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Abstract 

 
A quantitative understanding of the complexity of cellular metabolism integrated 
with tissue, organ, and whole-body processes requires sophisticated mathematical 
models, computer simulations, and validation with experimental data.  
Physiologically based models incorporate cellular metabolic reactions and 
transport processes of a large number of chemical species.  In general, these 
dynamic models of spatially lumped and/or distributed systems involve highly 
nonlinear phenomena. Such models allow quantitative evaluation of metabolic 
pathways and regulatory mechanisms under normal and abnormal conditions. 
Furthermore, modeling can help quantify mechanisms and predict responses that 
cannot be directly measured.  Consequently, these models can provide a basis for 
simulating the integrated effects of altering enzyme activities or substrate 
concentrations with pharmacological agents. For this complex biomedical systems 
research, we have started a Center for Modeling Integrated Metabolic Systems 
(MIMS).  The thrust of the MIMS Center is mathematical modeling and computer 
simulation of metabolic systems and their changes with exercise, diet, and disease.  
We are developing a general integrative whole-body model that relates cellular 
intermediate metabolism with responses of four major tissue-organ systems: 
skeletal muscle, heart, liver, and brain.  In each of these tissue-organ systems, it is 
essential to determine the effect of spatial distribution related to blood perfusion 
and capillary-tissue transport. As an example, we consider possible effects of 
spatial distribution of perfusion in skeletal muscle. In this model, blood perfusion 
occurs along one spatial coordinate while cellular metabolic processes are 
spatially lumped. In the dimensionless perfusion model, two key dimensionless 
parameter ratios characterize transport: axial dispersion to perfusion and capillary-
tissue transport to perfusion.  These have a significant effect on the behavior of 
the system output and the quantitative evaluation of the metabolic processes.  The 
simulated outputs of the 1-D perfusion model are compared with those of a 
compartment model in which tissue is perfused isotropically. 
 
 



1 Introduction 
 
Essential to biological function is the coordinated and highly regulated metabolic 
processes occurring in all components of the human body.  The human body 
extracts hydrocarbons from ingested food and transforms the potential chemical 
energy in these nutrients to ATP, which ultimately fuels all physiological 
processes.  The regulation of energy metabolism is highly complex, even in 
unicellular organisms. This level of complexity at the cellular level is 
compounded in multi-cellular organisms.  In addition to the main cellular 
pathways of energy metabolism, tissues and organs of a human have specialized 
functions with characteristic fuel requirements and metabolic patterns.  To 
appreciate the significance of individual biochemical pathways and their 
regulation, these pathways must be viewed in the context of a specific tissue/organ 
and/or the whole organism.   

A quantitative analysis of metabolic regulation, however, cannot be 
obtained just from in vivo experimental studies even if all necessary 
measurements were possible.  The complexity of interacting biochemical reactions 
in cellular metabolism and their integration to tissue/organ and whole organism 
levels requires a formal theoretical framework for quantitative understanding.  
Such a framework must provide integration and coordination of cellular 
metabolism with tissue, organ, and whole-body processes.  This can be achieved 
using sophisticated mathematical models and computer simulations. Furthermore, 
this framework can be applied iteratively to yield optimally designed experimental 
studies. 

Physiologically based mathematical models incorporate cellular 
metabolic reactions and transport processes of numerous chemical species.  In 
general, these dynamic models may be spatially lumped and/or distributed 
systems to describe highly nonlinear phenomena. Such models allow quantitative 
evaluation of metabolic pathways and regulatory mechanisms under normal and 
abnormal conditions. Consequently, such models can provide a basis for 
simulating the integrated effects of altering enzyme contents/activities or substrate 
concentrations with pharmacological agents.  

The regulation of substrate and energy metabolism in human tissue/organ 
systems and in the whole-body is complex.  Many cellular compartments, 
chemical species, enzymes, biochemical reactions, metabolic pathways, and 
control mechanisms interact with each other simultaneously to maintain ATP 
homeostasis and tissue/organ viability and function under stress.  Metabolism of a 
tissue depends on its blood flow, arterial substrate and hormone levels, as well as 
on the metabolic, redox, energy, and activation states of its constituent cells.  

Most modeling analyses of metabolism do not deal with regulation of 
metabolic pathways on multiple levels of organization. Complex multi-organ 
systems not only involve interacting metabolic pathways, but also the coordinated 
and integrated responses of chemical species in cells and tissues/organs of the 
whole body.  Typically, in vivo animal experiments cannot provide direct 
measurements of most metabolic fluxes, which make the analysis of metabolism 
particularly challenging.  Therefore, the development of quantitative approaches 



to the analysis of complex, multi-level metabolic systems constitutes a great 
challenge. Such quantitative approaches to describe, analyze, and predict the 
behavior of complex metabolic systems require the integration of molecular, 
biochemical, cellular, and physiological (organ, tissue, whole-body) data.   

The regulation of whole body variables (e.g., blood glucose 
concentration) when a stimulus perturbs the steady state requires the response of 
local control mechanisms, as well as the coordination and integration of the 
responses of tissues/organs with different metabolic characteristics.  The plasma 
concentrations of oxygen, metabolites (e.g., glucose), and hormones act as 
regulators.  The net result should lead to an appropriate rate of oxygen delivery 
and an optimal allocation of fuels and precursors to each organ.  Thus, to 
understand human metabolism and its regulation, it is not sufficient to have a 
complete knowledge of the structure and dynamics of the individual enzymes and 
chemical species that participate in this complex multi-level metabolic network.   
 An integrated multi-level systems approach is needed to quantitatively 
understand the dynamics of cellular metabolic processes in the context of 
tissue/organ systems and the whole body (Cabrera et al. [1]; Connett et al. [2]).  
Such an approach requires information about general features of molecular 
structure, enzyme kinetics, cellular metabolic control and pathways, and 
tissue/organ specific metabolism.  This information is integrated by means of 
computational models, which emulate system properties that incorporate key 
interactions at the cellular and tissue/organ level (Fell [3]; Brand [4]; Salem et al. 
[5]). 
 
  

 
Figure 1: Key structural components of model for transport and metabolism in a 

                  blood-tissue system. 
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To quantify the changes in energy metabolism and its regulation during exercise, a 
mathematical model of muscle bioenergetics has been developed which links 
various cellular metabolic processes to tissue-organ responses (Cabrera et al. [6] 
& [7]).   In these studies, tissue has been represented by a well mixed 
compartment in which perfusion is assumed to be isotropic.  In this work, we 
consider an alternative model consisting of a spatially lumped tissue perfused by 
blood flow in a vascular bed with one spatially continuous coordinate (Jacquez 
[8]).  By comparing output responses produced by these models, we can determine 
how the effects of a spatially distributed perfusion can alter the quantitative 
interpretation of experimental data. 
 
2 Model Development 
 
 Let us consider a metabolic model of skeletal muscle represented either as a well-
mixed tissue-blood compartment or as a well-mixed tissue space in which 
perfusion occurs primarily along one spatial coordinate.   A general schematic 
diagram for the structure of these models is shown in Figure. 1.   
 
2.1 Functional model components   
 
Each model is based on dynamic mass balances (compartmental and/or 
distributed) and mechanistic kinetics for many substrates (e.g., glucose, fatty 
acids) and control metabolites (e.g., ATP, NADH) through coupled reaction 
processes.  A complete listing is given in Table 1. 
 

Table 1: Chemical species and functional roles in metabolic model. 
 

Glycolysis  Krebs Cycle Blood-Tissue 
Exchange  

Lipolysis Energy Transfer 
Processes  

Triglycerides 
Palmitoyl CoA 
 

Free Species 

Glycogen 
G6P 
GAP 
1,3 BPG 

Acetyl-CoA 
Citrate 
α-Ketoglutarate 
Succinyl-CoA 
Succinate 
Malate 
Oxaloacetate 

Glucose 
Pyruvate 
Lactate 
Palmitate 
Glycerol 
Alanine 
Oxygen 
Carbon Dioxide 
 

Pi 
H+ 
Free CoA 

NAD+ 
NADH 
ATP 
ADP 
Phosphocreatine 
Creatine 

  
Each pathway contains a number of reactions that are catalyzed by specific 
enzymes.  In our top-down modeling approach, a set of chemical reactions 
contained in a particular pathway may be represented by a smaller representative 
set of reactions that incorporate substrates with coupled control metabolites.  The 
reaction processes describing cellular metabolism will be modeled as 
stoichiometrically coupled reactions obeying the law of mass action.   
 
 



2.2 Dynamic mass balances of chemical species.   
 
In a compartment model of a spatially lumped, perfused tissue, the concentration 
dynamics Cj(t) of chemical species j has the general form: 

 

effV
dCj
dt

= R(φ j) +Q Caj − jσ Cj[ ]                                             (1)

          
where Veff is the effective tissue volume, R(φj) metabolic rate depending on 
reaction flux φ, Q tissue blood flow, Caj arterial blood concentration, and σj 
blood-tissue partition coefficient.  Only a subset of the chemical species exists in 
blood as well as in tissue cells (as indicated in Table 1).  For those that exist in 
cells only, the second term on the right side of eqn. (1) vanishes.   In 
dimensionless form, the model yields a dimensionless parameter group that 
involves the characteristic transit time (Veff/Q). 
 For a well-mixed tissue space perfused by one-dimensional blood flow, 
the governing equation for species concentration Cbj in the vascular bed is 

             
∂Cbj

∂t
+ Q

∂Cbj

∂v
= A 2 D j

∂ 2Cbj

∂v 2 −
Pj S
Vb

Cbj − σ j C tj[ ]         (2) 

where position along the vascular volume Vb is indicated by volume variable v 
(0<v<Vb), A is vascular cross-section area, Dj is a dispersion coefficient, Pj is 
vascular permeability, and S is vascular surface area for blood-cell transport. The 
boundary conditions for eqn. (2) assume that the input concentrations of chemical 
species are known and that the concentration gradients at the output are negligible.  
 The governing equation for species concentration Ctj in the well-mixed 
peri-vascular tissue is  

                 Vtc
dCtj
dt

=
PS
Vb

Cbj −σ jCtj[ ]
0

Vb

∫  dv + R φj( )                        (3)     

where Vtc is the volume of tissue cells.  In dimensionless form, this model yields 
dimensionless parameter groups that characterize the relative importance of axial 
dispersion to perfusion (or "convection"), A2Dj/QVb, and the relative importance 
of blood-tissue transport to perfusion, PjS/Q. 
 If we integrate eqn. 2 over all v and assume equilibrium between the 
average blood concentration and tissue concentration of exchangeable species, 
then combining eqns. 2 and 3 leads to an equivalent system model: 
 

jV
dCsj

dt
= R(φ j ) + Q Caj − jσ Csj[ ]         (4) 



where the equivalent system volume is Vj =Vtc+σjVb and the equivalent system 
concentration of species j is Csj.  Comparison of eqn. 1 with eqn. 4 indicates that 
these are equivalent if Veff =Vj. 
 For species with molecular conservation in cells (viz., NADH, PCr, 
ATP), we obtain stoichiometric relationships, e.g., CNAD+CNADH=constant. 
 
2.2 Metabolic reaction rates 
 
The metabolic reaction rate of species j is the net rate of production (gain) and 
utilization (loss): 

   
   (5)
    

 
where φij

p is the flux of species j from species i in reaction p and βij is the 
corresponding stoichiometric coefficient.  For example, the reaction rate of acetyl-
CoA is expressed as: 
 R(φAC) =  φPYR→AC + 8φFAC→AC - φAC→CIT 
Typically, reaction fluxes of substrates coupled with control metabolites follow 
Michaelis-Menten kinetics with product inhibition: 
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where Ks are coefficients and X represents a metabolic control ratio (e.g., 
RS=NADH/NAD).  A control ratio is included in the flux expression 
only if it is directly coupled to the corresponding substrate reaction.   As an 
example, consider pyruvate reduction to lactate coupled with NADH utilization: 
 PYR  → LAC ;    NADH  →  NAD+ 
The reaction flux of pyruvate reduction is represented as: 
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3 Simulation Methods 
 
3.1 Numerical methods 
 
The simpler model with a lumped, perfused tissue consists of coupled ordinary 
differential and algebraic equations.  These equations constitute an initial-value 
problem with sparse-stiff systems, which are solved numerically with an 
appropriate integrator, LSODES (Hindmarsh, [9]).  The more general model 
having a lumped tissue perfused by a one-dimensional vascular bed involves 
coupled partial and ordinary differential equations together with algebraic 

jR = β ij
k =1

n
∑ φ ij

p

p =1

q
∑ − β ji

k =1

m
∑ φ ji

p

p =1

q
∑



equations.  For numerical solution, we discretize the spatial derivatives 
incorporating the boundary conditions using DSS/2 (Schiesser &. Silebi [10]).  
The integral term in the model is discretized using Simpson's rule.  Consequently, 
we end up with a sparse-stiff initial-value problem that is solved with LSODES.  
 
3.2 Simulation strategy 
 
Model simulations provide the basis for determining when the two models yield 
output responses that are similar and when they are different.  This is 
accomplished by comparing input-output responses dynamically and at steady 
state.  The most readily accessible output from experimental measurements come 
from concentrations of various species leaving the tissue in venous blood, 
Cbj(Vb,t) = Cvj .  However, to understand the distinctive processes that occur in 
the distributed model, we must also examine the dynamic changes of tissue 
concentration and of concentration distribution in the vascular bed.   
 We can examine the effects of inputs and parameters by changing the 
arterial blood (input) concentrations of key chemical species and by changing 
system parameters such as permeability, axial dispersion, and tissue volume.  
We start with a reference set of parameter values for which the simpler lumped 
model simulates experimental measurements. Then, we estimate the axial 
dispersion and permeability parameters (Dj, Pj) of the more general distributed 
model whose venous blood output corresponds to that of the simpler model at 
steady state. This establishes the initial conditions used to examine the dynamic 
response to a change in a species concentration of the arterial blood.  This process 
is repeated with different values for Dj and Pj.  As an example, we show the 
effects of a step decrease of oxygen concentration in the arterial blood for 
different values of the permeability. 
  
4 Results  
 
We examine simulations of the two models, that is with and without a spatially 
distributed vasculature, when the arterial oxygen concentration is reduced for 30 
min.   With the distributed vasculature, a higher permeability requires a higher 
oxygen concentration in the system to maintain a steady state (Figure 2).  At 5 and 
25 min, the vascular concentration profiles are nearly the same for higher 
permeability because the oxygen concentrations in blood and tissue approach 
tissue-blood equilibrium quickly and not far from the arterial blood input.  At the 
reference permeability value, the arterial-venous oxygen concentration difference 
at steady state is larger because the venous blood reflects the lower tissue 
concentration (Figure 3).  In venous blood, the initial rate of oxygen decrease is 
greater with the higher permeability (Figure 4).  The dynamic venous oxygen 
responses of the two models are essentially identical in the reference case, even 
though the vascular oxygen profiles are different (Figure 2).  
 
 



  
Figure 2: Effect of permeability on vascular bed oxygen concentration profile at 

                  two times after 30% step reduction in arterial oxygen concentration. 
 
  

 

 
Figure 3: Effect of permeability on tissue oxygen concentration after 30% step 

                   reduction in arterial oxygen concentration. 
 
 
 
 



 
Figure 4: Effect of permeability on venous oxygen concentration after 30% step 

                  reduction in arterial oxygen concentration.                                                               
   

 
5 Discussion 
 
We chose to simulate the effects of a spatially distributed vasculature on 
metabolic system outputs in skeletal muscle.  For this tissue, a large body of 
published experimental studies provides key information for estimating model 
parameters and comparing outputs.  Metabolic rate parameters that are the same 
for both models are estimated using data from in vitro and in vivo studies, mostly 
under steady-state conditions. 

Transport parameters of the model with a spatially distributed vascular 
bed are estimated by examining terms of the dimensionless model.  Parameters are 
chosen such that each term of the model is expected to show an effect on the 
output responses. Although the parameter values are unlikely to be unique, 
simulated model outputs are expected to correspond to experimental data within 
measurement error.  
 The lumped tissue-vascular model can simulate the venous output 
response well under limited conditions. Under more general conditions that can 
occur, for example with vascular disease, the lumped model cannot simulate the 
output.  Furthermore, based on parameter values of the simpler model, the 
interpretation of the output may be physiologically inappropriate. For example, 
dynamic responses may require arbitrary changes of Veff.  Comparison of the 
integrated distributed model with the simpler model makes evident the various 
assumptions associated with the latter including the basis for Veff.   Finally, the 
simpler model cannot adequately simulate steady-state output changes with 
permeability for chemical species that have a high uptake rate in tissue and large 
arterial-venous (A-V) difference such as oxygen.    
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