paths successfully. We be- gate data, analysis based on BSS algorithms can be more

lieve the slight increase of error distance with the number accurate.

of zigzag periods is largely because of higher speed to finishg  Conclusion

longer paths. This experiments demonstrate the benefit of \ye hronose a general approach to track multiple targets

?‘Pp'y'”g .BSS a'go”th“_” In tr_ackmg targets. It enable tF‘_"‘Ck using wireless sensor networks. The approach is based on

ing algorithm to have r_|cher information for target-trangi blind source separation (BSS) algorithms. By applying BSS

So the proposed algorithm can successfully track targets fo 544rithms on aggregate signals collected from sensors, we

lowing paths with high-frequency variations. can recover individual signals from targets for trackingeT

8 Discussion proposed tracking algorithm fully utilize both spatial and
In this paper, we assume the sensors are placed randomlyemporal information available for tracking. We evaludte t

in the field. From the analysis in Section 6, we know that proposed tracking algorithm both experimentally and theo-
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retically. The tracking algorithm can track targets both ac
curately and precisely. Because of richer information made
available by BSS algorithms, the proposed algorithm can
also track paths with high-frequency variations.
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