IEC 61850 Portable Digital Substation Training Laboratory

Team Leader: Harpreet Kaur Team Members: Mehedi Hasan, Russel Laganzon, Tariq Aldhafyan, Mahdy Alhasan

Industry Sponsor: FirstEnergy Corp. Industry Advisors: David G. Williams, Aishwarya Gandhi Faculty Advisor: Dr. Allen Morinec

Electrical Engineering and Computer Science, Cleveland State University, Cleveland, OH 44108

Introduction and Background

Scope

- Design, build, configure, and test a new training laboratory for teaching power systems students digital substation smart grid protocols.
- Deliver a brand new \$70k training laboratory donated by Schweitzer Engineering Laboratories (SEL) to the Department of Electrical & Computer Engineering.
- Use the digital substation portable laboratory in future electrical engineering power systems courses.
- IEC 61850
 - An international standard defining communication protocols for intelligent electronic devices at electrical substations.
 - Communication network protocols include Sampled Values (SV) and GOOSE operating on Layer 2 network.
 - Traditional copper wires carrying currents and voltages are replaced by

- Ethernet/fiber-optic cables
- Teaching & Collaboration
 - Provide opportunities to teach the Substation Configuration Description, Commissioning and Testing, Operation, Security, and Maintenance of the digital substation.
 - Collaboration between electrical engineers and computer engineers is an important need in future industry.
 - Valuable pilot demonstration for the industry sponsor, FirstEnergy, to aid in developing the technology for use on the future electric utility grid.

System Design

Power System Model

 Substation model includes a power transformer, transmission line, and bus bar connected to the grid through three circuit breakers.

Hardware

 Includes SEL Merging Units (MU), SDN Switches, Digital Protective Relays, and a GPS Clock.

Software

 Includes AcSELerator QuickSet (SEL-5030), Architect (SEL-5032), Flow Controller (SEL-5056), WireShark, and StationScout.

401-1 401-3 401-3 401-3 401-3 401-3 401-3 401-1 40

<u>Legend</u>

Fig 1: Power System Model

Configurations

• Includes device settings (.rdb), Configured IED Descriptions (.cid), IED Capability

Connection Standard Template (CST)

SEL-5056								PL3 as P	ermission Lev	
Configuration										
Topology	Add CST								-14	
Logical Connections	Alias +1	Status	Priority	Actions						
Configuration Objects	421GS		2000		Status: Si	 Status: Success 				
Flow Entries Group Entries	487BGS		2000							
	487EGS		2000		Match Fields					
	ARP		2000		Namo - Valuo Mack /	Actions				
Meter Entries	DNP3-TCP Client		2000		EthTuno	Inud	musii	ALIGNIS .		
CST Entries	DNP3-UDP Client		2000		InDrate	TCD				
Adoption Settings	FTP		2000		TerDat	urrn				
VID Reservation	HTTP Client	Success	2000		icpusi	ntir				
Administration	HTTPS Client	Success	2000							
	ICMP		2000		Drc	stacol	e and	I onical		
Liagnostics	MMS Client		2000				s anu	LUYICai		
	Modbus Client		2000		ll r	Dart N/	latah E			
	MU01GOOSE		2000				аспг	kules		
	MU01SV1		2000							
	MU01SV2		2000		4					
	MU02GOOSE		2000		O. I.T.					
	MU02SV1		2000		Cast Types					
	MU03GOOSE		2000		Unicast O Bidirectional Unicast Midlinest					
	MU03SV1		2000							
	MU03SV2		2000		Enable Options					
	NTP Client		2000							
	PTP Power Profile		2000		Proactive Fail	Proactive Failover				
	SEL-5056: In Band Path		65000		Include Source Address					
	SSH Client		2000		Set Priority Queue					
	Synchrophasors TCP		2000							
	Synchrophasors LIDP		2000		y					
	Synchiophasors Obi									

Experimental Results

- Merging Units
 - Successfully published and subscribed GOOSE messages; successfully published SV.
- SDN Switches
 - Process Bus successfully directed network flows of Sampled Values and GOOSE messages to the proper devices.
 - Station Bus successfully allowed Telnet, FTP, PTP, ARP, and HTTP to configure all the hardware.

Protective Relays

- Successfully published and subscribed GOOSE messages; successfully subscribed SV.
- Successfully processed the digital information and issued trip signals to protect the power system under fault.

Description (.icd), Substation Configuration Description (.scd), and network flow database (.db).

Network Architecture

Process Bus Network

- Includes SDN Switch, Publishers and Subscribers, Merging Units and Protective Relays. Protocols include SV and GOOSE; also, PTP is used for time synchronization.
- Station Bus Network
 - Includes SDN Switch, Merging Units and Protective Relays. Protocols include FTP, ARP, Telnet, and HTTPS, supporting remote access, commandline interfaces, and HMI.

Conclusion and Future Recommendations

Conclusion

- The portable laboratory is ready for future EEC protective relay and control courses (January 2022).
- Electrical power system engineers and computer engineers collaborated to design a multi-disciplined project. Power system engineers learned networking skills required for modern digital society.
- FirstEnergy advisors gained valuable experience using the software tools in IEC 61850 to create a functioning digital substation.
- The students integrated different hardware/software interfaces to seamlessly create a working substation laboratory not previously documented before.

Recommendations

- Future work includes expanding the laboratory to verify interoperability between different vendors' equipment.
- Class lab design projects will reconfigure the substation model for their own attempt at designing a digital substation architecture.
- Investigate network redundancy methods supported by hardware.