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LINEARIZATION AND HEALTH ESTIMATION OF A 

TURBOFAN ENGINE 

BHARATH REDDY ENDURTHI 

ABSTRACT 

 

Jet engines are precision machines composed of many expensive parts characterized by a 

large number of variables. An engine’s health deteriorates considerably over time. 

Certain engine variables, known as health parameters, have a major effect on its health. 

Monitoring and evaluating these health parameters help in developing predictive control 

techniques and maintenance, thereby increasing the performance, life, reliability, and 

safety of the engine. The main aim of this research is to estimate the health parameter 

deterioration of a turbofan aircraft engine over a period of time. It is impossible to 

directly measure the health parameters. We therefore estimate the health parameters using 

an estimation technique based on the available measurements. The Kalman filter has been 

shown to be an optimal estimator for linear systems. So the nonlinear engine model is 

linearized with respect to three different sets of parameters (states, controls, and health 

parameters) using three different linearization methods. This gives us 27 different 

possible linear models for one nonlinear engine model. The different linearization 

methods that will be discussed are the Matlab method, the perturbation method, and the 

steady state error reduction method. Kalman filtering results are investigated for all 27 

different linear models at two different operating conditions for the turbofan engine. A 

graphical user interface is also developed to make the turbofan health estimation problem 

more user friendly. The implementation of the unscented Kalman filter, a new nonlinear 

estimation technique, is also discussed. 
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CHAPTER I 

INTRODUCTION 

 

Jet engine components are subject to degradation over their lifetime of use [1]. This 

degradation affects the fuel economy and component life consumption of the turbine. 

Performance data is collected periodically to evaluate (estimate) the health of the engine. 

This evaluation (estimation) is then used to decide maintenance schedules. This offers the 

benefits of improved safety and reduced operating costs. The data used for the health 

evaluation is collected during the flight and analyzed post flight for maintenance 

schedules. Various algorithms have been proposed to estimate the health parameters of a 

jet engine such as weighted least squares [2], expert systems [3], neural networks [4], 

Kalman filters [4] and genetic algorithms [5]. The research work presented here deals 

with the application of Kalman filters for health parameter estimation.  

 

The main aim of this thesis is to investigate various linearization techniques that 

can be implemented to linearize the highly nonlinear turbofan engine model and then to 

estimate its health parameters. Different estimation techniques like linearized Kalman 
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filter and unscented Kalman filter are to be implemented to estimate the engine health 

parameters. Once the linear models are validated, their effects on the engine health 

parameter estimates are checked. A graphical user interface for the implementation for 

health parameter estimation of turbofan engine has to be developed. The implementation 

of unscented Kalman filter, a new nonlinear estimation technique, for the turbofan engine 

health parameter estimation is also discussed. 

 

A turbofan engine model can be obtained from the basic knowledge of physics of 

a turbofan. Chapter II discusses the working principle of a turbofan engine and also 

describes the different kinds of turbofan engines. MAPSS (modular aero propulsion 

system simulation) is the engine model used in this research. MAPSS is a prototype 

(dynamic model) of a high pressure ratio, dual spool, low bypass military type turbofan 

engine [6].  

 

 State estimation plays an important role in the field of control engineering.  

Dynamic measurements from the system are considered while estimating the states of the 

corresponding system. The basic estimation techniques implemented for the linear 

systems are described in Chapter III. The Kalman filter has been applied in areas as 

diverse as aerospace, marine navigation, nuclear power plant instrumentation, 

demographic modeling, manufacturing, and many others. This filter, also considered to 

be the optimal state estimator, is also discussed.  
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 As the turbofan engine is highly nonlinear, linear estimation cannot be directly 

implemented. Hence, nonlinear estimation techniques which are derived from the linear 

state estimation are also discussed. The linearized Kalman filter, considered to be one of 

the efficient nonlinear estimation techniques, is derived in Chapter IV. This nonlinear 

estimation technique works on the linearized model of the nonlinear model. Hence the 

linearization process and different kinds of linearization techniques are also discussed in 

Chapter IV. 

 

The implementation of the linearized Kalman filter to the turbofan engine is 

discussed is Chapter VI. Various linear models of the MAPSS model are obtained and 

their behavior is compared with the nonlinear MAPSS model. The results of the 

implementation of the linearized Kalman filter with all of the linear models are shown. 

 

Lots of research is being carried out in nonlinear estimation. The unscented 

Kalman filter, a new estimation technique, is one result of that research [7]. The 

unscented Kalman filter is derived to overcome the difficulties faced in the 

implementation of the extended or linearized Kalman filter. Chapter VI discusses the 

unscented Kalman filter and its application to a small state problem. The implementation 

of the unscented Kalman filter for the turbofan model is discussed in Chapter VII. 
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CHAPTER II 

THE TURBOFAN ENGINE 

 

One should be able to understand the basic theories and terms of turbofan engines while 

working with them. The turbofan engine works on jet propulsion theory. Propulsion is the 

net force that results from unbalanced forces. These unbalanced forces are the result of 

implementation of Newton’s laws of motion to certain objects. Gas (air) under pressure in 

a sealed container exerts equal pressure on all surfaces of the container, therefore, all the 

forces are balanced and there are no forces to make the container move. If there is a hole 

in the container, gas (air) cannot push against that hole and thus the gas escapes.  While 

the air is escaping, the side of the container opposite to the hole has more pressure than 

side with the hole.  Therefore, the net pressures are not balanced and there is a net force 

available to move the container. This principle is better explained with an inflated balloon 

(container). A brief introduction of the jet propulsion theory is given in Section 2.1. The 

working principle of gas turbine engine and different types of gas turbine engines are 

discussed in Section 2.2. Section 2.3 explains the engine performance, and is immediately 

followed by Section 2.4 which describes the turbofan engine used in this research. Finally 

Section 2.5 describes the modeling of the turbofan engine.  
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2.1 Jet propulsion theory 

 Consider a balloon on a table, inflated with air at room temperature and the stem 

is held closed so that no air can escape. The balloon remains motionless as shown in 

Figure 2.1 since the air pressure inside the balloon is pressing equally on the balloon skin 

in all directions. That is, there is no force exerted on the balloon to move it.  

  

        Figure 2.1: Inflated balloon       Figure 2.2: Inflated balloon with stem released 

 

However, when the stem of the balloon is released, the air escapes through the 

opening created by the stem release as shown in Figure 2.2. This process also creates an 

unbalance in the pressures acting on the skin of the balloon. The pressure at the stem 

section of the balloon reduces, but the pressure on opposite section to the skin doesn’t 

change. This pressure imbalance results in unbalanced forces acting on the balloon, 

which makes the balloon move forward in direction opposite to the stem opening through 

which the air escapes. The force with which the balloon moves forward is called thrust. 

All the reaction engines like gas turbine engine, rocket, pulsejet or ramjet work on the 

same principle described above. However, the important thing to be noted is that the 

balloon would have moved even if the room had been a large vacuum chamber. That is, 

the thrust developed does not need any medium to move the balloon. Rockets in general 

operate on the same principle as they travel in the airless outer space. The major principle 
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being the conversion of the energy of expanding air (gases) in to mechanical force 

(thrust). 

 

Heron of Alexandria (Hero) built the first reaction engine somewhere around 250 

B.C.  Heron devised a machine called aeolipile shown in Figure 2.3, which was a closed 

vessel in the shape of a sphere with two bent tubes mounted on its surface opposite to 

each other. Steam at very high pressure was continuously introduced in to the sphere. The 

high pressure steam escaped through the two tubes resulting in a force rotating the sphere 

about an axis. The principle behind this phenomenon was not fully understood until 1690 

A.D. when Sir Isaac Newton in England formulated the principle of Hero's jet propulsion 

"aeolipile" in scientific terms. His Third Law of Motion stated: "Every action produces a 

reaction ... equal in force and opposite in direction."  

    

    Figure 2.3: Heron’s aeolipile 

 

All the jet engines designed operate on the same principle. Although there are 

piston engines which work similar to the jet engines, they are rarely used in the aircrafts. 

Both the engines convert the energy of the expanding gases in to mechanical force 

(thrust). The major drawback in the piston engines is that they impart relatively small 
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acceleration to a large mass of air compared to the large acceleration of small mass of air 

in jet engine case.  

 

2.2 Gas turbine engine (Turbojet) 

The gas turbine engine is the turbine engine that is operated by a gas, which is the 

product of the combustion that takes place when a fuel is mixed and burned with the air 

passing through the engine. Jet engine is the other name for gas turbine engine. The 

operation of the turbojet; simplest gas turbine engine is similar to that of the aeolipile. 

However, the sphere is replaced by a can like horizontal container open at both ends. This 

horizontal container is called an engine case. This engine case has five major sections 

like inlet, compressor, combustor (burner), turbine and outlet (jet nozzle). Large 

quantities of air enter the engine through the inlet. The air entered then passes through the 

compressor to attain high pressures. The temperature of the high pressure air is increased 

by burning (mixing) it with the fuel in the combustor. The combustion results in high 

velocity hot gases which pass through the turbines, generating power to run the 

compressor. These high velocity hot gases coming out of the turbine are exhausted to the 

outside through the outlet (jet nozzle) creating a thrust to the move the horizontal 

container (engine) forward. It is out of the scope of this research to discuss details of all 

of the chemical, thermo dynamical or mechanical reactions involved in an engine model.  
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2.2.1 Components of the jet engine 

 The working principle of a turbofan described above would be more clearly 

understood by studying its main parts. There are five main parts of a turbofan or any gas 

turbine engine, which play an important role in the engine’s operation.  

a) Inlet 

 Air enters in to the engine through the inlet. The main task of the inlet is to 

straighten out the flow, making it uniform and without much turbulence. This is 

important because compressors and fans need to be fed distortion-free air. Inlet is 

positioned just before the compressor. There are different types of inlets based on the 

speed of the aircraft like subsonic inlets, supersonic inlets and hypersonic inlets.   

b) Compressor 

 A compressor is used to increase the pressure of the air entering through the inlet. 

The air is forced through several rows of both spinning and stationary blades. As the air 

passes each row, the available space is greatly reduced, and so the air that exits this phase 

is thirty or forty times higher in pressure than it was outside the engine. The temperature 

of the air also gets increased because of the increase in pressure. Axial flow compressor 

and centrifugal compressor are the two main types of computers used in turbofan engines. 

The compressor is mounted in front of the combustor. 

c) Burner (combustor) 

 The burner is the component in which the actual reaction (combustion) takes 

place. The high pressure hot air coming out of the compressor is combined with the fuel 

and burned for combustion. The combustion results in very high temperature gases with 

high velocities. These high temperature exhaust gases are used to drive the turbine. 
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Burners, placed just after the compressors, are made from materials that can withstand 

the high temperatures of combustion. Annular, can, can-annular burners are the three 

different types of burners mostly used.  

 d) Turbine 

 The turbine is located next to the burner. The power used to drive the compressors 

is obtained from turbines. The turbine extracts the energy of the high temperature gas 

flow coming out of the burner by rotating the blades. This energy is transferred to the 

compressors by connecting shafts. The air leaving the turbine has low temperature and 

pressure when compared with the air coming out of the burner because of the energy 

extraction. Turbine blades must be made of special materials that can withstand the heat, 

or they must be actively cooled. There can be multiple turbine stages for driving different 

parts of the engine independently like compressor, fan (turbofan) or propeller 

(turboprop). 

e) Nozzle (exhaust) 

 A nozzle is a specially shaped tube through which the hot gases flow. The actual 

thrust required to move the engine forward is produced in this nozzle which is positioned 

after the turbine stage in the engine. The thrust is developed by conducting the hot 

exhaust gases through this nozzle to the free stream of outside air. Like the air leaving a 

balloon described in the Section 2.1, the speed and flow rate of the air leaving the nozzle 

provides the airplane with thrust. Both the temperature and pressure of the air or rather 

hot gases is reduced very much while passing through the nozzle. The inside walls of the 

nozzle are shaped so that the exhaust gases continue to increase their velocity as they 
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travel out of the engine. Based on the geometry of the nozzle, it can be categorized under 

co-annular, convergent or convergent-divergent (CD) nozzle. 

 

2.2.2 Types of jet engines 

 There are many different types of jet engines for aircraft like turbojet, turbofan, 

turboprop, and turboshaft engines. These, in turn, can be subdivided based on their design 

and internal arrangement of their components like single compressor engine, dual 

compressor (twin spool) engines, high bypass ratio engines, and low bypass ratio engines. 

All of the gas turbine engines like turbofans, turboprops and turboshaft engines work on 

the same principle as the above described turbojet. As the turbofan being the engine used 

in this research, a detailed explanation of the gas turbine engine (turbofan) operation is 

presented in the sections to be followed. 

 

a) Turbojet: A turbojet as shown in Figure 2.4 is a type of aircraft gas turbine engine 

which uses only the thrust developed within the engine to produce the propulsive forces. 

These are well suited for high flying, high speed aircraft as they are efficient at high 

altitude and airspeed. Turbojet aircrafts need long runways for takeoff. 

  

        Figure 2.4: Turbojet [9] 
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b) Turboprop: A turboprop is a turbojet engine with an additional turbine augmented to 

it to drive a propeller (through a speed reducing gear system). Figure 2.5 shows the 

schematic of a Turboprop. These engines are also called as propjets. The additional 

turbine placed in the path of the exhaust gases is called the free turbine. This free turbine 

is mounted on the shaft that drives the propeller. 

  

    Figure 2.5: Turboprop/ Turboshaft [9] 

 

c) Turboshaft: The turboprop engine in which the shaft of the free turbine is used to 

drive something other than the propeller is called the turboshaft. The other things that can 

be driven by the free turbine shaft are rotor of a helicopter, boats, ships, trains and 

automobiles. The shaft turbine engine is the other name for turboshaft engine. 

 

 Both the turboprop and turboshaft engines are more complicated and heavier than 

the turbojet engine. They produce more thrust at low subsonic speeds. Their propulsive 

efficiency (output divided by input) decreases as the speed increases, where as it 

increases in the turbojet case.  

 

d) Turbofan: A turbofan is similar to the turboprop with the gear driven propeller 

replaced with an axial flow fan with rotating blades and stationary vanes. The schematic 
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of a turbofan is shown in Figure 2.6. The fan makes a substantial contribution to the total 

thrust by accelerating the air passing through it. Some amount of the total air entered 

through the fan that doesn’t pass through the engine for burning is called the secondary 

airflow. The remaining amount of air passing through the engine for burning is called 

primary airflow. The secondary air flow just passes above the engine and is exhausted in 

to the outside air through a fan jet-nozzle soon after it leaves the fan or it may be carried 

backward by an annular fan discharge duct surrounding the engine. The mixing of the fan 

discharge with exhaust gases from the engine depends on the type of duct used. The short 

ducts result in nonmixed exhaust. However, using long ducts for the fan discharge results 

in mixing of the of fan discharge with the exhaust from the basic engine. The ratio of 

secondary airflow to the primary airflow is called the bypass ratio. 

  

    Figure 2.6: Turbofan [9] 

 

 The turbofan incorporates the advantages of both the turboprop and turbojet by 

having the good operating efficiency and high thrust at even high speeds and altitudes. 

The lighter fan makes the turbofan lighter when compared with the turboprop having a 

propeller that would be much heavier than a fan. And also, the design of a turbofan is less 

complex than a turboprop. The other major difference between a turbofan and a 

turboprop is that the airflow through the fan is controlled by the design of the engine air 
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inlet duct in such a manner that the velocity of the air through the fan blades is not greatly 

affected by the speed of the aircraft. This is the reason for turbofan being more efficient 

than turboprops at higher speeds.   

 

 The turbofan has the advantage of lower noise level for the engine exhaust, when 

compared with the turbojet delivering same thrust as the turbofan. This lower noise level, 

an important feature in all commercial airports, makes the turbofan better choice than 

turbojet. For the above described advantages of the turbofans and many other 

characteristics, they have become the most widely used power plants (engines) for all 

conventional large aircrafts, both military and commercial.  

 

 The turbofan engines can be subdivided based on the type of fan discharge duct 

used like long duct or short duct, the amount of bypass ratio like high bypass or low 

bypass.  

 

2.2.3 Jet engines with afterburners 

 The military aircrafts like fighter jets require extra busts of a speed during takeoff 

and climb, or for an intercept mission. This extra speed is achieved by an afterburner 

added to their engine. An additional thrust of 50 percent or more thrust can be achieved 

with jet engine equipped with an afterburner. The afterburner is also called an augmentor 

because it is nothing but a pipe attached to the rear of an engine instead of a tail pipe and 

jet nozzle. Only 25 percent of the air entering the fan is passed through the basic engine 

for combustion, the remaining 75 percent of the air flow is just passed above the engine. 
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Sometimes it is mixed with the exhaust gases at the jet nozzle as in long duct type jet 

engines; however it can be used for combustion in the afterburner by injecting the fuel 

through spray bars. This additional combustion of exhaust gases (mixed with secondary 

air flow) results in higher velocities delivering additional thrust. The afterburners develop 

additional thrust at the cost of additional fuel consumption, so the use of an afterburner is 

profitable only in those aircrafts that may urgently require increased speed for short 

periods of time or extra power for short takeoff with heavy loads without considering the 

fuel consumption. 

 

2.3 Engine performance 

 Apart from the above described components, a turbofan has many other important 

components which make the engine perform efficiently. Engine has a lot of actuators, 

sensors and other instruments mounted on each of its components.  These instruments 

measure some critical parameters of the engine that would reveal the engine performance. 

 

2.3.1 Engine rating 

Engine ratings for different flights of an aircraft describe the engine performance 

over a period of time. The thrust, in pounds, which an engine is designed to develop for 

takeoff, maximum continuous, maximum climb, and maximum cruise is called the engine 

rating [8]. These ratings are also interpreted in terms of engine pressure ratio (EPR). EPR 

can be maintained by the Engine’s throttle position which regulates the supply of fuel. 

Engine ratings are different for military and commercial engines as they are used for 

different operations. In military aircraft, the urgency of the mission frequently determines 
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how the engine will be operated.  While in commercial or passenger aircraft, the time 

between the engine overhaul schedules and maximum reliability are of concern, and more 

conservative engine operation becomes the rule. 

 

2.3.2 Engine maintenance 

 Jet engines are precision machines composed of many expensive parts. A 

thorough understanding of the construction and operation of an engine and its 

components is vital to good jet engine maintenance. The maintenance in jet engine is 

divided in to two categories: a) preventive maintenance and b) corrective maintenance. 

The routine inspection of the various engine components, assemblies, and systems come 

under the preventive maintenance category. Corrective maintenance is the one in which 

the malfunctions and damaged parts are fixed or replaced as they occur.  

 

 Even though the operation manual of the engine described by the manufacturer 

gives the details of how often to perform maintenance schedules, the engine performance 

over a period of time is considered for scheduling the above maintenances to enhance the 

engine’s life. It is a well known fact that any machine’s performance degrades for the 

period of time it works. A turbofan engine’s performance also deteriorates over time as it 

is also a kind of machine.  

 

2.3.3 Engine performance deterioration 

 As described in the previous section, the engine’s performance deterioration plays 

an important role in the engine maintenance schedule. Engine performance deterioration 
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also reduces the fuel economy of the engine [10]. Just like the life of a living being is 

affected by its health, the life of a turbofan is also affected by its performance over a 

period. Engine’s performance is also referred by other terms like health or condition. 

There are many parameters of the engine which would fully describe the engine’s health. 

It would be impossible or rather difficult to consider all the parameters that would add to 

the engine’s health. Hence, only a certain number of parameters are considered which 

would have a major effect on the engine’s health. These parameters are called health 

parameters. Different engines have different set of health parameters. 

 

 Engine condition monitoring devices are used to measure most of the health 

parameters of the engine. However, some of the parameters cannot be measured because 

of many difficulties like the problem of mounting the device in a particular position, 

unavailability of devices for measuring certain parameters, getting inaccurate 

measurements from the devices or due to the complex design of the turbofan engine. 

Monitoring and evaluating these health parameters by some means would help in good 

maintenance and also increase the life of engine. Engine health evaluation can also be 

very helpful in some predictive control techniques.  

 

2.4 Turbofan engine used in this research (MAPSS) 

 The engine that is being implemented in this research is a high pressure ratio, dual 

spool, low bypass military type turbofan engine shown in Figure 2.7, with a digital 

controller. This engine has all of the basic components as discussed previously in Section 

2.2. MAPSS, a generic nonlinear, low frequency, transient, high performance model is 
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implemented as a simulation model for the above military turbofan engine [2]. MAPSS 

stands for Modular Aero Propulsion System Simulation. This engine model is similar to 

the models used in various areas of intelligent engine control research such as model-

based control and nonlinear performance seeking control.  

 

 Because of the high complexities in the design and operation of a turbofan engine, 

it is desirable for the engine models to have a simulation environment that is 

straightforward, has modular graphical components and has the ability to convert a 

control design into real-time code. Because of the current technology in advanced 

modeling software, such as MATLAB [12] and Simulink [13], such an engine model, 

represented in a graphical simulation environment, has the capability to become an 

extremely powerful tool in control and diagnostic system development [11].  

 

   Figure 2.7: Schematic of turbofan engine model [11] 
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 MAPSS is a non real time, nonlinear system composed of the “Controller and 

Actuator Dynamics” (CAD) and “Component Level Model” (CLM) modules [11]. The 

computer engine models used in this type of intelligent engine control research are called 

component level models. The CAD and CLM modules of the MAPSS are managed by a 

GUI interfaced to them as shown in Figure 2.8. The CLM module in MAPSS 

environment represents the core engine model with all its components.  

 

                          Input 

 

                        Simulation   

                                   Input 

      

 
       Simulation 

          Output  

     

 

           Figure 2.8: MAPSS block diagram (Module interaction) [2]  

  

a) CAD:  The CAD module has the engine’s controller and actuator dynamics in it. The 

controller in the CAD module emulates the digital controller for the turbofan engine. This 

module incorporates all the components or instruments that will be used in the control 

structure of the engine. The actuator dynamics sub modules are designed based on the 

mathematical equations of the real time actuators used in the turbofan engines. They 

simulate instruments like torque motors and servomechanisms for engine components 

like fan, HPC, booster etc.  The actuators and CLM module use the same sampling rate to 

obtain mass-energy balance inside the components (engine).  
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   Input                                   Position                                           Output   
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b) CLM: The fundamental engine model is represented by the CLM in MAPSS. The 

CLM has all of the principal components of a turbofan engine like fan, booster, high 

pressure compressor (HPC), burner, high pressure turbine (HPT), low pressure turbine 

(LPT), mixer, afterburner (AB), and nozzle as shown in Figure 2.9. The engine 

components were modeled by mathematical equations before they can be implemented as 

they have different behaviors like chemical, mechanical, electrical and thermo dynamical 

which are difficult to implement directly in simulations. There are many subsystems 

inside each of the component block. These subsystems contain algebraic equations and 

maps that characterize the behavior of that particular component when simulated. There 

is no inlet in the CLM typically, because it is not considered to be a part of the engine 

model. It is out of the scope of this research to discuss details of all of the algebraic 

equations involved in an engine model. The block diagram of the CLM (engine) in 

MAPSS shown in Figure 2.9 resembles the engine model shown in Figure 2.7 except for 

the inlet. The overall engine block requires certain iteration steps to ensure a balance of 

mass flows and energy.  The typical parameters like pressure, temperature and flow of 

certain blocks are implemented as some kind of signals.  
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   Figure 2.9: CLM with engine components [2] 

c) GUI:  The GUI block in Figure 2.8 is designed to simplify the user’s interaction with 

the CAD and CLM modules of the MAPSS. The MAPSS graphical user interface 

designed using Matlab’s GUIDE is displayed in Figure 2.10. Apart from the main 

objective of managing the input/output information of the MAPSS, GUI is also used to 

simulate the MAPSS model as a whole. The input simulation parameters such as power 

lever angle (PLA), mach number and altitude of the MAPSS model are given to the 

system through GUI. PLA is the angle of the throttle in a turbofan engine to produce the 

required thrust. Mach number is defined as the ratio of the speed of flight to the speed of 

sound in the same medium. Altitude is the height at which the aircraft is designed to fly. 

Similarly, the output parameters from the CAD and CLM modules are obtained and 

displayed through the same GUI panel. 

  

All the components of the engine can be simulated by selecting the components 

from the simulation block drop down menu in the GUI, and the trend of the 
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corresponding component parameters can be studied. The entire objects of GUI like the 

buttons, dropdown menus, text boxes and others have different functions to be performed 

when activated. The output parameters created by simulating the model, along with user 

defined input information is stored in an output structure array that will be saved as a 

MAT-file. This MAT-file can be used for post simulation analysis or to reload certain 

parameters into the GUI.   

  

              Figure 2.10: MAPSS GUI 
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2.5 Engine’s state space model 

 Mathematical equations, typically differential or difference equations are used to 

describe the behavior of processes and to predict their response to certain inputs [14]. 

These set of equations put in to a common framework is called as the state space model 

of the system. This process of describing the systems by state space models is termed as 

modeling. These models have many useful features like giving an intuitive understanding 

of the behavior of many dynamical systems and can also be solved efficiently since they 

are mathematical equations. 

( , )x f x u=&  

( , )y h x u=                                                                  (2.1) 

Any state space model can be represented with combinations of three parameters 

of the system as shown in Equation 2.1. These three parameters namely states, inputs and 

outputs describe the system’s behavior as a whole. The inputs and outputs constitute to be 

the external variables, where as states form the internal variables of the system. The state 

of a dynamic system is defined as the smallest set of variables such that the knowledge of 

these variables together with the knowledge of inputs determines the behavior of system 

at any time. 

  

Similarly, the turbofan engine modeled as MAPSS has a set of states, control 

inputs and outputs that describe the engine’s behavior. The three states of the MAPSS are 

1) High pressure rotor speed (xnh) 

2) Low pressure rotor speed (xnl) 

3) Heat soak temperature (tmpc) 
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The three control inputs to the model are  

1) Main burner fuel flow 

2) Variable nozzle area 

3) Rear BP door variable area 

 

The eleven sensor outputs of the model are as follows 

1) LPT exit pressure 

2) LPT exit temperature 

3) Percent low pressure spool rotor speed 

4) HPC inlet temperature 

5) HPC exit temperature 

6) Bypass duct pressure 

7) Fan exit pressure 

8) Booster inlet pressure 

9) HPC exit pressure 

10) Core rotor speed 

11) LPT blade temperature 

 

 Apart from the above mentioned parameters there are certain important 

parameters called health parameters that describe the health of an engine. The importance 

of these parameters was already discussed in Section 2.3. Estimating these health 



 

 24

parameters over a period of time is the objective of this research.  The ten health 

parameters of the MAPSS model are 

1) Fan airflow 

2) Fan efficiency 

3) Booster tip airflow 

4) Booster tip efficiency 

5) Booster hub airflow 

6) Booster hub efficiency 

7) High pressure turbine airflow 

8) High pressure turbine efficiency 

9) Low pressure turbine airflow 

10) Low pressure turbine efficiency 
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CHAPTER III 

LINEAR STATE ESTIMATION  

 

State feedback plays a major role in the control structure of any system. Stability and 

other desired responses of the system depend on the state feedback given to the system. 

In practice, the individual state variables of a dynamic system cannot be determined 

exactly by direct measurements, such as the temperature in the core of a nuclear power 

plant; instead, the measurements which are functions of state variables are used to 

estimate the state variables indirectly. It should be noted that these measurements have 

some random noise associated with them or system by itself might be corrupted with 

some random noise. 

 

 To overcome such problems, estimators are designed based upon known 

information regarding process (system dymanics) and the noise paramters, to provide a 

good estimate of the states from the noisy mesurement data. Depending on the paramters 

used with in the estimator, different terms are used to refer the estimation procedure. 

Filtering refers to estimating the state vector at the current time, based upon all past 

measurements. Prediction refers to estimating the state at a future time. Smoothing refers 
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to estimating the value of the state at some prior time, based on all measurements taken 

up to the current time [15]. The difference between the estimator’s  output and the true 

state is termed as estimation error which is also used as the cost function for the 

estimator. It is obvious to think that the estimation error has to be minimum for the state 

estimates to be as close as possible to the true states. Thus, an estimator which provides 

the estimates with optimum (minimum) estimation error is called an optimal state 

estimator. Section 3.1 discusses different kinds of estimation techniques, and Section 3.2 

describes state estimation in time varying systems. The classical Kalman filter equations 

are derived in Section 3.3. 

 

3.1 Different estimation techniques 

Estimation techniques can be classified based on the criterion of their cost 

function. For easy understanding of the reader, the estimation of a constant is considered 

first before discussing the estimation of a time varying vector.  

 

3.1.1 Least squares estimation 

 Suppose there are n measurements for a same scalar constant x, then intuitively 

the average (mean) of the n measurements would result in estimate of x . This estimate is 

optimal in the sense that it minimizes the sum of the squared errors (SSE) between the 

measurements and the predicted measurements, and is a linear function of the 

measurements [15]. 
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 Consider an n-dimensional constant vector x which is unknown, and a 

measurement vector  z related to the constant vector x obtained from k measurements. Let 

e be the error in mesurements and H be the observation matrix of k × n dimension. Then 

the relation between x and z is given by Equation 3.1 below,  

z Hx e= +           (3.1) 

 Now, if x̂   is the estimate of the true state x, then the error between true and 

estimated state called the state residual ( xε ) is given by Equation 3.2a.  

ˆx xxε = −           (3.2a) 

ˆz Hxzε = −                         (3.2b)  

 Similar to the state residual, the error in true measurement and estimated 

measurements is called the measurement residual and is obtained as zε  in 

Equation 3.2b. 

 The cost function represented by J is defined as follows 

1
( )

2

TEJ z zε ε=    

1
(

2
ˆ ˆ ˆ ˆ)T T T T T TJ E z z H z z H H Hx x x x= − − +               (3.3) 

Minimizing J with respect to x̂  would result in the best estimate x̂  for true state 

x, i.e., partially differentiating J with respect to x̂ . 

0
x̂

J
=

∂
∂

 results in   

1ˆ ( )T Tx H H H z−=                     (3.4) 

ˆ Lx H z=       
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where LH  is the left pseudo inverse of H . This exists only when the number of known 

variables (measurements) is greater than the number of unknowns (states).  

 

3.1.2 Weighted least squares estimation 

This kind of estimation is used when there is a weighting function on the errors 

for different measurements. The weighting function was identical for all the 

measurements in the previous section, where all measurements were obtained with error 

statistics. Weighting functions are assigned to the error vectors when measurements were 

obtained with different error statistics, i.e., when we have more confidence in some 

measurements than others. The cost function for weighted least squares estimator can be 

derived by incorporating this additional information about the errors weighting function. 

 

Consider the same vector x as in Equation 3.1, with weighting functions for the 

error vector as follows. 

2 2

1 1

2 2

( )

( )k k

E e

E e

σ

σ

=

=

M                          (3.5) 

 The cost function J is defined to be the quadratic cost function of a normalized 

measurement residual as in the following Equation 3.5 [16]. 

( )
1 1

2
E T TJ N Nz zε ε− −=         (3.6)    

where N is the k x k diagonal matrix defined as 

1 0

0 k

N

σ

σ

 
 
 
  

=
L

M O M

L

 

Minimizing the cost function J would result in the best estimate x̂  as 
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1 1 1ˆ ( )T Tx H S H H S z− − −=          (3.7)         

 where TS N N≡  

 

3.1.3 Bayesian estimation 

 Least squares estimation being a deterministic approach can only be used in the 

case where there is no probabilistic description for either the unknown to be estimated or 

the measurements considered. However, the maximum likelihood philosophy is used 

when the x and z are assigned with some probability density functions. In this approach 

the estimate x̂  will take that value which maximizes the probability of the measurements 

z that actually occurred, taking into account known statistical properties of e [15]. 

 

 Considering the same example as in Equation 3.1, the conditional probability 

density function for z, conditioned on a given value for x, is just the density for e centered 

around Hx. Considering e to be a zero mean, Gaussian distributed observation with 

covariance matrix R, we get 

1

1/ 2 1/ 2

1 1
( | ) exp ( ) ( )

(2 ) | | 2

Tp z x z Hx R z Hx
Rπ

− = − − −  
    (3.8) 

 

 The objective of maximizing this probability of measurements is done by 

minimizing the exponent in brackets. Minimizing this exponent is similar to minimizing 

the cost function in Equation 3.6, with R replacing the TN N  matrix, i.e., interpreting the 

noise vector with its probabilistic covariance. Hence, the estimate would be the same 

result as obtained in Equation 3.7, but with S replaced by R. 
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1 1 1ˆ ( )T Tx H R H H R z− − −=                   (3.9)   

 

 Bayesian estimation, developed by applying Bayes’ theorem to the above 

maximum likelihood approach, is used when the statistics (probability density function) 

of x is also known along with the statistics of the measurements z. Any estimation 

algorithm is implemented to find the best estimate from the given measurements. This is 

nothing but finding the conditional probability density function of x given the statistics of 

z, i.e., p(x|z), which can be evaluated using Bayes’ theorem as 

( | ) ( )
( | )

( )

p z x p x
p x z

p z
=         (3.10) 

where p(x) is the a priori probability density function of x  and p(z) is the probability 

density function of the measurements. Depending upon the criterion of optimality, an 

estimate of x can be computed from p(x|z). 

 

3.1.4 Recursive least squares estimation 

 The previously discussed estimators are for the time invariant case. If the 

measurements are taken at several time steps, then the above methods can be 

implemented by augmenting the newly available measurements to the old ones. But it 

would be difficult to store all the measurement sets. However, to overcome this difficulty, 

the prior estimate can be used as the starting point for a sequential estimation algorithm 

that assigns proper relative weighting to the old and new data [16]. This sequential 

estimation algorithm is called a recursive filter; where there is no need to store past 

measurements for the purpose of computing present estimates. 
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Scalar case 

Before going for the estimation of a constant vector, the recursive estimation 

technique is described for a scalar constant similar to the previous cases. Let us consider 

the following problem of estimating a scalar constant x based on k noise-corrupted 

measurements. 

i iz x e= +            (3.11)  

where i=1,2…k and ie is considered to be a white noise sequence.  

 An unbiased, minimum variance estimate ˆkx  would be the average or mean of the 

measurements   

1
ˆ

1

k
x zik k i

= ∑
=

          (3.12) 

When there is an additional measurement available, the new estimate incorporates that 

new measurement by changing the above average with addition of new measurement as 

shown below 

11
ˆ

1 1 1

k
x zik k i

+
= ∑+ + =

   

 The above equation can be manipulated to show the importance of the prior 

estimate ˆkx  as follows. 

1 1 1 1
ˆ ˆ

1 1 11 1 1 11

k k
x z z x zik k k kk k k k ki

 
+ 

 
= + =∑+ + ++ + + +=

 

 This can be termed as a recursive linear estimator by manipulating the above 

equation as follows. 



 

 32

( )
1

ˆ ˆ ˆ
1 11

x x z x
k k k kk

= + −+ ++
       (3.13) 

  The new estimate obtained in Equation 3.13 is given by the prior estimate plus an 

appropriately weighted difference between the new measurement and its expected value, 

given by the prior estimate [15]. This weighting factor for the measurement residual is 

called the estimator gain. 

 

Vector case 

Consider the same vector x as in Equation 3.1, with time varying case, i.e., with 

different sets of measurements at different time steps, represented by the following 

equations. 

z H x e
k k k
= +          (3.14) 

where x is the constant unknown vector to be estimated, z
k
 is the measurement vector 

with H
k
as the observation matrix obtained at k-th time step and e

k
as the corresponding 

measurement noise (error) vector. 

From Equation 3.13, we can evaluate the estimate at present time as  

ˆ ˆ ˆ( )
1 1

x x K z H x
k k k k k k
= + −− −        (3.15) 

where K
k
 is the estimator gain, and ˆ( )

1
z H x
k k k
− −  is termed as the correction term 

(measurement residual). 

 Finding the unknown estimator gain was simple in the scalar case. But, for a time 

varying case, this calculation is little cumbersome with a lot of math. Considering the fact 

that estimation error should be minimum for any optimal estimator, the first two moments 
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(probabilistic) of the estimation error are utilized to calculate the estimator gain. The 

expected value or mean of the estimation error being the first moment can be calculated 

as 

ˆ( ) ( )
,

E E x x
x k k

ε = −  

    = ˆ ˆ( ( ))
1 1

E x x K z H x
k k k k k

−− −− −  

    = )ˆ ˆ( ( )
1 1

E x eE x x K H H x
k k k k k k

− +− −− −  

    = ) ( )( ( )
, 1

E eI K H E K
k k x k k k

ε− −−      (3.16) 

( )
,

E
x k

ε  can be 0 if ( )E e
k
= 0 and also ( )

, 1
E

x k
ε − =0. These conditions can be 

obtained by assuming the measurement noise ( e
k
) to be zero mean and the average 

estimation error to be zero. The estimate obtained with these conditions is an unbiased 

estimate since the expected value of the estimate is equal to the expected value of the true 

state.   

 

Now using the second moment, which is the covariance of the estimation error, 

the cost function of the estimator is defined. The estimation error covariance, kP  is 

defined as  

 

( )
, ,

TP E
k x k x k

ε ε≡  

      = {[( ) ( ) ( )][...] }
, 1

TE I K H E K E e
k k x k k k

ε− −−  

      = ( ) ( )
1

T TI K H P I K H K R K
k k k k k k k k

− − +−      (3.17) 
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where R
k
 is the measurement noise covariance ( ( )TE e e

k k
) 

  

The cost function of the recursive estimator is a modified form of the least squares 

estimator’s cost function, in the sense of incorporation of the covariance of the estimation 

error. 

1
( )

, ,2

TE
x k x k

J ε ε=  

    =
1
Tr{E( )}

, ,2

T

x k x k
ε ε       where Tr represents the trace of a matrix 

    =
1
Tr( )

2
P
k

 

substituting kP  from Equation 3.17, 

 J   =
1
Tr[( ) ( ) ]

12

T TI K H P I K H K R K
k k k k k k k k

− − +−     (3.18) 

Minimizing this cost function with respect to the estimator gain and equating it to 

minimum (zero) would give the value of the optimal estimator gain, i.e., 

1
[2( ) ( ) 2 ]

12K

TI K H P H K R
k k k k k kK

J
= − − +−

∂
∂

 

then, making 0
KK

J
=

∂
∂

, would result in the optimal estimator gain K
k
as in 

Equation 3.19, by using the lemma 
)

2
Tr( T

AB
A

ABA
=

∂
∂

. 

1( )
1 1

T TK P H H P H R
k k k k k k k

−= +− −       (3.19) 
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Though Equations 3.17 and 3.19 represent the estimator error covariance and 

estimator gain, these are not the only derived equations that represent those values. There 

may be other equations derived for these terms, but they can also be obtained by math 

manipulations from the above equations.  

 

3.2 State estimation in a linear system 

Estimation of a constant vector was only discussed in the previous sections and 

those estimation techniques can also be implemented for estimating the states of a 

dynamic system. But since the estimated quantities may not be constant, the estimator 

would tend to ignore information contained in the later measurements [16]. Hence, the 

estimator should incorporate the additional information like the dynamic effects of the 

system model and its inputs on the estimate ( ˆkx ) and its uncertainty, i.e., estimation error 

covariance ( kP ).  The inputs and initial conditions of a dynamic system are random, due 

to which the state itself must be considered a random variable. This is where the 

estimation is effected by the probabilistic functions of the variables. The propagation of 

the state and its uncertainty through the time history, interpreted with the probabilistic 

approach is explained for a discrete time linear time varying system in the following 

example. 

  

Consider a linear discrete time varying system as described by the following 

equation 

1 1 1 1 1 1k k k k k k k
x A x B u w

− − − − − −
= + +Λ      (3.20) 
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where 
1k

u
−

 is the known input to the system, 
1k

w
−

 is the white noise with zero mean 

and covariance 
1

Q
k −

,  i.e., (0, )N Q
k k
w � . The initial condition of the state ( 0x ) is a 

Gaussian random variable with its mean value and covariance matrix as  

0 0( )E x m=   

0 0 0 0 0[( )( ) ]TE x m x m P− − =          (3.21) 

 

It is necessary to propagate the mean and covariance of the state, to estimate the 

state for the total time history of the system.  The mean of the state is propagated through 

the time according to the following equations 

( ) ( )
1 1 1 1 1 1

E x E A x B u w
k k k k k k k

= + +Λ− − − − − −  

           =
1 1 1 1

A m B u
k k k k

+− − − −        (3.22)  

since we have ( ) 0
1

E w
k

=−  and ( )
1 1

E u u
k k

=− −  from the assumptions made previously. 

Similarly consider the propagation of covariance (uncertainty) as described below. 

[( )( ) ]T
k k k k k
P E x m x m≡ − −  

Using Equation 3.22 we obtain 

1 1 1 1 1 1
[ ( ) (0) ][...]( )( )T T

k k k k k k k k k k
A x m B wx m x m − − − − − −= − + +Λ− −  

1 1 1 1 1 1 1 1 1 1
[ ( ) ][ ( ) ]{ }T

k k k k k k k k k k k
A x m w A x m wP E − − − − − − − − − −− +Λ − +Λ=  

     

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1
}

{ ( )( )

               ( )

               ( )

T T
k k k k k k

T T T T
k k k k k k k k k

T T
k k k k k

E A x m x m A

A w w A A x m w

A w x m A

− − − − − −

− − − − − − − − −

− − − − −

= − −

+ + − Λ

+ −

 

since 
1 1 1

( )T
k k k

E w w Q− − −=  and 
1 1

( ) 0T
k k

E w x− − =  we get  
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1 1 1 1 1 1
T T

k k k k k k k
P A P A Q− − − − − −= +Λ Λ       (3.23) 

Equations 3.22 and 3.23 are very important because they describe the propagation of the 

state and its estimation error covariance through the time history of the system.  

 

 Recursive estimation techniques which are implemented for estimating the states 

of the dynamic system using the above propagations result in different kinds of filters and 

predictors to be discussed in the next section. 

 

3.3 Discrete time Kalman filter 

 The systems considered in the previously described estimation algorithms were 

just measurement systems. This section would discuss the state estimation of the system 

by considering the state estimate propagation as described by the system state equations 

(Section 3.2) and then updating estimates recursively by using the system’s measurement 

equations (Section 3.1.4). In 1960, R.E. Kalman published his famous paper describing a 

recursive solution to the discrete-data linear filtering problem. He formulated and solved 

the filtering problem for gauss-markov sequences through use of state-space 

representation and the viewpoint of conditional distributions and expectations [17]. 

 

 The purpose of a filter is to compute the state estimate ˆkx  , while an optimal filter 

minimizes the spread of the estimation-error probability density in the process [16] which 

means minimizing the mean square estimation error. A recursive optimal filter propagates 

the conditional probability density function from one sampling instant to the next, taking 

into account system dynamics and inputs, and it incorporates measurements and 
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measurement error statistics in the estimate [16]. As discussed in the previous section, the 

state estimate ˆkx  is specified by expected value (mean) of the true state’s ( kx ) conditional 

probability density function and the spread of uncertainty in estimate is specified as the 

covariance matrix.  This recursive generation of the mean and covariance in finite time 

can be explained in the following five steps: 

 1) State Estimate Extrapolation (Time Propagation) 

2) Covariance Estimate Extrapolation (Time Propagation) 

3) Filter Gain Computation 

4) State Estimate Measurement Update 

5) Covariance Estimate Measurement Update 

 

  The first two steps that describe the propagation of the estimate (mean) of the 

state and its uncertainty (estimation error covariance) are already discussed in the 

previous section of (Section 3.2).  The last three steps can be performed by the recursive 

(weighted) least squares estimation technique as discussed in that Section 3.1.4. 

 

The mathematical form of the five steps performed in the Kalman filter can be 

derived by considering a linear time varying discrete time stochastic system represented 

by Equation 3.24a and 3.24b. 

1 1 1 1 1 1k k k k k k k
x A x B u w− − − − − −= + +Λ       (3.24a) 

k k k k
z C x n= +          (3.24b) 
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Equation 3.24a represents the state equation of the system with x as the state 

vector, u as the control input to the system and w as the process noise in the system. This 

process noise is considered to be a zero-mean white noise, Gaussian random variable 

with Q
k
as its covariance. 

( ) 0
k

E w =  

( )T
k k k

E w w Q=          (3.25) 

 

Equation 3.24b describes the measurement model of the system. z, the 

measurement vector, is a combination of states x associated with some measurement 

noise represented by n. Similar to the process noise, this noise n  is also a zero-mean 

white noise, Gaussian random variable with 
k
R  as its covariance. 

 

( ) 0
k

E n =  

( )T
k k k

E n n R=          (3.26) 

The system matrices represented by A, B, C, and Λ  are considered to be known. 

The important assumption to be considered is that the process noise and measurement 

noise are independent, i.e., there is no correlation existing between them. 

0( ) ( )T Tw n
k k k k

E n E w= =         (3.27) 

 It is also assumed that values of the initial state estimate 
0
x̂  and initial estimation 

error covariance 
0
P are known beforehand as discussed in Section 3.2. 
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0 0
ˆ ( )x E x=   and    

0 0 0 0 0
ˆ ˆ[( )( ) ]TP E x x x x= − −  

 There are two main transitions to be considered for the propagation of any 

variable of the system through the time instants. They are state update and measurement 

update (transition). Figure 3.1 describes these transitions in a more simple way.  
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k
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 Figure 3.1: Mean and covariance propagation 

 In Figure 3.1, the superscripts (−) represent the state estimate and covariance 

before the measurement is processed at time instant (k) and the superscripts (+) represent 

their corresponding values after the measurement is processed. 

  

The Kalman filter equations were derived by implementing the results of the 

previous sections to the system described in Equation 3.24. 

 

Time update 

The first step of propagating the state estimate is derived by using Equation 3.22 

in Section 3.2.  

1 1 1 1
ˆ ˆ
k k k k k
x A x B u− +

− − − −= +         (3.28) 
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Similar to the above step, estimation error covariance is propagated with time 

according to the Equation 3.23 in Section 3.2.  

1 1 1 1 1 1
T T

k k k k k k k
P A P A Q− +

− − − − − −= +Λ Λ       (3.29) 

 

Measurement update 

Now that ˆ
k
x−  is calculated,  ˆ

k
x+  (which is the state estimate obtained after the 

measurement update) is calculated using the RLS estimation technique as discussed in 

Section 3.1.4. 

We calculate the Kalman gain from Equation 3.19, but in this case  
1k

P −  is 

replaced by 
k
P−  which represents the estimation error covariance before the 

measurements are obtained. 

1[ ]T T
k k k k k k k

K P C C P C R −− −= +        (3.30) 

 

Using the above Kalman gain, the state estimate and estimate error covariance are 

updated after processing the measurements as discussed in Section 3.1.4. But in this case 

1
ˆ
k
x −  is replaced by ˆ

k
x− , 

1k
P −  is replaced by

k
P− , ˆ

k
x  is replaced by ˆ

k
x+  and 

k
P  is 

replaced by 
k
P+  in the Equations 3.15 and 3.17.   

ˆ ˆ ˆ( )
k k k k k k
x x K z C x+ − −= + −         (3.31) 

( ) ( )T T
k k k k k k k k k
P I K C P I K C K R K+ −= − − +      (3.32) 

 



 

 42

The last five equations represent the fundamental Kalman filter equations; 

however there are different forms for these KF equations which are obtained by 

manipulating the above equations with some linear algebra. The important property of the 

Kalman filter is that it’s a linear filter and it can estimate the states of a linear system 

only. However, it can be extended to a nonlinear system by linearizing the system which 

will be discussed in Chapter IV. The Kalman filter is considered to be the best linear 

filter in estimating the states of a system with both process and measurement noise, i.e., w 

and n, are uncorrelated and white. The quantity ˆ( )
k k k
z C x−−  used to update the state 

estimate in Equation 3.31 is called the innovations. The same concept can be extended to 

continuous time systems too. Many other filters are designed based on these basic 

Kalman filter equations, like 

1) Steady state KF 

2) Constrained KF 

3) Robust KF 

4) Square root KF  

5) Sequential KF  

These filters work similar to the fundamental Kalman filter. In the steady state KF 

a steady state gain is used for propagating the estimate and its error covariance through 

time. A Kalman filter designed with certain constraints on the estimates is called the 

constrained KF [10]. The robust KF addresses uncertainties in the process and 

measurement noise covariances and gives better results than the standard Kalman 

filter [19]. Similarly, the other Kalman filters incorporate certain other factors in 

estimating the states.  
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CHAPTER IV 

LINEARIZED KALMAN FILTER 

 

The estimation techniques discussed in the previous chapter can only be applied to linear 

systems. However, most physical systems encountered in nature are nonlinear systems. 

For several reasons, the problem of filtering and smoothing for nonlinear systems is 

considerably more difficult and admits a wider variety of solutions than does the linear 

estimation problem [15]. This difficulty arises because of the nonlinear elements in the 

systems which alter the probability density function of signals and noise as they are 

transmitted through the time, i.e., Gaussian inputs cause non-Gaussian response. The 

shapes of the distributions change when probability density functions are transmitted 

through nonlinear elements. Fortunately, estimators for many nonlinear systems can be 

derived based on basic Kalman filter as stated in the previous chapter; though not 

precisely “optimum”, they are “optimal” in the sense that they tend to the optimum. 

Section 4.1 discusses nonlinear estimation along with different nonlinear estimation 

techniques. Linearization process and different linearization techniques are explained in 

Section 4.2. Sections 4.3 and 4.4 discuss linearization and discretization of the turbofan 
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engine model (MAPSS) used in this research. An alternate equivalent Kalman filter (a 

priori) equations are derived in Section 4.5. Finally, Section 4.6 discusses the graphical 

user interface developed for the turbofan health parameter estimation. 

 

4.1 Nonlinear estimation 

The basic design of any (recursive) filter is based on the propagation of the state 

estimate and its error covariance through the system. In linear systems, the state estimate 

which is a GRV (Gaussian random variable) is transmitted linearly but transmitting the 

Gaussian through nonlinear elements doesn’t give the same shape of the distribution. 

There are basically two types of propagations of mean and variance through nonlinear 

systems. The first type involves propagating the state estimate analytically through the 

first order linearization of the nonlinear system. Linearized Kalman filter, extended 

Kalman filter and hybrid extended Kalman filter use this type of propagation. The second 

type involves approximating the state distribution by a small set of carefully chosen 

sample points and then propagating these sample points through the true nonlinear 

system. Unscented Kalman filter, a new nonlinear estimation algorithm, is the result of 

the second type of propagation. UKF is discussed in detail in the Chapter VI. 

 

4.1.1 Linearized Kalman filter 

 Linearized Kalman filter and extended Kalman filter are mainly based on the 

linearization of the systems which will be discussed in the Section 4.2. Consider a 

nonlinear system described by the following equations. 
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( , , , )x f x u w t=&  

( , ) ( )z h x t n t= +          (4.1)  

where x is the state vector, u is the control input vector and z is the measurement vector. 

Similar to the linear case discussed in Section 3.3, w and n are the process and 

measurement noise which have zero mean and covariances Q and R respectively. 

 

The nonlinear system represented by Equation 4.1 can be approximated by a 

linear system by applying the Taylor’s series expansion to the equation. The linearized 

Kalman filter linearizes the system about the nominal trajectory, considering the nominal 

values of state variables and control inputs to be fairly well known beforehand. Hence, it 

is obvious that a linearized Kalman filter can be implemented only when the nominal 

trajectory of the system is well known. 

0 0 0 0 0 0
0 0 0

( , , , ) ( ) ( ) ( )
f f f

x f x u w t x x u u w w
x u w

∂ ∂ ∂
≈ + − + − + −

∂ ∂ ∂
&  

0
0

( , ) ( ) ( )
0

h
z h x t x x n t

x

∂
≈ + − +

∂
       (4.2) 

0

..

..

∂
∂

represents the corresponding partial derivative evaluated at )
0 0 0

( , ,x u w i.e., 

nominal values which are well known. These partial derivatives which represent the 

system matrices are called the Jacobians.  
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Taylor’s series expansion of the nonlinear equations approximated as the linear 

equations can be represented as following, by denoting the Jacobians as 

, , ,
f f f f

F G L H
x u w x

∂ ∂ ∂ ∂
= = = =
∂ ∂ ∂ ∂

. 

0 0 0 0 0 0
( , , , ) ( ) ( ) ( )x f x u w t F x x G u u L w w= + − + − + −&  

0 0
( , ) ( ) ( )z h x t H x x n t= + − +  

 

Assuming
0 0 0 0

( , , , )x f x u w t=& , ( ,
0 0

)hz x t= and 0
0
w =  which are priorly 

known and using the equations 
0

x x x− = ∆ , 
0

u u u− = ∆ , 
0

w w w w− = ∆ = , 

0
x x x− = ∆& & &  and 

0
z z z− = ∆ , the nonlinear system can be approximated by a linear 

system as  

x F x G u Lw∆ = ∆ + ∆ +&  

z H x n∆ = ∆ +          (4.3) 

 

The standard Kalman filter can be applied to the above linear system and the 

change in states ( x̂∆ ) can be estimated as  

ˆ ˆ ˆ( )x F x G u K z H x∆ = ∆ + ∆ + ∆ − ∆&        (4.4) 

1TK PH R−=          (4.5) 

1T T TP FP PF LQL PH R HP−= + + −&       (4.6) 

 

The estimate of the true state can be calculated by adding the estimated change in 

states to the nominal states as    
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0
ˆ ˆx x x= +∆           (4.7) 

 

The linearized Kalman filter doesn’t give exact optimal estimates, but they would 

be near to the optimum values, i.e., an approximate optimal estimate, as they are based on 

the nominal trajectory. This filter would result in more accurate estimates if the changes 

or perturbations in the control input ( u∆ ) and measurement residual ˆ( )z H x∆ − ∆  are 

kept small. This linearized Kalman filtering technique was implemented in this research 

(thesis) to estimate the health parameters of a turbofan engine (MAPSS).  

 

4.1.2 Extended Kalman filter 

 The extended Kalman filter results in an improved state estimate with no prior 

knowledge of a nominal trajectory. This EKF technique is similar to the linearized 

Kalman filter technique but with different Jacobians. The Jacobians in EKF are not 

evaluated around the nominal values but they are evaluated around the best estimate 

obtained at that instant. The extended Kalman filter is called extended Kalman-Bucy 

filter when the nominal process noise is zero (
0
w = 0). The extended Kalman filter 

retains the linear calculation of the covariance and gain matrices, and it updates the state 

estimate using a linear function of a filter residual; however it uses the original nonlinear 

equations for state propagation and definition of the output vector. 

  

Consider the same system as in Section 4.1.1 with some changes in the initial 

conditions like choosing 
0

ˆx x=  so that x̂∆ =0 and assuming that u is known so that 

0u∆ =   
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Combining the x̂∆& equation with the 
0
x& equation 

0 0 0 0
ˆ ˆ ˆ( , , , ) ( )x x f x u w t F x G u K z H x+∆ = + ∆ + ∆ + ∆ − ∆&&     (4.8) 

Now by substituting the assumed initial conditions in the above equation, the 

estimate of the state can be obtained from the following equations 

0
ˆ ˆ ˆ( , , , ) ( ( , ))x f x u w t K z h x t= + −&        (4.9) 

1TK PH R−=          (4.10) 

1T T TP FP PF LQL PH R HP−= + + −&       (4.11) 

 

The hybrid extended Kalman filter is another nonlinear estimation technique used 

to estimate the states of a continuous nonlinear system with discrete time measurements. 

All of the nonlinear estimation techniques discussed so far are based on the first order 

linearization (Taylor series expansion). Different kinds of linearization techniques will be 

discussed in Section 4.2. The estimates obtained by these techniques are not optimally 

accurate because it is obvious that there can be errors due to the linearization process. 

The accuracy of the state estimation can be improved by increasing the order of 

linearization by using second or higher order linearization. The main limitations of the 

linearized or extended Kalman filter is that it is difficult to implement and reliable only 

for systems that are almost linear on the time scale of the updates. The unscented Kalman 

filter, to be discussed in the Chapter VI, was developed to overcome these limitations. 
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4.2 Linearization 

Linearization is the process of modeling a nonlinear system as a linear system. 

The linear model is an idealized or simplified version of the more accurate (but more 

complicated) nonlinear model.  The linear mathematical model can then be used in the 

many analysis and design tools that require a linear model. The linear model accurately 

represents the dynamics of the nonlinear system at certain operating conditions, but may 

not be accurate at other operating conditions. 

  

In control engineering, the normal operation of the system may be around an 

equilibrium point, and the system signals can be considered small deviations around the 

equilibrium. In this case, it can be useful to approximate the nonlinear system with a 

linear system. The linear model is approximately equivalent to the nonlinear system if the 

operating range remains near the linearization point. Linearized models are very 

important in control engineering. In general, there are many more tools for applying 

control and estimation techniques to linear systems than there are for nonlinear systems. 

There are different linearization techniques that can be performed on nonlinear systems. 

Almost all the linearization techniques are based on Taylor series expansions. The 

linearization methods that are explored in this chapter (section) are listed below 

1) Matlab Linearization 

2) Perturbation Linearization 

3) Steady State Error Reduction  

 The accuracy of these linearization methods relative to MAPSS model fidelity 

and turbofan engine health parameter estimation is investigated. 
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4.2.1 Matlab Linearization 

 A nonlinear model can be linearized directly using MATLAB [12] functions such 

as linmod, dlinmod and linmod2. The equilibrium or operating point is calculated by 

using MATLAB’s trim function. The trim function finds out the equilibrium point at 

which the system is at steady state; i.e., the state derivatives are zero. If there is no point 

at which the system is at steady state, then the trim function will give the point at which 

the state derivative is nearest to 0. MATLAB’s trim function is invoked as follows. 

[x, u, y] = trim (‘sys’, 0x , 0u , 0y )       (4.12) 

where x, u, and y are the output equilibrium points for the system described by ‘sys,’ and 

0x , 0u , and 0y are the user’s initial guess for the equilibrium points.  

 

The linmod function obtains a linear model from a system of ordinary differential 

equations that are implemented as a Simulink [13] model. The dlinmod function can 

linearize discrete, multirate, and hybrid continuous-time and discrete-time systems at any 

given sampling time. This is usually used for linearizing discrete-time systems. The 

linmod function is invoked as follows. 

[A, B, C, D] = linmod (‘sys’, x, u)        (4.13) 

where x and u are the outputs of the trim function. This gives the linearized model of 

system ‘sys’ (in A, B, C, and D matrices) around the specified operating point. 
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4.2.2 Perturbation Linearization 

 A nonlinear system can be represented by the following state space equations. 

( , , )x f x u t=&  

( , , )y h x u t=           (4.14)  

where f and h are nonlinear functions, x is the state vector, u is the control vector, and y is 

the output vector. The nonlinear system is run in closed loop until it reaches steady state 

(i.e., x& =0).  Once the system reaches steady state, the resulting state vector 0x , input 

vector 0u , and output vector 0y  are saved as the nominal values. 

 

4.2.2a Linearization with respect to states 

Each state is perturbed individually, and the corresponding changes in the state 

derivatives and output vectors are calculated. The nonlinear system represented by 

Equation 4.14 can be linearized to the system described by following equations. 

x A x B u

y C x D u

∆ = ∆ + ∆
∆ = ∆ + ∆

&
         (4.15) 

where columns of the A and C matrices are calculated by using the following equations.  

change in element of vectorth
ix i x∆ =  

change in vector due to changein (at the initial time)
1 1

(at the initial time)change in vector due tochangeinn n

x x x

x x x

=

=

∆

∆
M M

& &

& &

 

2
1

0 0 0
1

0
[ ]

0 n

x

x
x x An

x

 
 
 
 
 
 
 

∆

∆
∆ ∆ =

∆

LL

M
& &L

M O M

LLLLL
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(1 column of )
1 1

( columnof )

st
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A

n An n

x x

x x
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∆ ∆

∆ ∆

M M

&

&

 

column of /th A i ii x x=∆ ∆&  

The i
th
 columns of the A and C matrices are computed as follows. 

(:, ) ( 0) /( ( ) 0( ))

(:, ) ( 0) /( ( ) 0( ))

A i x x x i x i

C i y y x i x i

= − −

= − −

& &
       (4.16) 

this is performed for i = 1, …, n where n is the number of states of the system. 

 

4.2.2b Linearization with respect to control inputs 

 Similar to linearization with respect to states in Section 4.2.2a, the control inputs 

are perturbed individually and the corresponding changes in the state derivatives and 

output vectors are calculated. Then the i
th
 column of the B and D matrices are calculated 

as follows. 

 (:, ) ( 0) /( ( ) 0( ))

(:, ) ( 0) /( ( ) 0( ))

B i x x u i u i

D i y y u i u i

= − −
= − −

& &
       (4.17) 

This is done for i = 1, …, p where p is the number of controls of the system. 
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4.2.3 Steady state error reduction method 

The steady state error reduction method results a steady state error of zero 

between the linear and nonlinear models (under certain conditions). This method is often 

better than the Matlab or perturbation methods.  

 

4.2.3a Linearization with respect to states 

The nonlinear system represented by Equation 4.14 is run in closed loop until it 

reaches steady state. Then the steady state control inputs, states, and outputs are saved for 

later calculations (these are referred to as the nominal inputs, states, and outputs). Each 

state element is perturbed individually from their nominal values by some small 

percentage and then corresponding changes in the states, state derivatives, and outputs are 

observed at some small time greater than zero. The state, state derivative and output 

changes are saved as column vectors. After this procedure is repeated for each state 

element, the column vectors are augmented to form matrices.  Then using the following 

equations, A and C matrices are computed. 

0u∆ = ; i.e., control inputs are not changed  

change in vector due tochange ini ix x x=∆  

change in vector (at somesmallnonzero time)due tochangeini ix x x=∆& &  

1
[ ]nx x x∆ = ∆ ∆L  

1
[ ]nx x x∆ = ∆ ∆& & &L  

1 1

n n

x A x

x A x

∆ = ∆

∆ = ∆

&

M

&
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1
[ ] [ ]

1n nx x A x x∆ ∆ = ∆ ∆& &L L  

1( )A x x −= ∆ ∆&          (4.18) 

change in vector (at somesmallnonzero time)due tochangeini iy y x=∆

1
[ ]ny y y∆ = ∆ ∆L  

1 1

n n

y C x

y C x

=∆ ∆

∆ = ∆
M  

1 1
[ ] [ ]n ny y C x x∆ ∆ = ∆ ∆L L  

1( )C y x −= ∆ ∆          (4.19) 

where n is the number of states in the system  

 

4.2.3b Linearization with respect to controls 

Initially the system is linearized with respect to the states to find the system’s A 

and C matrices (this linearization can be done using any available linearization method). 

Next perturbing the nominal control and running the system in open loop, find the steady 

state perturbation from the nominal state and output. The steady state error reduction 

method computes the B and D matrices that will force a zero difference between the 

nonlinear and linearized state and output perturbations.   

change in control ( ) vector after perturbing element of

steadystatechange in vector after perturbing element of 

th

th

i

i

u u i u

x x i u

=

=

∆

∆
 

1 1
0

0 p p

A x B u

A x B u

= ∆ + ∆

= ∆ + ∆
M M M  
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1 1
0 [ ] [ ]p pA x x B u u= ∆ ∆ + ∆ ∆L L  

0 A x B u= ∆ + ∆  

1( )B A x u −= − ∆ ∆          (4.20) 

Similarly, using the output perturbation, the D matrix is calculated as follows 

steadystatechange in vector after perturbing element ofth

iy y i u=∆  

1 1 1
[ ] [ ] [ ]p p py y C x x D u u∆ ∆ = ∆ ∆ + ∆ ∆L L L  

y C x D u∆ = ∆ + ∆  

1( )( )D y C x u −= ∆ − ∆ ∆         (4.21) 

where p is the number of control inputs to the system. 

 

4.3 Linearization of the MAPSS turbofan engine model 

A turbofan engine is a highly nonlinear model. The turbofan model has to be 

linearized to estimate its health parameters by using the linearized Kalman filter 

technique described in Section 4.1.1. As described in the Section 4.2, there are three 

different types of linearization techniques that can be used to linearize the MAPSS 

model. The MAPSS model has to be linearized with respect to states, control inputs and 

health parameters. The type of linearization to be performed is specified by three 

different variables defined in the source code as StateLin, ControlLin, and HealthLin. 

Each of these three parameters can use one of the three linearization methods discussed in 

the previous section to linearize the turbofan model. This results in 27 different 

linearization combinations for a single MAPSS model. All of the 27 linear models are 

compared with the nonlinear MAPSS model and the results are discussed in Chapter VI. 
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4.4 Discretization of the MAPSS linear model 

 The linear approximation of the nonlinear MAPSS model obtained by one of the 

combinations discussed in Section 4.3 is represented by  

u px A x B u B p∆ = ∆ + ∆ + ∆&  

u py C x D u D p∆ = ∆ + ∆ + ∆         (4.22) 

where x is the state vector, u is the control input vector, p is the health parameter vector,   

and y is the sensor output vector (measurements) and 

 

 Equation 4.22 represents a continuous time system, but for the simplicity and to 

avoid complexity, the discretized model of this system is considered for the estimation of 

health parameters. The rate at which the system has to sampled or discretized is given by 

sampling time (T). The discretized system is represented by the following equations. 

1k k u k p kx A x B u B p+ ′ ′ ′∆ = ∆ + ∆ + ∆  

k k u k p ky C x D u D p′ ′ ′∆ = ∆ + ∆ + ∆        (4.23) 

where
ATA e′ ≡ , 

1( )AT
u uB A e I B−′ ≡ − , 

1( )AT
p pB A e I B−′ ≡ − , C C′ ≡ , 

u uD D′ ≡  and p pD D′ ≡  [20] . 

 

Since any Kalman filtering technique estimates only the states of the system, the 

other system parameters of interest that are to be estimated have to be augmented with 

the system states. This new augmented system will have different system matrices and 
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state vectors when considered with the original system. i.e., the new augmented system 

can be represented by  

1 aug augk k kX A X B u+∆ = ∆ + ∆  

augk k u ky C X D u′∆ = ∆ + ∆         (4.24) 

where X  is the augmented state vector, 
0

aug
pA B

A
I

 
 
  

′ ′
= ; aug pC C D 

  
′ ′= ; 

0
aug

uBB
 
 
 

′
=  and 

x

p
X

∆ 
 ∆ 

∆ =  

the size of I and 0 matrices depend on the sizes of state vector x, control input vector u, 

and health parameter vector p.  

 

As discussed in Section 2.5, MAPSS model has 3 states, 3 control inputs, 11 

sensor outputs and 10 health parameters to be estimated. Considering the above 

dimensions, the MAPSS system matrices will have the following dimensions.  

augA =13 × 13 ; (10 health parameters are augmented to 3 states) 

augB = 13 × 3 ; (3 control inputs) 

augC = 11 × 13 ; (11 sensor outputs) 

uD′  = 11 × 3 

x∆  = 3 × 1 

p∆  = 10 × 1 

u∆ = 3 × 1 

X∆ = 13 × 1 ; ( augmented state vector) 
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The linearized Kalman filter technique is implemented on this augmented system 

to estimate the augmented state vector X∆ . 

 

4.5 Discrete Linearized Kalman filter  

 The linearized Kalman filter discussed in Section 4.1.1 was for continuous time 

systems. However, for simplicity and reducing the complexity, the discrete model of the 

turbofan model is used in this research. The discretized form of the linearized Kalman 

filter uses the same five equations as discussed in Section 3.3 in the previous chapter 

except for the system matrices (A, B, C and D) are obtained by linearizing the nonlinear 

turbofan model at the nominal values. There are different equivalent Kalman filter 

equations that can be implemented in a more simple way compared to the conventional 

Kalman filter.  

 

 The type of linearized Kalman filter implemented in this research is the a priori 

Kalman filter. The typical five equations are reduced to three equations in this a priori 

filter. An a priori filter is one in which states and estimation error covariances are 

updated using their a priori values i.e., ˆ
k
x−  and

k
P− . 

 

Considering Equation 4.26 in Section 3.3 for a priori estimation error covariance we see 

that 

1 1 1 1
T

k k k k k
P A P A Q− +

− − − −
′= +  where 

1 1 1 1
T

k k k k
Q Q≡− − − −
′ Λ Λ  

The Kalman gain from Section 3.3 (Equation 4.27) is 
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1[ ]T T
k k k k k k k

K P C C P C R −− −= +   

 then by substituting the value of a posteriori value for estimation error covariance 
1k

P+−  

from Section 3.3 (Equation 4.29), the following equation is obtained. 

1 1 1 1 1 1 1 1 1
T TC

k k k k k k k k k k
P A P A A K P A Q− − −− +− − − − − − − − −

′=  

From 
1 1 1k k k

K A K≡− − −
′  we obtain 

1
1 1 1 1 1 1 1 1

[ ]T T
k k k k k k k k

K A P C C P C R −
− − − − − − − −

− −′ = +      (4.25) 

The a priori value of estimation error covariance is  

1 1 1 1 1 1 1 1
T TC

k k k k k k k k k
P A P A K P A Q− − −− +− − − − − − − −

′ ′=     (4.26) 

Now considering the state estimate update equations from Section 3.3, i.e., 

(Equation 4.25) we obtain 

1 1 1 1
ˆ ˆ
k k k k k
x A x B u− +

− − − −= +  

Substituting the a posteriori estimate 
1

ˆ
k
x+−  from Equation 4.28 gives 

( )
1 1 1 1 1 1 1 1

ˆ ˆ ˆ
k k k k k k k k k
x A x B u K z C x− − −+− − − − − − − −

′= + −     (4.27) 

 

 Equations 4.25, 4.26 and 4.27 represent the a priori Kalman filter which are 

implemented in this research. The state estimate and estimation error covariance are 

updated using these three equations. The above derivations are discussed in more detail 

in [21]. 
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4.6 Health estimation GUI 

 A graphical user interface is developed for the health estimation of a turbofan 

engine. This GUI is developed using Matlab’s GUIDE software. Like any other GUI, the 

main aim of this health estimation GUI is to make the estimation process more user 

friendly. Figure 4.1 displays the health estimation GUI of a turbofan engine. The user can 

specify the estimation specifications like the type of estimation technique to be used, the 

type of constraint to be implemented and also the type of filter, like steady state or time 

varying. The linearization technique to be implemented can be specified using the linear 

model push button. Initial conditions like initial estimation error covariance and process 

noise covariance can also be specified. 

 

 The measurements that are to be used to estimate the health parameters can be 

selected from the sensor outputs. The user can select sensor outputs of interest or the 

default sensor set that is used in this research. Once the estimation is done, the estimation 

errors are displayed in the text box at the bottom along with the estimation technique.  
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    Figure 4.1: Health estimation GUI 
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CHAPTER V 

SIMULATION RESULTS 

 

The turbofan engine model is a highly nonlinear model. The model can be linearized so 

that the nonlinear estimation techniques can be implemented to estimate the model’s 

health parameters. As discussed in Chapter IV, there are three different types of 

linearization techniques that can be used to linearize the MAPSS model. The type of 

linearization to be performed is specified by three different variables defined in the code 

as StateLin, ControlLin, and HealthLin. The linear models obtained are validated by 

comparing the trend of certain variables in the linear models with those in the nonlinear 

models over a period of time. Section 5.1 discusses the filtering results obtained from 

different linear models and their validation. The linearized Kalman filter was 

implemented on the MAPSS model to estimate the health parameters using all of the 

possible linear models. Both the unconstrained and constrained forms of the linearized 

Kalman filter estimates of the health parameters are shown in Section 5.2. 
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5. 1 Linearization of the MAPSS turbofan engine model 

The MAPSS model was linearized with respect to states, control inputs and health 

parameters and each of these variables could be linearized in one of the three 

linearization techniques as discussed. This resulted in 27 different combinations of 

linearization techniques that can be applied to a single nonlinear MAPSS model.  

 

The linearization method that is used is specified by the parameters StateLin, 

ControlLin, and HealthLin in the mapss_gui.m file. Each of these three parameters can be 

linearized in one of the three ways that we discussed previously.  

States   0. Perturbation method 

1. Matlab method 

2. Steady state error reduction method 

Controls  0. Perturbation method 

   1. Matlab method  

   2. Steady state error reduction method 

Health Parameters 0. Perturbation method  

   1. Matlab method 

   2. Steady state error reduction method 

Three values have been assigned to each of these parameters (StateLin, ControlLin, and 

HealthLin) to describe how they would be linearized. For instance, the Perturbation 

Method is specified with a parameter value of 0, the Matlab method is specified with a 

parameter value of 1, and the Steady state error reduction method is specified with a 

parameter value of 2. 
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Validation  

All 27 models were compared with the nonlinear model. The linear model that 

resulted in minimum errors or deviations of the 22 sensor outputs from the nonlinear 

model is the best linearized model of all the 27 combinations. This linearization test is 

performed by perturbing the health parameters and initial states by some percentage of 

their initial values. If there was no perturbation then both the linear and nonlinear model 

would behave identically.  

 

Each linearization technique can be used with a different perturbation value. We 

used three different linearization perturbation values (0.01%, 0.1% and 0.5% of the 

steady state value). We then tested the linear models that resulted with three different test 

perturbation values (0.01%, 0.1% and 0.5%). There are two types of errors that we 

considered for the validation of the linearization. 

a) RMS Average Error 

b) RMS Final Error  

RMS average error is the average of the error over the whole time of the simulation (six 

seconds), and the RMS Final error is the error at the final time of simulation (i.e., at time 

= six seconds). The following tables show the best linearization method for each 

combination of linearization perturbation and test perturbation. 

In Tables I and II, LINxyz represents one of 27 linearization combinations.  

x = StateLin (0, 1, or 2) 

y = ControlLin (0, 1, or 2) 

z = HealthLin (0, 1, or 2) 
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TABLE  I – Best RMS errors averaged over the entire simulation time. LINxyz 

means state linearization x, control linearization y, health parameter linearization 

z. 0 means perturbation linearization, 1 means Matlab linearization, 2 means 

steady state error reduction method. 

Testing Perturbation Value (%) 

 0.01 0.1 0.5 

0.01 LIN212 LIN212 LIN212 

0.1 LIN212 LIN212 LIN212 

 

 

Linearization 

Perturbation 

Value (%) 0.5 LIN212 LIN212 LIN212 

 

 

Table I shows that the use of the steady state error reduction method for state 

linearization and health parameter linearization, combined with the Matlab linearization 

method for control input linearization, results in the best match between the linear and 

nonlinear models (when average RMS difference is considered). 
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TABLE II – Best RMS errors at the final time. LINxyz means state linearization 

x, control linearization y, health parameter linearization z. 0 means perturbation 

linearization, 1 means Matlab linearization, 2 means steady state error reduction 

method. 

  Testing Perturbation Value (%) 

 0.01 0.1 0.5 

0.01 LIN022 LIN022 LIN122 

LIN022 

0.1 LIN022 LIN022 LIN022 

 

 

Linearization 

Perturbation 

Value (%) 0.5 LIN022 LIN022 LIN022 

 

Table II shows that the use of the perturbation method for state linearization, and 

the steady state error reduction method for control and health parameter linearization, 

results in the best match between the linear and nonlinear models (when final RMS 

difference is considered). 
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Figure 5.1: RMS errors of 27 linear models 
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The linearization techniques can be grouped into two categories based on the 

value of RMS errors as shown in Figure 5.1. All the linearization techniques in which the 

model is linearized with respect to health parameters in the Matlab method resulted in the 

worst RMS errors (LINxy1). All the other linearization techniques except the above case 

give similar results. It can also be observed that error bars exhibit a sequential pattern for 

all linearization techniques with a range of medium, high and low errors consecutively 

for sequential three linear combinations (bars in Figure 5.1). 

 

Figure 5.2 shows the behavior of four different parameters of the linearized model 

(LIN002) with their corresponding nonlinear behavior. The solid lines represent the 

nonlinear behavior and dashed lines represent the linear behavior of the same parameter. 

Ground term in the label means that the engine is operated at the 1
st
 operating point (PLA 

= 21, mach number = 0, altitude = 0) and dpPct specifies the percentage of perturbation 

in the health parameters by which the model is linearized. As seen there is not much 

variation in the trend of the parameters in the linear and nonlinear case. 
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                                  Figure 5.2: Linear Vs Nonlinear simulations 

 

The average and final RMS error between the linear and nonlinear models for 27 

different linearization combinations is shown in Table III. This table represents the RMS 

errors with perturbation values of 0.01% for linearization, and perturbation values of 

0.01% for testing the linear models. The best performances are in boldface font. 
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TABLE III – Linear models performance. LINxyz means state linearization x, 

control linearization y, health parameter linearization z. 0 means perturbation 

linearization, 1 means Matlab linearization, 2 means steady state error reduction 

method. 

Linearization 

Combination 

Average 

RMS Error 

� 10
-4
 

Final RMS 

Error � 10
-4
 

Lin000 7.52 2.45 

Lin001 18.72 19.05 

Lin002 7.29 0.85 

Lin010 7.45 2.49 

Lin011 18.83 19.17 

Lin012 7.20 0.81 

Lin020 7.74 2.62 

Lin021 18.75 19.31 

Lin022 7.49 0.42 

Lin100 7.44 2.12 

Lin101 18.74 19.02 

Lin102 7.26 0.73 

Lin110 7.38 2.16 

Lin111 18.85 19.14 

Lin112 7.18 0.68 

Lin120 7.61 2.27 

Lin121 18.79 19.34 

Lin122 7.42 0.43 

Lin200 7.26 1.96 

Lin201 19.09 19.23 

Lin202 7.14 0.72 

Lin210 7.16 2.03 

Lin211 19.19 19.35 

Lin212 7.01 0.65 

Lin220 7.65 2.21 

Lin221 19.31 19.55 

Lin222 7.48 0.53 
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It can be seen that several of the linearization combinations provide performance 

nearly as good as the best linearization, but some linearization combinations perform 

quite poorly. The linearization technique in which the nonlinear model is linearized with 

respect to health parameters in perturbation method or steady state error reduction 

method was giving the best RMS errors. From the above results, it can be concluded that 

linear models obtained with the perturbation method or steady state error reduction would 

behave more close to the nonlinear systems than those obtained with the Matlab method. 

 

5. 2 Health parameter estimation 

The turbofan engine’s health parameters are estimated based on some linear model. 

The linearized Kalman filter was implemented to estimate all 10 health parameters of the 

MAPSS model of the turbofan engine. However, due to an error in the MAPSS software 

health parameter # 4 cannot be estimated (i.e., it is completely unobservable, with no 

connection to the states or outputs). Two different algorithms were tested for estimating 

the health parameters: constrained Kalman filtering and unconstrained (standard) Kalman 

filtering. 

  

As discussed in Section 4.4, the discrete linear model of the MAPSS model is 

obtained and is then augmented with the health parameters. The Kalman filter works on 

the principle of utilizing the known dynamics of the system (model) along with the 

measurements obtained from the model to estimate the states. Three seconds of data are 

collected at 10 Hz every flight. The model is simulated for 6 seconds so the states reach the 

steady state. The necessary measurements were obtained offline using the nonlinear model. The 
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model is linearized every 100 flights but the measurements were obtained every flight 

(for 3 sec) from the measurement files. 

 

The list of health parameters that are to be estimated are given as follows. 

1) Fan airflow 

2) Fan efficiency 

3) Booster tip airflow 

4) Booster tip efficiency (unobservable in MAPSS) 

5) Booster hub airflow 

6) Booster hub efficiency 

7) High pressure turbine airflow 

8) High pressure turbine efficiency 

9) Low pressure turbine airflow 

10) Low pressure turbine efficiency 

 

The sensor measurements used to estimate the above health parameters are given as 

follows with their corresponding SNR (signal-to-noise ratios) values as shown. These 

signal-to-noise ratios were determined on the basis of NASA experience and previously 

published data [28]. 

1) LPT exit pressure (SNR = 100) 

2) LPT exit temperature (SNR =100) 

3) Percent low pressure spool rotor speed (SNR =150) 

4) HPC inlet temperature (SNR =100) 
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5) HPC exit temperature (SNR =200) 

6) Bypass duct pressure (SNR =100) 

7) Fan exit pressure (SNR =200) 

8) Booster inlet pressure (SNR =200) 

9) HPC exit pressure (SNR =100) 

10) Core rotor speed (SNR =150 ) 

11) LPT blade temperature (SNR =70) 

The health parameter degradation estimation is performed at two different engine 

operating conditions. These operating conditions represent the conditions where the 

engines actually operate for a long period of time. 

 

5.2.1 Unconstrained Kalman filter estimates 

 The results were obtained based on a Monte Carlo simulation of 20 experiments. 

As discussed in Section 4.4, the state vector of the dynamic MAPSS model is augmented 

to include the health parameters, which are then estimated with a linearized Kalman 

filter. Initially the standard Kalman filter (unconstrained) is implemented on the turbofan 

model and the change in health parameters is estimated. The time varying form of the 

standard Kalman filter is implemented in this thesis instead of a steady state filter to get 

more accurate results. Table IV shows the RMS estimation errors over 50 flights of the 

unconstrained Kalman filter for each of the health parameters of all 27 possible linearized 

models (health parameter # 4 is not included for the reasons discussed above).  The 

linearization combinations displayed are similar to the linear models described in the 

Section 5.1. 
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TABLE IV – RMS health parameter (degradation) estimation errors (percent) for the 

unconstrained Kalman filter for 27 linear models. LINxyz means state linearization x, 

control linearization y, health parameter linearization z. 0 means perturbation 

linearization, 1 means Matlab linearization, 2 means steady state error reduction method 

Linearization Health Parameter 

Combination 1 2 3 5 6 7 8 9 10 Average 

000 18.41 2.18 16 6.84 2.54 2.43 6.16 3.19 8.71 7.38 

001 18.69 2.14 15.71 5.13 7.95 2.29 7.1 2.65 8.78 7.83 

002 17.62 2.33 16.56 7.36 2.22 3.29 6.9 3.99 9.22 7.72 

010 18.54 2.48 16.02 7.04 2.25 2.77 6.72 3.13 8.81 7.53 

011 17.4 2 15.51 5.31 7.77 2.58 7.4 2.57 8.79 7.7 

012 16.38 2.58 16.2 7.64 2.61 3.34 6.29 3.86 9.01 7.54 

020 18.26 2.08 16.08 4.75 2.7 2.48 6.66 3.49 9 7.28 

021 18.05 2.36 15.14 2.92 7.91 2.69 7.14 3.36 9.08 7.63 

022 17.94 2.43 15.52 5.45 2.16 3.79 6.48 4.31 9.23 7.48 

100 16.16 2.46 16.32 7.08 2.59 2.77 5.79 2.96 8.52 7.18 

101 17.77 2.15 15.55 4.78 7.58 2.64 7.14 2.91 8.86 7.71 

102 16.49 2.34 16.29 7.64 2.31 2.84 6.01 3.84 8.93 7.41 

110 17.04 2.39 16.17 6.74 2.26 2.65 5.86 3.21 8.64 7.22 

111 18.37 2.03 15.43 5.22 7.65 2.76 7.15 2.59 8.75 7.77 

112 19.05 1.97 16.19 7.54 2.73 3.11 6.19 4.01 9.03 7.76 

120 17.02 2.36 15.44 4.27 2.31 2.85 6.5 3.64 9.02 7.04 

121 16.88 2.26 15.76 3.37 8.05 2.8 7.19 2.99 8.94 7.57 

122 18.25 2.2 16.4 5.5 2.22 3.54 6.77 4.61 9.42 7.66 

200 17.15 2.52 15.59 6.14 2.31 2.24 6.29 3.146 8.71 7.12 

201 18.92 2.23 15.57 4.65 7.69 2.64 7.23 2.82 8.8 7.84 

202 16.27 2.64 16.13 6.93 2.3 3.64 6.39 3.62 8.94 7.43 

210 17 2.11 15.89 5.77 2.35 2.6 6.25 3.11 8.68 7.08 

211 19.57 2.26 15.48 4.82 7.9 2.61 7.03 2.62 8.73 7.89 

212 17.86 2.42 16.26 6.35 2.26 3.26 6.98 3.49 9.07 7.55 

220 18.79 2.25 15.36 4.67 2.25 2.53 6.64 3.65 9.02 7.24 

221 18.44 2.22 15.24 3.99 7.91 2.54 7.24 3.12 9 7.75 

222 18.21 2.23 15.85 5.47 2.14 3.67 6.72 4.41 9.33 7.56 
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A wide variety of Kalman filter performance is shown in Table IV, depending on 

which linearization combination is used. Overall, it appears that using the Matlab method 

for the state linearization, the steady state error reduction method for the control 

linearization, and the perturbation method for the health parameter linearization, results 

in the best Kalman filter performance.  

 

Figure 5.3a is a graphical representation of the effect of the 27 linearization 

techniques on the unconstrained Kalman filter performance for the health estimation of 

the turbofan engine at  operating point where PLA = 21, mach number = 0, altitude = 0. 

There is not much variation in the results; however it can be shown that the linear model 

where the health parameters were linearized in Matlab method resulted in bad estimation 

errors.  
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Figure 5.3a: Unconstrained RMS health parameters degradation estimation errors 

(percent) for 1
st
 operating condition. 
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5.2.2 Constrained Kalman filter estimates 

 In the application of Kalman filters there is often known model or signal 

information that is either ignored or dealt with heuristically [29]. State variable 

constraints (which may be based on physical considerations) are often neglected because 

they do not fit easily into the structure of the Kalman filter. Using one of the two analytic 

methods of incorporating state variable inequality constraints in the Kalman filter as 

discussed in [29], the change in health parameters are estimated. This method of 

enforcing the state variable constraints in to the Kalman filter structure is performed 

using the hard constraints. Engine health always deteriorates over time, and this 

information can be incorporated into the Kalman filter structure as a state variable 

constraint. This incorporation of state variable constraints increases the computational 

effort of the filter but significantly improves its estimation accuracy [10]. The inequality 

state variable constraints are considered to be linear in this estimation problem from the 

fact that the health parameters can never improve, i.e., the change in the state variables 

can be zero or negative but cannot be positive from one time step to next. This 

constrained estimation problem of inequality constraints can be solved using a quadratic 

programming algorithm. The incorporation of inequality constraints and then solving 

them, results in a new filter which is a combination of standard Kalman filter and a 

quadratic programming problem.  

 

Constrained estimation is performed by projecting the unconstrained estimate on 

to the constraint surface at each time step and then solving the inequality constraint 

problem using quadratic programming. A family of constrained state estimates is 
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obtained, where the weighting matrix of the quadratic programming problem determines 

which family member forms the desired solution [10].  
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Figure 5.3b: Constrained RMS health parameters degradation estimation errors (percent) 

for 1
st
 operating condition. 

 

Similar to Figure 5.3a, the effect of 27 linearization combinations on the 

constrained Kalman filter performance is shown in Figure 5.3b. Though, it is shown that 

using the Matlab method for the state linearization, the steady state error reduction 

method for the control linearization, and the perturbation method for the health parameter 

linearization, resulted in the best Kalman filter performance, there are other linearization 

combinations that resulted in good estimates too. The Kalman filter implementation with 

the linearization method which is considered to be best by comparing linear and 

nonlinear simulations resulted in estimates that are close to the best estimates. 
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TABLE V – RMS health parameter (degradation) estimation errors (percent) for the 

constrained Kalman filter for 27 linear models. LINxyz means state linearization x, 

control linearization y, health parameter linearization z. 0 means perturbation 

linearization, 1 means Matlab linearization, 2 means steady state error reduction method  

Linearization Health Parameters 

Combination 1 2 3 5 6 7 8 9 10 Average 

000 13.42 2.09 14.67 6.78 2.25 2.15 5.8 2.78 8.37 6.48 

001 13.61 1.92 14.41 5.08 7.49 2.08 6.87 2.18 8.45 6.9 

002 13.45 2.25 14.79 7.31 2.07 2.87 6.47 3.52 8.86 6.84 

010 13.3 2.42 14.58 6.97 2.01 2.49 6.37 2.68 8.45 6.58 

011 12.97 1.82 14.36 5.27 7.38 2.34 7.18 2.15 8.48 6.88 

012 12.6 2.36 14.66 7.62 2.38 2.9 5.94 3.44 8.71 6.73 

020 13.86 1.95 14.69 4.77 2.43 2.15 6.29 3.08 8.68 6.43 

021 13.56 2.14 14.13 2.89 7.47 2.37 6.96 2.87 8.77 6.8 

022 13.18 2.33 14.29 5.48 1.94 3.36 6.13 3.8 8.92 6.61 

100 12.74 2.47 14.85 7.03 2.36 2.45 5.46 2.59 8.21 6.46 

101 13.32 1.99 14.48 4.67 7.18 2.42 6.95 2.49 8.56 6.9 

102 12.76 2.19 14.75 7.6 2.08 2.42 5.64 3.43 8.61 6.61 

110 12.79 2.25 14.64 6.66 2.06 2.37 5.49 2.8 8.28 6.37 

111 13.53 1.88 14.33 5.15 7.21 2.51 6.95 2.16 8.44 6.91 

112 13.99 1.86 14.74 7.46 2.59 2.75 5.82 3.58 8.69 6.83 

120 12.89 2.32 14.36 4.27 2.08 2.5 6.21 3.23 8.73 6.29 

121 13.04 2.11 14.5 3.28 7.64 2.51 6.99 2.57 8.65 6.81 

122 13.76 2.08 14.74 5.56 2.06 3.08 6.35 4.1 9.09 6.76 

200 13.35 2.38 14.44 6.09 2.04 1.98 6.03 2.81 8.43 6.39 

201 13.74 2.1 14.45 4.6 7.3 2.43 6.99 2.36 8.54 6.95 

202 12.63 2.57 14.54 6.96 2.08 3.2 6 3.2 8.61 6.64 

210 12.81 2.1 14.59 5.75 2.14 2.32 5.94 2.74 8.37 6.31 

211 13.89 2.082 14.32 4.78 7.5 2.32 6.77 2.16 8.39 6.91 

212 13.81 2.17 14.68 6.36 2.09 2.82 6.62 3.04 8.74 6.7 

220 13.49 2.2 14.29 4.66 2 2.22 6.33 3.22 8.72 6.35 

221 13.46 2.09 14.19 3.97 7.5 2.24 7.06 2.66 8.71 6.88 

222 13.36 2.11 14.53 5.51 1.96 3.24 6.37 3.94 9 6.67 
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Table V shows the performance of the constrained Kalman filter, depending on 

which linearization combination is used. As with the standard Kalman filter, it appears 

that using the Matlab method for the state linearization, the steady state error reduction 

method for the control linearization, and the perturbation method for the health parameter 

linearization, results in the best constrained Kalman filter performance.  

 

Figure 5.3a and 5.3b show that Kalman filter performance is quite bad when the 

model is linearized with respect to health parameters in Matlab method.  This proves that 

Kalman filter performance mainly depends on the linearization accuracy of the nonlinear 

model. Hence, accurate estimates can only be obtained by implementing Kalman filter on 

the linear models that behave as close as possible to their nonlinear models.  

 

When average health parameter degradation estimation error (percent) is 

considered in Tables IV and V, the constrained filter has a smaller estimation error than 

the unconstrained filter. This is because the constrained state estimate is unbiased and has 

a smaller error covariance than the unconstrained estimate. But this (extra accuracy) is 

achieved at the additional computational effort of performing quadratic programming 

algorithm at each time step. 

 

 Figure 5.4a and 5.4b show the health parameter degradation estimations of 

unconstrained filter and constrained filter with the true degradation for 500 flights 

respectively. The thick lines show the true degradation of the health parameters and thin 

lines represent their corresponding estimations. The true health parameters degradations 
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are plotted by certain exponential functions which are the approximations of the turbofan 

health parameters degradations. These approximations are based on NASA experience 

from the real time flight data. It can be seen from the Figures 5.2a and 5.2b, that there are 

only five thick lines corresponding to the nine thin lines, this is because the true 

degradation of certain health parameters are the same.   

 

                Figure 5.4a: Unconstrained health parameter degradation estimates 
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                             Figure 5.4b: Constrained health parameter degradation estimates  

 

Figures 5.5a and 5.5b show the health parameters estimation errors of turbofan 

engine for 27 linear models with operating point of PLA = 35, Mach Number = 0.8 and 

altitude = 35000. The steep increase in the last 9 linear models is because of the model 

being linearized in Matlab method with respect to health parameters. 
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Figure 5.5a: Unconstrained RMS health parameters degradation estimation errors 

(percent) for 2
nd
 operating condition 
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Figure 5.5b: Constrained RMS health parameters degradation estimation errors (percent) 

for 2
nd
 operating condition 
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CHAPTER VI 

UNSCENTED KALMAN FILTER 

 

The extended Kalman filter is considered to be the most widely used recursive estimation 

algorithm for the nonlinear systems. In this chapter we discuss the major flaws and 

assumptions that are encountered in the EKF algorithm and discuss a new estimation 

algorithm to overcome those flaws. Years of research in the estimation field has resulted 

in many different algorithms which have their own pros and cons. The unscented Kalman 

filter is one of those algorithms. This UKF algorithm was first proposed by Julier et 

al. [22] and was further developed by Wan and van der Merwe [23]. This UKF is based 

on the unscented transformation of the mean and covariance of the parameters to be 

estimated. 

 

Estimating the states of a nonlinear system is extremely difficult. The optimal 

solution to this estimation requires the propagation of the full PDF (probability density 

function) of the states through the time update. This propagation is almost impossible 

because the PDF of any variable is not finite (restricted). However, an approximation of 
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some kind is considered for this PDF in estimation algorithms. The Kalman filter uses the 

first two moments (mean and covariance) of the state distribution in its update rules. 

There are a couple of reasons to consider only mean and covariance. Firstly, the mean 

and covariance of the unknown distribution requires the maintenance of a small and 

constant amount of information. Secondly, both the mean and covariance are linearly 

transformable quantities. For example, if a distribution has the mean M and covariance C, 

after the linear transformation T, the mean and covariance will be TM and TCT’. 

 

The EKF basically works on the assumptions that all the transformations are 

linear. The EKF is an estimation algorithm wherein the nonlinear system is linearized 

first and then the recursive Kalman filter equations are applied for the time update. 

Linearizing the nonlinear system involves the calculation of Jacobians and substituting 

them for the linear transformation in the KF equations. The EKF is difficult to tune and 

may result in unreliable estimates if the nonlinearities are severe. The major limitations of 

the EKF are 

1) The EKF can be applied only if the Jacobians can be calculated.  

2) Jacobian calculation is an extremely difficult and error-prone process. 

3) Linearization is based on the Taylor series approximation, considering only the 

first two terms of the series and ignoring the other higher order terms. 

 



 

 84

As the EKF totally depends on the linearization to propagate the mean and 

covariance, it is obvious that EKF would give bad estimates if any one of the above 

limitations is encountered. 

 

To overcome these limitations, the unscented transformation was derived which 

utilizes a more direct and simple approach to propagate the mean and covariance. The 

main advantage of implementing unscented transformation on a nonlinear estimation 

problem is that it approximates the mean to third order, which is better than linearization, 

and it approximates the covariance to third order, which is the same as linearization. 

Section 6.1 discusses the basic unscented transformation on which UKF was derived. The 

UKF algorithm will be derived in Section 6.2. Section 6.3 describes reduced sigma point 

filters and finally the performance of the UKF is shown by an inverted pendulum 

application in Section 6.4 and its corresponding simulation results in Section 6.5.  

 

6.1 Unscented Transformation 

The unscented transformation is a method for calculating the statistics of a 

random variable which undergoes a nonlinear transformation [7]. The unscented 

transformation is based on two fundamental principles. First, it is easy to perform a 

nonlinear transformation on a single point (rather than an entire PDF). Second, it is not 

too hard to find a set of points in state space whose probability density function (PDF) 

approximates the true PDF of a state vector [24].  
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Consider a random variable x with dimension n which is going through a 

nonlinear transformation, y=f(x). Initial condition states that x has a mean x  and 

covariance xP .  The unscented transformation calculates the statistics of y by forming a 

set of sigma points (vectors) iX . These sigma points should be chosen such that they 

capture the most important statistical properties of the prior random variable x. Sigma 

points are calculated according to the following conditions: 

0 ,X x=  

( ( ) )i x iX x L Pλ= + +     i=1,……L,                                                  

( ( ) )i x iX x L Pλ= − +     i=L+1,……,2L,                                                      (6.1) 

where 2 ( )L Lλ α κ= + − , is a scaling parameter. The constant α determines the spread of 

the sigma points around x  which is usually set to a small positive value (0<α <1). κ  is a 

secondary scaling parameter which is set to 3−L. (set to 0 in our case). ( ( ) )x iL Pλ+  is 

the ith column of the matrix square root. This matrix square root can be obtained by using 

the Cholesky factorization routine in Matlab. 

 

 Each of the sigma vectors is assigned with a weight. These weights are calculated 

by the following equations.  

( )

0

( ) ( ) 2

0 0

/( )

1

m

c m

W L

W W

λ λ

α β

= +

= + − +
 

( ) ( ) 1/ 2( )c m

i iW W L λ= = +  i=1,……2L      (6.2) 
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where β  is a factor that incorporates a prior knowledge of the distribution, usually set to 

2 (set to 21 α−  in our case). 

The sigma vectors described in Equation 6.1 are propagated through the nonlinear 

function y=f(x) individually and the corresponding iY  are obtained as 

( )i iY f X=                       i=0,……, 2L,                                                                (6.3) 

 

The mean and covariance of the y are approximated using the above nonlinearly 

transformed sigma points ( iY ) and the weights by the following equations. 

2
( )

0

L
m

i i

i

y W Y
=

=∑                                                                                                       (6.4) 

2
( )

0

( )( )
L

c T

y i i i

i

P W Y y Y y
=

= − −∑                                                                                  (6.5) 

 

Hence, y  and yP  obtained in Equations 6.4 and 6.5 are the approximated mean 

and covariance of the nonlinearly transformed x. Figure 6.1 shows how the sigma points 

are nonlinearly transformed [22].  
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             Figure 6.1: Principle of Unscented Transformation 

 

6.2 Unscented Kalman filter 

Estimating the states of the system is performed by propagating the mean and 

covariance of the state distribution. For linear systems, the general recursive Kalman 

filter algorithm based on MMSE (minimum mean squared error) is the straightforward 

estimation technique to be implemented. On the other hand, for nonlinear systems, the 

hybrid extended Kalman filter (EKF) is considered to be the best nonlinear estimator. 

However, as discussed previously, the EKF has some limitations as it is based on the 

linearization of the nonlinear system and also on some other approximations. The 

unscented Kalman filter is an alternative to the EKF which has the implementation of 

unscented transformation of the nonlinear state distribution and then applying the 

Sigma point 

Distribution 

 
Nonlinear 

Transformation 

Transformed 
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recursive Kalman filter algorithm for the time update and measurement update for the 

nonlinearly transformed state distribution.  

The unscented transformation is proved to be more accurate in propagating the 

mean and covariance when compared with the linearization method used in EKF.  

 

(a)         (b)     (c)   

      Figure 6.2: Mean and Covariance propagation in (a) Actual nonlinear transformation, 

       (b) Extended Kalman filter (first order linearization), (c) Unscented Transformation 
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Figure 6.2 illustrates the mean and covariance propagation in all three 

transformations [23]. The mean in the EKF and UT are similar to that of the true 

nonlinear transformation. But, when covariance propagation is considered, the UT 

outperforms the EKF. And moreover there is no need of calculating any Jacobians in the 

unscented transformation algorithm. The order of computational effort is almost the same 

in both algorithms. When the computational effort is same in both cases, the unscented 

transformation is preferred over the EKF for the better accuracy. 

 

The unscented Kalman filter algorithm can be divided in to three sections. The 

first part is the initialization of the state estimate and state covariance of the nonlinear 

system. The second part is applying the UT to the state distribution and calculating the a 

priori state estimate and a priori state covariance. The third part is performing the 

measurement update equations and calculating the Kalman gain, state estimate and state 

error covariance. 

 

6.2.1 Algorithm for additive noise (zero mean) 

Consider a discrete time nonlinear system represented by 

1 ( , , )

( , )

k k k k k

k k k k

x f x u t w

y h x t v

+ = +

= +
                                                                                    (6.6) 

where (0, )k kw N Q� , (0, )k kv N R�    are additive process and measurement noise, with 

zero mean and covariances of kQ and kR  . 

Initialization 
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The UKF is initialized with the initial estimate and estimation error covariance as 

in the EKF. 

0 0

0 0 0 0 0

ˆ ( )

ˆ ˆ[( )( ) ]T

x E x

P E x x x x

+

+ + +

=

= − −
                                                       (6.7) 

 

Sigma point selection 

As seen previously in the unscented transformation, a set of sigma points and their 

corresponding weights are calculated around the initial estimate according to Equation 

6.1 and 6.2.  

( )

1 1
ˆ ˆi

k kx x+− −=            i=0; 

( )

1 1 1
ˆ ˆ ( ( ) )i

k k k ix x n Pλ+ +
− − −= + +       i=1,…, n 

( )

1 1 1
ˆ ˆ ( ( ) )i

k k k ix x n Pλ+ +
− − −= − +       i=n+1,…,2n                                                   (6.8) 

and the corresponding weights are calculated as  

( )

0

( ) ( ) 2

0 0

/( )

1

m

c m

W n

W W

λ λ

α β

= +

= + − +
 

( ) ( ) 1/ 2( )c m

i iW W n λ= = +             i=1,…,2n                                                   (6.9) 

where α , β  and λ  are as defined in the Section 6.1. 

Time Update 
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The system gets updated from k-1 to k time step. All the sigma points ( )

1
ˆ i

kx −   are 

propagated through the nonlinear function f(.) and h(.) and then the corresponding 

nonlinear sigma points ( )ˆ i
kx  are obtained.  

( ) ( )

1
ˆ ˆ( , , )i i

k k k kx f x u t−=  

( ) ( )ˆ ˆ( , )i i

k k ky h x t=                                                                                                 (6.10) 

Using the ( )ˆ i
kx vectors and also the weights ( )c

iW  and ( )m

iW  we perform the 

following steps. 

a) the a priori state estimate ˆkx
−   at time kt  is calculated as in Equation 6.4 

2
( ) ( )

0

ˆ ˆ
n

m i

k i k

i

x W x−

=

=∑                                                                                                (6.11) 

b) the a priori estimation error covariance  

2
( ) ( ) ( )

1

0

ˆ ˆ ˆ ˆ( )( )
n

c i i T

k i k k k k k

i

P W x x x x Q− − −
−

=

= − − +∑                                                           (6.12)  

 Similarly using the ( )ˆ i

ky  vectors (measurements from sigma points) ˆ
ky
−  is 

calculated as 

2
( ) ( )

0

ˆ ˆ
n

m i

k i k

i

y W y−

=

=∑                                                                                               (6.13) 

Measurement Update 

Using the calculated a priori state estimate, a priori estimation error covariance 

and measurement estimate, the following terms are calculated. 
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a) Covariance of the predicted measurement  

2
( ) ( ) ( )

0

ˆ ˆ ˆ ˆ( )( )
n

c i i T

yy i k k k k k

i

P W y y y y R− −

=

= − − +∑                                                            (6.14)   

b) Now estimate the cross covariance between ˆkx
−  and ˆky

−  as   

2
( ) ( ) ( )

0

ˆ ˆ ˆ ˆ( )( )
n

c i i T

xy i k k k k

i

P W x x y y− −

=

= − −∑                                                                     (6.15) 

c) The measurement update of the state estimate and estimate error covariance is 

performed using the general Kalman filter equations by calculating the Kalman gain kK  

1

k xy yyK P P−=             

ˆ ˆ ˆ( )k k k k kx x K y y+ − −= + −  

T

k k k yy kP P K P K+ −= −                                                                                           (6.16) 

 

6.2.2 Algorithm for non-additive noise  

The equations derived in the above algorithm are for additive noises (process and 

measurement noise), but we can implement the same equations with little modification in 

case the noises are not additive. Consider a discrete time nonlinear system represented by 

the following equations.  

1 ( , , , )

( , , )

k k k k k

k k k k

x f x u w t

y h x v t

+ =

=
                                          (6.17) 
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kw  and kv  are the process and measurement noises respectively, which are incorporated 

in to the system and are clearly non additive.  

The modifications that are to be made in the above algorithm are: 

a) Augment the noise vectors onto the state vector 

k

a

k k

k

x

x w

v

 
 =  
  

                                                                                                         (6.18)      

b) The UKF is used to estimate the augmented state a

kx . For this we need different initial 

conditions from that of the above derived algorithm.  

0( )

ˆ 0

0

a

k

E x

x +

 
 =  
  

 

0 0 0 0

0 0

0

ˆ ˆ[( )( ) ] 0 0

0 0

0 0

T

a

E x x x x

P Q

R

+

 − −
 

=  
 
 

                                                         (6.19) 

where 0x , 0Q  and 0R have the same value as in the previous case.  

c) As the UKF estimates the augmented state (both state and noise) instead of only the 

state vector, the 1kQ −  term in Equation 6.12 and kR  in Equation 6.14  are removed from 

the algorithm. 

 

Once these modifications are made, the UKF can be implemented recursively to 

estimate the state and the covariance. 
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6.3 Sigma point selection analysis 

 Sigma points are a set of deterministically chosen points which match the mean 

and covariance of a probability distribution (not necessarily Gaussian). Sigma points are 

calculated by the square root decomposition of the estimation error covariance. These are 

distributed on either side of the state estimate with a value of factor of the square root of 

the estimation error covariance. In the previously discussed algorithm a total of 2n+1 

sigma points are used. Then, all of the 2n+1 sigma points are propagated through the 

nonlinear function (system) to calculate the weighted mean and covariance which in turn 

approximate the state estimate and error covariance. It is obvious from the above 

discussion that at each time step, a set of 2n+1 sigma points are propagated through the 

nonlinear function. On the other hand, in the EKF the system has to be linearized at each 

time step to estimate the state and error covariance. 

 

The main computational effort in the UKF is the number of sigma points to be 

used for the estimation. So it has become very difficult computationally to estimate the 

states of a higher order system using the UKF. Lots of research is going on in this 

particular field to reduce the number of sigma points and achieve the same amount of 

accuracy as with the 2n+1 sigma points. This research has resulted in the following sets 

of sigma points.  

a) The simplex sigma point set [25] 

b) The minimal skew simplex sigma point set [26]  
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c) The simplex spherical sigma point set [27] 

 

 

 

6.3.1 Algorithm for minimal skew simplex sigma point set 

It is stated in [25] that given only an n-dimensional mean and covariance estimate, 

with no other error distribution information, a set of n+1 sigma points can be constructed 

that fully captures all of the known statistics of the error distribution, i.e., its mean and 

covariance. This is set is called the simplex sigma point set. This is the only set of all 

possible sets of sigma points which match the statistics of the distribution (mean and 

covariance) to second order.  

However, many filtering and control applications involve the use of a measuring 

process that introduces errors that can be empirically characterized to some extent. This 

characterization represents the information regarding the higher moments of distribution 

like skew (third order moment) and kurtosis (fourth order moment). But, the simplex 

sigma point set of n+1 points does not incorporate the information about these higher 

order moments. So to overcome this difficulty, a new set of sigma points called the 

minimal skew simplex sigma point set has been derived to incorporate the information 

about the third order moment and also to minimize its  value. An additional sigma point 

at the origin transforms the simplex sigma point set to the minimal skew simplex sigma 

point set. The sigma point selection algorithm for the minima skew simplex sigma point 

set is as follows.  
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1) Chose 00 1W≤ ≤  

 

 

 

2) Choose the weight sequence:  

0(1 ) / 2niW W= −        i=1 

1iW W=                      i=2 

2

12iiW W−=                i=3,……,n+1                                                     (6.20) 

3) Initialize the vector sequence  

1

0 [0]X = , 1

1 1[ 1/ 2 ]X W= −  and 1

2 1[1/ 2 ]X W=                            (6.21) 

4) Expand the vector sequence for j=2,……,n according to the following equations 

1 0

0

j

j

i

X
X +  

=  
 

                  i=0 

1

11/ 2

j

ij

i

j

X
X

W

+

+

 
=  

−  
    i=1,……,j 

1

1

0

1/ 2

jj

i

j

X
W

+

+

 
=  
  

  i=j+1                                                            (6.22) 

where 0 j  represents a zero vector of size  jx1. 
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The estimation accuracy with the minimal simplex sigma point set is the same as 

with the general symmetric sigma point set of 2n+1 points but with half the 

computational cost. According to the above algorithm sigma point selection would result 

in all the sigma points placed on a sphere around the origin (zero-th point) with a radius 

equal to their corresponding weights [26]. The weights on each point vary by a factor of 

2n  and the values on the coordinates of each point vary by a factor of / 22n . This weight 

assignment and value assignment to sigma points would lead to big numerical problems 

for higher order systems (very high n).  To overcome this difficulty, a new set of points 

which have better behavior at higher dimensions was derived.  

The new set of points is called the spherical simplex sigma point set [27]. In this 

set all sigma points lie on origin or on a hypersphere centered at the origin. The following 

section describes the spherical simplex sigma point set. 

6.3.2 Algorithm for spherical simplex sigma point set 

1) Choose 00 1W≤ ≤  

2) Choose the weight sequence: 

0(1 ) /( 1)iW W n= − +          (6.23) 

3) Initialize the vector sequence as: 

1

0 [0]X = , 1

1 1[ 1/ 2 ]X W= −  and   1

2 1[1/ 2 ]X W=      (6.24) 

4) Expand the vector sequence for j=2,……, n according to the following equations. 

1

0

0

j

j

i

X
X

− 
=  
 

                           i=0 
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1

11/ ( 1)

j

ij

i

X
X

j j W

− 
=  

− +  
         i=1,……,j 

1

1

0

1/ ( 1)

jj

iX
j j W

− 
=  

+  
  i=j+1       (6.25)  

where 10 j−  represents a zero vector of size (j-1) ×1 

 

There are two major differences in this algorithm to that of minimal simplex 

sigma point set. First, the weight on each sigma point (apart from the 0
th
 point) is the 

same and proportional to 0(1 ) /( 1)W n− + . Second, the sigma points lie on the hypersphere 

of radius 0/(1 )n W− . 

6.4 Inverted pendulum application 

The UKF derived in the previous sections was applied to estimate the states of the 

highly nonlinear inverted pendulum which is considered to be a benchmark problem in 

nonlinear estimation. Consider an inverted pendulum as shown in Figure 6.3.    

 

                                                              V                 m 

                                                                                 

        

                                                            θ                  

                           u                                                         H M 
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                                                                y        

                                     Figure 6.3: Inverted Pendulum               

This inverted pendulum equipment has cart of mass 1 kg (M) with a pendulum of 

mass 0.2 kg (m), length 1 meter (l) and radius of 0.02 m (r). This pendulum is mounted in 

an inverted position. V and H shown in Figure 6.3 are the reaction forces of pivot on 

pendulum. The angle that pendulum makes with the vertical is represented by θ  and the 

cart position is represented by y. The coefficient of viscous friction is taken to be F and u 

is the input (force) to the cart to move. The following equations represent the behavior of 

the nonlinear inverted pendulum plant.  

1) u My Fy H= + +&& &  

2) 2H my ml cos ml sinθ θ θ θ= + −&& &&&  

3) 2V mg ml sin ml cosθ θ θ θ= − −&& &  

4) J Vlsin Hlcosθ θ θ= −&&  

where J =

2

2

mr
, is the moment of inertia of pendulum (m), and g is the acceleration due 

to gravity. 

 

 Initially the model is linearized by the Taylor series expansion and is represented 

in state space form as follows. From the system equations, we can consider position of 
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the cart (y), velocity of the cart ( y& ), angle of the pendulum with the vertical (θ ) and 

angular displacement (θ& ) to be four states of the system that are to be estimated. The 

control input (u) is considered to be a function of angleθ . It is also assumed that the 

position of the cart can be measured, i.e., y is the measurement obtained from the system.  

x Ax Bu= +&           (6.26a) 

y Cx Du= +           (6.26b) 

where 

0 1 0 0

0 - / - /  0

0 0 0 1

0 / / ( ) / /  0

F M mg M
A

F M l M m g M l

 
 
 =
 
 

+ 

, 

0

1/

0

-1/

M
B

Ml

 
 
 =
 
 
 

, [ ]1 0 0 0C =  

and D = 0 since there is no effect of the control on the measurements. 

 

 The system is run in open loop with an initial angle of 0.1 radians for 3 sec with a 

time step of 0.005 sec. The nonlinear simulations are run to plot the true states of the 

systems. Then the extended Kalman filter and unscented Kalman filter algorithms are 

implemented to estimate the states of the inverted pendulum. The extended Kalman filter 

estimates the states using the above calculated Jacobians for the linearization. But the 

unscented Kalman filter is implemented by running the nonlinear model with the 

calculated sigma points.  

 

 The extended Kalman filter is implemented by calculating the linearized model at 

every time step. Linearizing the inverted pendulum model at every time step may not 



 

 101

seem to be a big computational effort because they are just four second-order differential 

equations to be solved, but for a bigger problem like MAPSS it is really cumbersome. On 

the other hand, the unscented Kalman filter estimates the states by propagating a set of 

sigma points through the nonlinear system at every time step. There will be 9 sigma 

points to be propagated at each time step as discussed in Section 6.2 (2n+1 sigma points 

for an nth order system). Similar to the computational effort discussed for the extended 

Kalman filter, propagating the sigma points through huge systems can be a problem. 

Implementation of the unscented Kalman filter for MAPSS model is discussed in more 

detail in Chapter VII.  

 

6.5 Simulation results 

Figure 6.4a and 6.4b show the state estimations of the extended Kalman filter and 

unscented Kalman filter along with the true states over the entire simulation time. 

Considering the first state from Figure 6.4a, the position of the cart, we can conclude that 

both estimation techniques were equally good. The reason behind that accuracy is that it 

was the only state that could be measured. When velocity estimation is considered, it can 

be seen that the unscented Kalman filter was performing better than the extended Kalman 

filter after a time of 1.5 seconds. And finally the plots in Figure 6.4b, the last two states 

estimations, show that the unscented Kalman filter was far better than the extended 

Kalman filter as time increases. It can be seen that the unscented Kalman filter was 

tracking the true state over the entire time, but the extended Kalman filter was unable to 

track the true state after a certain time. The main reason behind the unscented Kalman 

filter performing better than the extended Kalman filter is that the unscented 
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transformation approximates the mean to third order which is better than linearization and 

also approximates the covariance to third order similar to linearization.  

 

 

Figure 6.4a: Estimation of position and velocity of the cart 
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               Figure 6.4b: Estimation of angle and angular velocity of the pendulum 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

The performance of the 27 linearization combinations was investigated. 

Comparisons were made on the basis of RMS difference between linear and nonlinear 

models over an entire six-second simulation, RMS difference at the final time of the 

simulation, and RMS parameter estimation error of a Kalman filter. 

 

When RMS difference (averaged over the entire simulation) between the linear 

and nonlinear models is considered, the best linearization method is 

(1) Steady state error reduction method for state linearization  

(2) Matlab method for control linearization. 

(3) Steady state error reduction method for health parameter linearization  

 

When RMS difference (at the final time) between the linear and nonlinear models 

is considered, the best linearization method is  
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(1) Perturbation method for state linearization 

(2) Steady state error reduction method for control linearization. 

(3) Steady state error reduction method for health parameter linearization  

 

When Kalman filtering health parameter estimation for the engine operating at 

ground condition, i.e., first operating condition (with PLA=21, Mach number=0 and 

altitude=0) is considered, the best linearization method is 

(1) Matlab method for state linearization 

(2) Steady state error reduction method for control linearization 

(3) Perturbation method for health parameter linearization. 

 

When the engine is operated at cruise, i.e., second operating condition (with 

PLA=35, Mach number=0.8 and altitude=35000) is considered, then best linearization 

method is 

(1) Steady state error reduction method for state linearization 

(2) Perturbation method for control linearization 

(3) Perturbation method for health parameter linearization. 

  

The linearization combinations mentioned above are considered to be best, but 

there are other combinations that behaved close to the best. One important conclusion 

that can be made is that linearizing the nonlinear model in Matlab method gives worst 

results.  
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7.2 Future work 

Further work could involve more investigations of the effect of linearization on 

Kalman filtering. This thesis presents the effects only on the first 50 flights. An entire 

500-flight investigation may be useful, although the computational effort would be a 

consideration. We would have to perform 20 Monte Carlo runs of 27 linearization 

combinations of 500 flights each, once for the unconstrained filter and once for the 

constrained filter. To be complete we could check three different perturbation amounts 

for each of the linearization methods. This gives a total of (20 × 27 × 27 × 2) Kalman 

filter simulations.  

 

Other work for the future could involve reproducing these results for other 

filtering techniques, such as unscented Kalman filtering or H-infinity filtering. As 

discussed in Chapter V, the unscented Kalman filter works on the principle of the 

unscented transformation. It has its own advantages and disadvantages. Linearization of 

the MAPSS model, the main computational task in linearized Kalman filter estimation 

technique, can be overcome (reduced) by applying the unscented Kalman filter to 

MAPSS model. However, the unscented Kalman filter is still more computationally 

expensive because of the simulations required for state estimate propagation. 

 

Implementing the unscented Kalman filter on MAPSS is not that easy 

computationally, as it would be required to run the nonlinear model at every time step for 

27 times (since 2n+1 sigma points are propagated through the nonlinear model where n is 

the number of augmented states to estimated). The nonlinear MAPSS model is simulated 
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for 6 seconds and the time step considered in estimating the health parameters was 0.1 

seconds. This implies that there would be 30 time steps for estimating the health 

parameters for each flight as the time for one flight is considered to be 3 seconds. So, that 

would take 30 × 27 MAPSS simulations for estimating the health parameter degradation 

after one flight. Hence, this is cumbersome to implement computationally. But this 

should give results that are better than what linearized Kalman filter achieved. The 

unscented Kalman filter was shown to be working better than the extended Kalman filter 

for a small state problem (inverted pendulum) in Chapter V. 

 

A MAPSS simulation for 6 seconds would take around 42 seconds of CPU time 

on a Pentium-IV, 1.8 GHz, 256 MB RAM system. This would take around 472.5 (30 × 

27 × 50 × 42 / 3600) hours of CPU time to estimate the health parameter of the turbofan 

engine for 50 flights. On the other hand, reducing the time step for the estimation of 

health parameters would result in small numbers to implement the unscented Kalman 

filter. But, the estimates may not be as good as those obtained with 0.1 second time steps. 

So, there is a tradeoff to be considered while estimating the states with an unscented 

Kalman filter for bigger models (large state problems). 

  

Finally, the results obtained with the unscented Kalman filter after the time step 

reduction should be compared with those obtained with the linearized Kalman filter with 

similar time step. This would really lead us to decide if the unscented Kalman filter is 

better than the linearized or extended Kalman filters. 
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