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CONTROL SYSTEM DESIGN FOR NANOMETER SCALE

POSITIONING SYSTEMS

FRANK JAMES GOFORTH

ABSTRACT

Nanometer positioning presents unique challenges because deyiabke a this
accuracy exhibit hysteretic behavior. Hysteresis is chaiaete by rate independent
memory and multi-valued output, limiting even the application of nonliceatrol.
Previous researchers have pursued a control strategy dependestisiopmmodels of
hysteresis. The physical principles of these hysteretic eleae not well understood and
the models exhibiting best fidelity to experimental evideneeplnenomenological, not
analytic, thus they are computationally intensive for reasonableraagc and their

behavior is unique to each device.

Our thesis is that one may treat hysteretic behavior as tarlidiace and
compensate for it as one would for other disturbance. Three hysteoaspensation
strategies are demonstrated which exhibit performance supepoiotaeported results
and none of which require a hysteresis model. Novel passive awe dddturbance
rejection strategies, as well as a hybrid combination inhefféivgrable characteristics of

both strategies, are successfully developed and implemented.
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Xm: Mechanical Stress

dem  Piezoelectric Strain Coefficient relates electri¢@larization, B to

mechanical strain X

em  Piezoelectric Stress Coefficient relates eledtriealarization, B to

mechanical stressyx

Sw.  Elastic compliance coefficient.

Cmn.  Elastic stiffness coefficient.

E: Electric field.

D: Electric displacement.

P: Electric polarization.

£ Dielectric permittivity

Y: Young's elastic modulus = tensile stress/ tensile strain.

p: Material density

Ani Wavelength of i harmonic.

(V% Frequency in radians of'rharmonic.
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Qn:  Quality factor of A harmonic.
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CHAPTER 1

INTRODUCTION

The 2" century saw the transition from macro to micro scale precision
measurement and control. The*2tentury begins with the inevitable step to the
nanometer scale. But this is not an easy step, for one now standds tweshold of
guantum physics. One leaves the relatively weak Newtonian mechanicslietoad and
moves into the uncertain realm of the strong atomic forces. Modebbzontrols will not

likely, and certainly not easily, make this transition.

Nanometer scale research requires new tools to yield its btemid positioning
at this scale is an early challenge. The Atomic Force ddmpe (AFM) is today the
most common tool for measuring and/or manipulating nanometer scaldsoby is the
tool of choice for research in semiconductors, nano biology, nano matettalds such
it provides a leading edge reference for the study of nanostkr positioning control.
The AFM vividly illustrates measurement and control technology teiseevaluated at
a fundamental level because many of the advancements at the andcmicro scale in

the past century have led to assumptions which are no longer valid.



Sensor dynamics are again significant, if not critical, comporantise control
loop. Mechanical disturbances of very minor consequence at macro, or ieverscale,
now overwhelm the sensors, not to mention their effect on tool hothetssamples
measured in micro and nano grams. Nano sensors are significanthpelisby footsteps,
even when mounted on anti-vibration tables, on a concrete slab, in theebhasem
Disturbances are easily nano scale. Radio frequency radiatioores prevalent today
with wireless connections ubiquitous, so while meters of displatteraquires amps of
current at the human scale, this does not scale well to nano athpsowmany noise
sources available. Thermal noise can deflect tools hundreds of nargymetgriring
hourly recalibration of an AFM using linear controls. Mechanicartoice buildup, not
to mention thermal expansion and contraction, imply energy must bélydcenverted
to mechanical displacement for nanometer scale precision, no inteyveansmission
medium has been found acceptable. So, as the distance becomesiksnthliee orders

of magnitude, the problems scale in inverse proportion.

Piezoceramic actuators are used for both cantilever oscilatbsample scanner
for the AFM because they leverage relatively large voltagddaces to small distances,
thus providing manageable signal/noise ratios. They convert energylydit@ small
displacement, and generate significant force relative to thess,ns® a mismatch with
their load is to be expected. They also exhibit some of the nontoa#ol issues shared
with other sensor/actuator materials capable of meeting thenreder scale challenges.
Piezo ceramics generate displacement via strain in thestalime structure, and thus
their axes motion is highly coupled. Their electrical propertiey s&gnificantly with

temperature. They operate due to their polarization, which can elthreggto voltage



“creep”. And, common to many useful devices at every scale, thapiesgignificant
hysteresis, but whereas thermal drift and voltage creep avedl slow, hysteresis

affects motion at the desired operating frequencies.

The Primary Challenge: Hysteresis

During the course of research it became apparent hystevesld be the most
difficult and interesting challenge to face in nanometer positiorangd also provided a
topic that had much broader impact. It is a critical challermgesd many processes,
whether mechanical, thermal, chemical, pressure, flow, etcit smas natural to
concentrate on this nonlinearity. Hysteresis exhibits rate indepehdbatior and non
local memory, its output is multi valued and so not conducive to strarglatifd methods
of linear or nonlinear analysis and control. The piezo cerami@imet as used in the
AFM will be used as the example medium for study, but as wilides, our results are
more broadly applicable to hysteretic processes in generalhasapen the door wider

for future research opportunities.

Controlling hysteretic piezo ceramic devices has been a low hdthdw
compromise to date. A precision model-based linearization ugimgr series inversion
or feed forward compensation has been the rule, and as will be shosersion of
modeling has differentiated performance in control. Unfortunately legsteretic device
is unique, and with no first principle knowledge to guide the processtuels are

empirical, by necessity. In most all examples of nanometde ssitioning, of which



there are still relatively few, linear control methods havenhesed, sometimes with the
addition of nonlinear adaptive tuning. It seemed natural, in this environtoestudy the
Active Disturbance Rejection Controller (ADRC), using the Exten8tate Observer
(ESO), as a plausible solution. The present dependency on uniqueopreuigleling for
control and the highly disturbing environment matches the strengthsysbvexhibited
by the ADRC addressing these challenges at the macro Fhaldistorical effectiveness
of “dithering” a device to alleviate hysteresis inspired consimeraof Time Optimal
Control (TOC) as another alternative to compensate hyster@sisf too can be

empirically designed and tuned independent of a precise model.

An explanation of the technical challenges, a summary of pootrol strategies
and a review of literature are contained in Chapter 2. Chapter 3natanore detailed
explanation of hysteresis fundamentals, and how we creativelgefrdnem as a
disturbance rejection problem. In Chapter 4 the complete modehdopiezo ceramic
actuator is developed, only in order to facilitate the simulatiod ®sting of the
hysteresis compensation strategies, not as a component of ttadsgiess. Simulation
results will be presented in Chapter 5 for the ADRC and cldsed discrete time
optimal control of Han Jingging, demonstrating their superiority tstieg hysteresis
compensation methods. The stability of the ADRC with ESO solutiinrberianalyzed
and shown for this hysteretic process in Chapter 6. Conclusions and fatearch

possibilities in this dynamic field are discussed in Chapter 7.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

The progress in controlling position at the nanometer scale has pesdis
since Binnig, Quate, and Gerber invented the AFM in 1986 [6]. Thesy first
implemented simple Proportional plus Integral (PI) control, and this remainhdice in
commercial systems today. The bandwidth for even a pure lmezvceramic actuator
would be limited by this choice, as shall be shown when the modelv&oged in
Chapter 4. Qualitatively, a piezoceramic develops significant pdaethe mass, so
inertia matching is a challenge from the start. The pesitontribution from the direct
energy to displacement conversion is balanced by an absencemisvidamping in a
transmission, moving high frequency complex eigenvalues even closardtdarther
along the imaginary axis. Exacerbating this is the elgstiperties of the material,
contributing harmonics of its natural resonant/anti-resonant paggenvalues, which,
due to the nanometer scale displacements considered, can placenidng piarmonic

very near the force transmission eigenvalues, as we have simulated.

Santosh Devasia has studied this problem over a decade, and | rpuothid

paper [131].



“In general, the tracking performance of piezo-based positioningmsgstan be
improved by using feedback control, for example, to reduce positionings etue to
creep and hysteresis. ... However, a problem with using feedback-ijaseddh is the
low-gain margin, of piezo-based positioners, that limits the achievaigeovements
because high-gain feedback tends to destabilize piezo-based &hvess. (The low
gain margin is due to low structural damping in piezo-actuataas results in high-
guality factorQ, i.e., a sharp-resonant peak accompanied by a rapid-phase drop in the
frequency response.) In practice, a compromise is sought betwdenmamce and
instability; feedback gains are adjusted to improve performaitbeut instability. Thus,
the tendency to become unstable at high gains (due to low-gain mdrgmbinited the
success of typical feedback-based techniques to achieve highggsohing in STM

applications.”

We agree this is a valid comment for linear controls, sometieves with
hysteresis linearization, but is not necessarily true for nomlineatrols, as will be

shown.

2.1 Nano-positioning Control: Stuck in a Model-Based Paradigm

The control details for commercial hanometer scale positioning telsnot
shared, but what is known is that they use calibrated models ohdhmtor to
compensate for their linear Pl controls. Research in thetwastlecades has focused

almost exclusively on improving these calibration models and contuseaf standard



linear PI [19,33,41,69,83], loop shaping [26,121] oy H6,53,107-114,121] control
technigues. Some researchers modeling techniques have been straigttfonear
frequency or time domain empirical models [83,108,121], while most haam@td to

model the nonlinear hysteresis [16,19,22,23,34,41,53,57,63,82,96] and/or voltage creep
[22,63,69,104,125]. A few have been unique [16,23,34,53,82,83], but most have adapted
known hysteresis theory, which unfortunately has very few recajneeerts
[10,61,70,76,89-91,100-102,127]. Almost all these hysteresis models have been empirical
models, by necessity, and only recently have a very fewrods¥a chosen to explore

anew the challenging fundamental principles underlying hysteresis [53].

Hysteresis compensation has generally followed 3 alternativedassical, and
all critically dependent on a precise model of hysteresis.dllamative is feed forward
compensation, a similar alternative is a classic “prefilihfiguration, and a third
popular alternative is the application of an inverse of the hysereslinearity in series

with the process.

Many researchers evaluate strain displacement of the piezeedexihout
external load. A more valid example applies a force to anrettErad, which introduces
2 poles, usually very near the axis. Additionally, even those companstinan external
load utilize a semilinear hysteresis model [10,76,127] relying rofiequivalent”, but

nonexistent, hysteresis damping coefficiégg, [14,62,87,124,129]
m}()+ R, X9+ kkj= Rj+ P K (2.1)
A more recent alternative model attributed to Della Torre [27] is quasilinear,

m()+ k()= KDY )=+ BIUYL ¢x=(H BT K (2.2)



and we will explain our preference for this model in Chapter 3.

D. A. Hall [47] has recently presented an excellent overview ofthie of the
understanding for piezo ceramic actuators. Thermal nonlineardies the most
pronounced in piezo devices, whereas voltage “creep” and other plastic/
nonlinearities are less pronounced and better managed. These two nibelsneaough
significant, are very slow responding compared to the hystemesiénearity of piezo
devices. Thermal drift and voltage creep can be and usually areadcded controlled

as slowly time varying parameters in the motion equations.

2.1.1 Thermal Drift Models
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Figure 1 Variation of piezoelectric constant with temperature.

(Morgan Electro Ceramics, Inc. Bedford, Ohio, USA, Technical PublicatiobZBH5])



There has been minimal research done to date to address tdefmaithin the
nanometer control system [97,103], even though it is the most significatmear factor
affecting the performance accuracy, because its effa@risslow. Requicha [103] has
reported, A typical value for drift velocity is 0.05 nni/dt is evident in Figure 1 the
thermal drift of many piezo ceramic materials can be séyercent over even small
changes in temperature, and is extremely nonlinear, so a moeddl-Bakition is a
guestionable strategy. The preferred solution thus far has usuafiytdeightly manage
the operating environment for both temperature and vibration, but wdemibnstrate a

better solution.

2.1.2 Voltage Creep Models

AL
A
60,0 ym 60,6 ym 61,2um ©61.8Wm
60 pm r—— 4 .
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I I |
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I | |
I I |
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Figure 2 Piezo DC Input Creep (courtesy Physik Instrumente)

Application of a DC bias, such as the “engage” offset voltage, gezo tube

scanner causes an initial and abrupt change in deflection, &ulibequent “creep” to a



final position is slow. This slow change in position bias is additiemany localized
oscillation in position due to the scanning. As with thermal drifielresearch having

been done to date [46,63,69,104].

S. Vieira did the earliest study of AFM creep at IBM reskdabs in 1986 [125],
no doubt with the direction of Binnig, Quate and Gerber [6]. The mediastiain,
Alength/length changed 1-2% over a period of 200 seconds. Richter et al, in 2001 [104]
had modeled and confirmed creep as a function of impressed voltageiopuh®® the
mechanical subsystem, reinforcing Vieira’s earlier expemaleresults. Again, our

proposed solutions address voltage creep well.

2.1.3 Hysteresis Models

The earliest study of the hysteresis phenomenon began in the Taterit@ry in
the area of elasto-plasticity and ferromagnetism. A fewrgesms existed before the
20" century, as that of Duhem [30], but the most detailed analysisredcearly in the
20" century with Ludwig Prandtl [100,101] 1924 study of fluid flow, rediscesteby
Ishlin’skii in 1944 [61]. Ferenc Preisach [102] 1935 research into fagoetism led to
an alternative phenomenological description which is more genathlylaich we use in
our simulated plant. Stephen Timoshenko [124] in 1928 refers to hystisssation in
the first edition of his seminal work on harmonic elastic/plastmion, wherein he
diagrammed the hysteresis similar to Prandtl's “play” artdg'soperators, and even
describes an “equivalent hysteretic damping constant” for edilegl the dissipation

attributed to the nonlinear motion. Cady [14] also describes in his book on

10



piezoelectricity a “friction factor” with units ofmass/(distance*timeand for the same
purpose as Timoshenko, to account for the observed energy damping, fatsghieere
IS no component in the unforced linear equations to explain the observguhtoiss
behavior when the device is disturbed from equilibrium and released. Bodshienko
and Cady resorted to a semilinear model description of thensystdizing the
“equivalent hysteretic damping constant” to determine the dissgpaforce,

F, =b,, (X)X,

Fundamental research in closed loop control of piezo actuator positicsoimead
early and positive results reported by Tamer & Dahleh in 1994 [21ihe authors,
triggering the bias to model-based control, recommended future redearard better
modeling. Ge and Jouaneh in 1995 [41,42] suggested the phenomenological Preisach
hysteresis model as a piezo compensator. Their techniques ndedserérst order
reversal curves of a particular piezoceramic actuator, withgutcaal, and used these
data points within an algorithm to predict the hysteretic respointe particular device.
Chen et al in 1999 [16], with a very precise stochastic model of lilgsteretic device
and a linear kb control, achieved 0.8% error. Other researchers
[19,22,34,57,60,63,83,131], as did Chen, have tried alternatives to the Preisach model in
both feed forward and feedback configurations, with less successl. afittdeng [96],
in 2000, used an inverse Preisach operator within the closed loop of a aomline
controller and achieved 0.3% error. These controls all followed e¢hglisear plant

model.

Ku et al in 2000 [78] as well as Li and Tan in 2005 [82] proposed the use of

neural networks to adapt their hysteresis model in real tifiineir results were
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acceptable, but not exemplary, and slow. Neural network adaptive cergtnalight be

feasible with much higher bandwidth processors.

2.2 The Active Disturbance Rejection Control Paradigm: New Thinking

Excellent controllers existed before the development and matlvamagor of
process models. The practical preference for Minorsky's [96pdttional, Integral,
Derivative (PID) controls and Ziegler-Nichols [130] associatagigcal design methods
attest to this. Models enable detailed mathematical desgjram@alysis, and knowledge
of them improve the design, but by definition the quality of model-basattols are
directly correlated to the quality of the model, if one exia$syell as the quality of the
output measurement. Control design in the absence of a model muspbieanby
necessity, and most often are based on minimizing an error to some desetsee The
quality of error based designs is correlated to the qualitiyeomeasurement. Error based
designs may also be analyzed as is a model-based design, ussagnihelerived, and
assumed valid, model. Most times these error based controlsamptiesmselves quite
well under analysis, or they may not, but seldom is the model chadleiitpe value of

this analysis is no more or less than before, independent of the control choice.

In the presence of a perfectly accurate model and absemeyy alisturbance no
feedback would be required, one could command a reference control sigh#hea
desired position would result{=u. This is not reality. The sources of error to the

desired response may be varied, and under many names. Poorly mindetedl
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dynamics, whether in the model of the process or the realasdotier hardware and
software, is one common cause of error. External disturbances ltathare even more

common, as are disturbances in measurement, and the list grows.

The disturbance paradigm is simplicity itself, all difference the desired
reference, whether internally or externally provoked, is considerdgdtarbance. The
disturbance may be passively filtered, or it may be activgdgted. The design emphasis
is on timeliness and accuracy of measurement and/or astinwditthe disturbance, rather
than on accuracy of a model. In many practical cases tlgsiie achievable, where

modeling may not be.

Most often reality is a process output the sum of a control comonandled by

some factoib and perturbed by some general disturbance= f + bu. The difference

between the practical control commandnd the desired contrajis:

(2.3)

such that the accuracy and timeliness of the estimatietermines the convergence of
X=U,.

Passive disturbance rejection via a closed form discrete omtantbl solution is
described by Gao in 2003 [37]. We will adapt this for our passiaéegly. We will also
follow his active disturbance rejection paradigm from 2006 [38]. In dffzt we will
treat hysteresis as a disturbance like any other, so in thehpter we will develop this

thesis.
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CHAPTER 3

HYSTERESIS AS A DISTURBANCE: REFORMULATING THE PROBLEM

Our primary thesis is that hysteresis may be treated as any othebalste in the
context of compensating its effect in a control system. The regstephenomena has
been characterized by the leading authorities as a nonlinedotraason from a series
of piecewise continuous monotonic inputs to similar series of output®gsoss the rate
independent memory and multi-output characteristics from experimgaia. Unlike
previous research which attempts to compensate for hysteresigtiinversion of these
complex models, we will account for hysteresis as a deviatan &n otherwise linear

input to output transformation.

It is well understood that it is not necessary to charaetexternal disturbances
in order to compensate for them in control systems, and in faehsystre proven stable
given unknown yet bounded disturbance. Our thesis is not different fram ftii
knowledge of the hysteresis character is not necessary for our @ugdesn that it is
bounded. It should be necessary to examine these complex models ito dretstr satisfy

ourselves in this reformulation of the problem.



The understanding of hysteresis has been extensively enhancetlyrdu@ugh
the work of mathematicians Krasnosel'skii & Pokrov’skii [70], Brok&t&prekels [10],
Visintin [127], Krejci [76] and Mayergoyz [91]. The majority of thievelopment
contained herein are based on Brokate & Sprekels [10] and KrejcsfyGjeir books are
recommended. Mayergoyz’ book [91] is more “engineer friendly” and iso
recommended as a first primer for those interested in learmoge. The other

researchers are mostly mathematicians, and thus their work more abstract.

3.1 Hysteresis: A Qualitative Review of its Characteristics

Figure 3 Hysteresis Input/Output Relationship
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The Greek borepeovo’ means “to lag in arrival”. This qualitatively describes
what is observed, the output of some process is not synchronous wittatige ©f input.
The fundamental physics being observed is not always well understoquof@sses
exhibiting hysteretic reaction, as is the case for our ilgagin, so an alternative
mathematical device is required to describe the phenomena, a phenonoahologi
description. A narrative is a much easier way to begin, beforanwestigate the

mathematics.

Hysteresis, illustrated in Figure 3, is a process where @ tiapendent scalar
valued variableu is transformed into time dependent multi-valued variablesWe
assume that i increases froma to Ug, then the stat@i,w) moves along the path ABCE,
and if u decreases fromg to ua then statgu,w) moves along path EFA. The “major
hysteresis loop” ABCEFA defines a closed regi®mR>. Moreover, ifu inverts its
movement atic , or any other statgy < u < ug along the boundad®, it moves into the
interior of @ and will describe a “minor hysteresis cycle” accordinghte hysteresis
model. The limit of these minor cycles is trenhysteretit [127] curve. Ifu < ua, Or W
< u then the statéu,w) will move along the boundary as illustrated by the double ended
direction arrows. At any instartf including the initial instanttp, the value ofw(t)
depends on the evolution of the state as well as the initial Staé hysteresis transform

must be causal but the outpuft) must not depend auj; 1 .
w(t) = Plu w, AJ(), OtO[t, 7. (3.1)

A defining characteristic of most, but not all, hysteresigai® independent

memory,the output depends on the input value and its lyistegardless of rate of
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change. It transforms the input to one of infinitely many poss#iiges, dependent on its
history, thus most common nonlinear analysis techniques are not applicable. ThehPreisa
operator used for our simulation ipaenomenologicainodel, it is a mathematic device

to describe the transform and it is not based in physics first principles.

Hysteresis is associated with energy dissipation, which is propakto the area
enclosed by the hysteresis cycle described by the operateth@rhminor or major). Rate
independent hysteresis dissipation, a function of strain, and ratedeéepeniscous”
dissipation, a function of strain “velocity”, usually exist simakously, with the latter
vanishing as the rate tends to zero, while the former is morendotmat slower speeds.
Accounting for this dissipation, or disregarding it, will prove aedéhtiating factor in

our preferred choice of hysteresis model.

3.2 Hysteresis Transforms: An Infinite Series of Basis Functions

Most hysteresis transformations are constructed as an inBeiies sum or
integral using a basis function, and then taken to the limit as thetiguor time
approaches infinity. The quality of the transform is then contingertherguantity or
time interval used. (One could speculate a wavelet would be a beses function

candidate, but that is a thesis for another dissertation.)

The scalar Preisach model uses a fundamental relay with @lgaator as a basis
function and the output is a weighted sum/integral of the constituest bas practical

constraint on this model is that the weight function(s) must berealfy determined in
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each instance and accuracy is dependent on the dimension otitji® wector. The
advantage is the fidelity to actual results, compared to other sn@aigdin dependent on
the weight vector dimension), and the simplicity of implementatiohnagr algebraic
equations in real time. This is consistent with the applicationaxfel-based controls. A
Preisach operator, per Brokate & Sprekels [10], Visintin [127] areicK[76], will be
used for our simulation. It is globally Lipschitz and invertiblejsags derivative, and

results in continuous piecewise monotonic output for comparable input.

Definition: The Preisach memory curve:

N={g|g:R, ~ R[p(r) - @) <r —r[forallr 1™ = 0R ()< +oo}

(3.2)
Rup(#):=sup{r]r > 0¢ ¢ % §

where Rsypp represents the saturation value for the hyster&siamples of elements of

this set, A (t,,r)OA and A° = A (t,,r) OA are shown in Figure 6.
The “relay” operatoRy [ A°U](t) = Rs.rs«[A°U](t) = W(t) is shown in Figure 4.
The “stop” and “play” operators are shown in Figbre

The “play” operator may be defined inductively,eeing to Figure 5, as:

F[A°% ul(9) = w(9),

w(0) = £, (u(0),0),

w(t) = f (u(t), (1)), forf<t<t,,O0<i<N-1 (3.39)
where ) is monotone in N subintervals [& ],

f (u,w)= max{ u-r,mif u+ r V\}} r= 0.

The “stop” operator may be defined inductivelyerehg to Figure 5, as:
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E[2° ul(D = w9,

w(0) = & (U(0)),

wit)=e(ud- U+ wyp), fort< < t,, 0< i< N-1, (3.3b)
where ) is monotone in N subintervals [@, ], T

e (U= min{ r,max —r u}} r=0

The single dimension “play” operator is an instarafethe two dimension “relay”

operator, as it can be expressed as a superpogsitiefay elements:
1 0
R U0 =2 R A% U() ds (3.3¢)

whereRs. s+{A%u](t) = +1 for s < 0 and -1 for £ 0.

The “play” and “stop” operator are related by tHernitity operator:

F +E =1, suchthatF[A%u]()+E[A% U() = ¢} (3.3d)
W
relay” A
1
O <4
r r=(0-o)/2
. > U
P1 S Pz
L —0  S=(ot )2
-1

Figure 4 The “Relay” Operator
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Y

Figure 5 “Stop” and “Play” Operators
NOTE: In the interest of brevity one may here fadvdrop the understood dependence
of hysteresis operators on the initial memory cut¥e

A Preisach operator then transforms a continuoesepiise monotonic input

functionu(t) into another continuous piecewise monotonic ougtitas:

PlU() =w) =["[" r 9 R, . [ W) dsd (3.4)

Where/(r,s) is a nonnegative weighting function assumed toshafor large values of
ands. The Prandtl-Ishlinskii operator can be expresse@ims of the “stop” and “relay”

operators as:

PILU() =w() = [~ ADE[Y()dr
(3.5)
= [T -PR Ly dsdre €] A Y d

wherep(r) is a calculated weighting function different frobut similar toAr,s).
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s=A(t, 1), A t.0)=u()

Figure 6 The Preisach Operator memory cuisre A (t, r)

For input u(t) a piecewise continuous monotonic function, aaddA the
memory curve at timg recording all past history of local minimum anddbmaximum
values foru(ty.) in the Preisach plane is shown in FiguréNd” is the maximum past
value ofr,s which is usually, but not always, the saturati@ue, Rsy,, The bold line

demarks the boundad(t,,r) which separates the two sets:

A ={(r90R, xR|R . [A°, d(}=#1}, A=+1 and A=-1 (3.6)

So that:

PLu(y =w(y =[], Mr9dsd=[] ~u(rs3dsd (37

(t

and if one can determine the boundary funcighr) = 0A.(t)N 0A(t), whereA(to,r) =
A°, then one can determine(t). By the definition of the “play” operator one htme

identity:

A(t,r) =F, [ul(t (3.8)
(This defines the method for most digital estimatadgorithms, whereby a set of discrete
weights /(r,s) for the right half plane, determined from measulath of the hysteretic

21



device first order reversal curves, can be intexjgol over the are#s andA. determined

by the function/(t,r) and then summed for the valwé).)

The Preisach operator can also be expressed is t#rthe “play” operator:

PLU() = [ a(r RL() )dr+ wy, (3.92)

where:

Q(r,8)=2f u(r.£)de,

o o (3.9b)
W, :J'O j_wy(r,s)dsdr—jo J'O u(r, 9 dsd
and if the hysteresis is symmetric:
W, =0 if p(r,s)=u(r,—s) forallrand s (3.9¢)

This becomes very important as one determinesrteegg equations for the stress/strain

relationships of the piezoceramic.

3.3 Hysteresis Represents Dissipated Energy

Hysteresis is a manifestation of the energy dissgpan the device. The area
prescribed by a hysteresis cycle is proportiondhéenergy dissipated during that cycle.
This relationship has been extensively studied diné/ past decade, predominately by
Brokate & Sprekels [10,11] and Krejci [71,76,77lpdait is a critical dimension
connecting hysteresis transformations and physieality. This relation explains the

convergence of the phenomena toward the anhysteesponse, and why techniques
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such as dithering are effective. These energy ioaelgtare not incorporated in the
hysteresis transforms, the appropriate incorpanatichysteresis transforms in the system
force equations are crucial to proper accountimghie energy dissipation, and were first
posed by Della Torre [27]. This proper accountiog €énergy allows one to reframe
hysteresis as a disturbance, because it represeatgy dissipation, it is not simply a

mathematic transformation.

The potential energy operator, associated withRhesach operator, using the

“play” operator as basis, is:

UL = [ Q(r RIU()) dr (3.10)
where:

Q(r,8)= 2f &u(r,&)dé (3.11)

and the dissipation operator is:

DIul( = [ "ra(r, FLu(Y ) dr (3.12)
and again:

or,s) = 2[ p(r.6)dé (3.13)

where the following identity holds:

W(Ou(t) =%U[u1(v +

d
prn L )‘ (3.14)

This is the energy dissipation justification foretkquasilinear form of the mechanical

force equation of the piezo actuator.
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3.4 The Dynamic of Hysteresis: semilinear versus quasilinear

The contribution of hysteretic energy dissipatiaesl not manifest itself in the
commonly applied semilinear series configuratiom fioe mechanical subsystem in
Figure 7. Hysteretic dissipation can only be incogbed as part of an “equivalent
hysteretic damping coefficientlyq, in this series connection, in which case it assa
rate dependent viscous damping, rather than ate andependent dissipation. This does

not match the observed behavior of hysteresispdiion at slow rates.

Ve Xz j A | »| Hysteresis X,
PIx]

A 4

linear mechanical subsystefn

—_—_— e a

Hysteresis
(1+P)*

to

Figure 8 The quasilinear mechanical subsystem diagram.
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The mechanical system model in Figure 8 has muchietmmmend it for
matching observation and the saturation effects,waf as simulation in regards
dissipation. This modified “moving model” may trads origin to Della Torre [27]
research in magnetic media. The model incorpotategmverse of the hysteresis operator
[10,76,127] in the elastic feedback of the devibes its dissipation contribution is rate
independent, as observed, and not dependent orecuivalent hysteresis damping”
coefficient (be=0, there is no separate viscous damping in outesy$ Additionally,
extending the simple saturated oper&fr] in Figure 9 td+P[u] as shown in Figure 10
and Figure 11 as proposed by Krejci [76,77] hasresfdd the saturation limit and
provided a hysteresis model which more realistycadbresents observed behavior, even

if used simply as a series inverse.

This system is quasilinear, incorporating the Rehshysteresis operator and its

derivative [10,71,73,76,77,126,127].

X(O+v()=F (), xXO=u)+ AU} ¢x=(H B TKN

3.15
xOC?, v C, EO I°(0,0), t= 0 (3.15)

and the Preisach operators, inverse operators han terivatives are Lipschitz

[10,11,28,29,76,127] under the assumption of comwiils piecewise monotonic inputs:

[PLu] - PLw]] < u - w, ,

(3.16)
and [(1 +P)™[u] = (1 +P) W] < u-w],, uwDOC’t=0
=20 K

i mke m (3.17)
=50 _Ja g apypqy
m m
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Figure 9 Simple Hysteresis Operator and Inverse

(Note the operator’s counterclockwise, CCW, anditiverse clockwise, CW, evolution,

as well as the major loop region and the “anhystéreollapsed curve.)

u={+P)wl

v

Figure 10 Extended Hysteresis Model and inverse
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A 4

Plu]

L5 -

Figure 11 Extended Hysteresis model block diagram repregentat

3.5 Hysteresis as a Disturbance: the Problem Reformulated

v ={I+P)x]

Figure 12 Inverse Hysteresis Function as a Disturbance fl@riinear Response.

Let us consider for now only the nonlinearity diiied to hysteresis and assume a
simplified model encompassing only the hysteretechanical subsystem. Regard then
the hysteresis response curve Figure 12 and thgligear mechanical model Figure 8.

The difference for the linear relationship betweeitputx; and the state, is ;> 0, and
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the same fok,, v» and %<0, where (x,v) 1© 0 R* are members of the major hysteresis
loop region. These values are absolutely bounddtidoynaximum value of saturation for
the device major loop, and become smaller as theceleapproaches the anhysteretic
response due to the “accommodation” [91] procesg. €an then write the equation:

X=-av+bu=-a( x-9)+ by
(3.18)

K\(/)f keq
where: u=Y, bs >0, andr=—>0
m m

andois the nonlinear component in position.

This reduces the characterization of hysteresibgbnecessary to compensate for
it in a control context. Granted this definitionegonot enable one to predict the expected
value of the output at some future time given guirprofile, a valid use for a complex

model, but it serves our purpose to compensatadhknear position quite elegantly.

The Active Disturbance Rejection Control paradig38][ treats these
nonlinearities no different than any unknown distaurce, estimating them and canceling
their effect in real time in order to render thesteyn as an apparent double integrator to

the control force X = u,. The passive disturbance rejection paradigm imefes1Han’s

closed form discrete control [37,49], which applimi®imal time optimal control to reach
the disturbance equilibriund= 0. This is quite similar to and inspired by the “ditimg”
historically and effectively applied to hysteretprocesses to drive them to their
anhysteretic, minimum energy response, exceptHhats control is not necessary to be

maximum cycling “bang-bang” control.
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CHAPTER 4

SIMULATION DEVELOPMENT

Experimental equipment to verify the performanceposition controls at the
nanometer scale is expensive to acquire and difficunaintain. These are not available
at Cleveland State University at the time of thiging. In their absence we have resorted
to developing a simulation of the piezoceramic aitiusimilar to that process followed
by earlier researchers. In fact, we have relietherkindness of other researchers to share
their hysteresis model data in order to assemliesimulation [23,80,82], and we are
very grateful to them. We will succinctly reviewetlsimulation development, and those
desiring details of the dynamics may consult tlieremces. The simulation will adhere to
the quasilinear mechanical model and utilize arelis® hysteresis operator simulation
written as a Matlab m-file in C code. The codenidA\ppendix A: Hysteresis Simulation

m-files.



4.1 The Linear Subsystem

The simulation system will be composed of a lingation representing the piezo
ceramic coupled stress/strain relationships, whashilt in the hyperbolic wave equations
with multiple harmonics. We simulate this as th&B=standard piezo ceramic model, a
linear electrical equivalent. In series with antldwing the linear electrical equivalent
harmonic subsystem will be the quasilinear meclanstbsystem incorporating the
hysteresis operator. We will first establish thmeér version of the mechanical subsystem
for comparison, using the equivalent frictiobs, and spring,keq coefficients as

calculated using the stress/strain parameters.

4.1.1 Piezo Elastic Stress and Strain Simulation

The following model descriptions are based on “Gectricity” by Walter G.
Cady [14], “Piezoelectric Ceramics” by B. Jaffe, ®. Cook and H. L. Jaffe [62] and
“An Introduction to the Theory of Piezoelectricitipy Jiashi Yang [129]. The monolithic
piezoceramic tube actuator is physically represkemte~igure 13. The x axis is the tube
axis, with tube length %, radiusr, and thickness. The power source for the piezo tube

actuator is the piezo voltayg impressed across the thickness of the tube.
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mx+ h x+ kK x- mg

load mass = m

-V,.+
==

F,+F, =Y(2arhl +K,V,

radius =,
thickness = h,
length = |,

Figure 13 Monolithic Piezo Tube Actuator

Stress is a tensor force of extension, compressi@hear as shown in Figure 14

with the definitions:

X, = compression/ extensionstressalong x axis

Y, = compressin/ extensionstressalong y axis

Z, = compressio/ extensionstressalong z axis

Y, = shearstressparallel to y axisin planenormalto z axis

Z, = shearstressparallel to z axisin planenormalto x axis

X, = shearstressparallel to x axisin planenormalto y axis
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Tensor forc 1 Tensor forc
—
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Longitudinalpositiveextension stre:

Tensorforc [~~~ "~~~ "~""°TTTTTTTT Tensor forc
D —

Transvers negative lateri stres

| -
7 Ll

/ / Tensor forc

/ /

/ S /
Tensor forc / /!

: /
Offset shee stres

Figure 14 Elastic stress tensors
The axes used are shown in Figure 15.

X, u, 1

5 Z, W, 3

Y, V, 2

Figure 15 Axes definitions for piezo equations.

The variable t” is an incremental displacement along x-axis iguFeé 15, as is
“V’ to y-axis and W’ to z-axis. 1, 2 and 3 are alternative names foy xand z linear

vectors. 4, 5 and 6 are rotations about the x,d/ zaxis respectively. Polarization is
along z axis.
Strain is the deformation displacement along as aaused by these stresses and

defined by the equations:
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_du _ov _ow
X,=—andy, =—andz,=—
ox ay 0z 4.1)
ow oV ou  ow v du '
y,=—+—andz =—+—and x, =—+—

The general relationships between stress and dtaiall piezoelectric crystals are the

elastic compliance ‘s’ and elastic stiffness ‘c’tries:

_Xx_ _311 e 816__XX_

yy Yy

% |2 Z2 4.2
v I Y, (4.2)
X . . Zx

_Xy_ _S6l L S66__Xy_

_Xx_ _C11 e C16__XX_

YY yy

Z . .z,
e (4.3)
Y, . - Y:

ZX X

_Xy_ 1Cor - - -« G| Xy

Fortunately, for Lead Zirconate Titanate (PZT) oeies, the crystal structure is
such that many elements of the matrices are zdue & duplicates of other values. This

greatly simplifies, but does not eliminate, the haadcal coupling between axes.
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Xx Sll SLZ S13 O
Yy S Su S O

Z, | _|Ss S5 S O 2 (4.4)

x
o
o
o
o

éf)

Xy Cy G G 0 0 00X
Yy | |G G G O 0 0|y,
Z, _|Gs Gs G 0 0 0|z (4.5)
Y, 0O 0 0 ¢, O 0|V,
Z, O 0 0 0 ¢, Ofz
1 Xy] LO 0 0 0 O cglX

There are also piezoelectric relationships betwenrelectric fields and voltages along

axes and the stress and strain. We will define thdge needed for our purposes.

ou
ov, O o0 d
- Ay .
Y, 0O 0 d,;
avy E,
Z, 0z 0 0 d33
= aw v = 0 d 0 Ey (4.6)
ou ow 15
X, | Yozt "Wax 0 0|

| Yax* %oy |

0O o0 d -
XX * GV/
Yy 0 0 d, 0X
z 0O 0 d
z | 3\ GV/ 4.7)
Y, 0 d, O ay
2| |ds O OOV
X LO 0]~ -

The scalarsl;s , d3; anddss are piezoelectric strain coefficients.
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The x-axial strain can be expressed as:

Mg Ne My, og Ny,
0x 0z 0x 0z
hou ,_ Vp
= J'O&dz—dsljo av, (4.9)
:a_uzhv
ox h P
and:
a_u :%Vp = @dxzhvpdx: jAXau :%fox dx
ox h 0x h 0 h 0
(4.10)
d.| h
Ax = 3ExV V_= AX
- h P

The x-axial stress (wheii, G2, C3 are “elastic stiffness coefficientstlz;, ks, are are

piezoelectric strain coefficients) is expressed as:

X = @+ Q+ a_W
x C“ax C126y Clsaz

= C11d31EZ + C12d31EZ + C13d33EZ (411)

ov
= (€yy05y + €05 +C505,) a_ZZ

ov
X, dz=(Cy,ds; +C .05, +C505,) G_ZZ dz

h Vp
= || X d2= (Cullyy + o0y, +Ciolys) [ OV, (4.12)
= )(X = (C11d31 + C12I’(]:131 + C13d33) Vp
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The x-axial force is the integral of stress acrtiss normal surface area, which

determines the voltage to force gaif,/dV :

F, = AX, =2nrhX,
= 2711 (Cyydsy + €05, + C13d33)vp
dF.
= 9%y 413
VAL (4.13)
= vavp
= Kyt =271 (Cy4d3 + €005, +C5d35)

consequently one determines the “piezoelectricigpronstant”keq :

F, =27 (c,dy, +C,dy + C13d33)vp
27rrh
= a (Cydy; +Cpdy + € 5055)AX
o (4.14)
= kqux
Kk = 2mrh

e
! d31I X

(C11d31 + C12d31 + Cl3d33)

The equivalent viscous damping coefficient is giana function of the driving force

frequencyaw the wave velocityg, the resultant wavelengti, the damping factoQ, the

material density, and Young'’s elastic modulié

IZ]TC
_pA_\pw X (4.15)

T 2mQ 27mQ Qw

(Remark: the measurement units ligg, [Kg/(m*sec)],are a function of strain, related to

driving force amplitudgm] and so are different than for simple bulk viscoasngding,

which is[Kg/sec],and is not a constant)
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so that one now has a dynamic system motion equatith a load:

MK + b, X+ KX = F, =KV, (4.16)
and the static equilibrium of gravity and elasfcisg:

F.,=Y[2nrhl,=mg (4.17)

and the state equation in controllable canonicahfis:

[ o 1 7 o
Yo kg im —b rm T 1]

X:[va /'m O])(’ Xo =(MIKX X, = X

(4.18)

and aske/m >0 and befm >0 this A matrix is Hurwitz and the linear mechanical

subsystem is BIBO stable.

Typical piezo tube dimensions from Morgan Electn@@acs™ [5], capable of
nanometer scale accuracy positioning, wouldie25 mm,0D = 25mm,ID = 19mm,Y
= 65x10 N/m? and p = 7.75x168 kg/n®. The A matrix eigenvalues of the mechanical

subsystem for the piezo tube used in simulation are
-3.975e-5 +1.333e+5i and -3.975e-5-1.333e+5i

These eigenvalues illustrate the extremely low ip&®n, even when using
“equivalent hysteresis damping”, and the high etagtof the material. The qualitative

comments from many authors regarding their expariaileesults confirm these results.
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Figure 16 The Piezo actuator linear mechanical subsystem.

4.1.2 Piezo Harmonic Electric Simulation

The presently accepted electrical model for piegwiaks, shown in Figure 17,
IEEE Std.176-1987, is derived from W.G. Cady’s ma work. Cady addressed the
issues of dynamics at resonance by referencing 'eusmalytic work in elastics and
then defining an equivalent electric model for teenbined unforced and unloaded piezo

electric/elastic/plastic displacement equations.
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C05

Figure 17 IEEE Std.176-1987

The more detailed electrical model in Figure 18vehdhe relation from the
physical power source voltadé, through a source impedenBgto the impressed piezo

voltageV,, which will exhibit multiple harmonics.

<+>_ L1 Ln
= co= 000 V. p

| = P+l 4], (4.19)

Complex Impedance for each parallel path:

Z+ +
z, -1 and z, = (LCoS” *R,C,S*D) (4.20)
C,s C.s
Implies:
V., :VpRo[i+i+...ij +V, (4.21)
L 4 Z,



The “n” harmonics are determined by the bar/tubgspal dimensions and natural
frequencies of mechanical oscillations and exhtbh#mselves as harmonics of the

impressed voltag¥.

PN n=1 n=2 n=3 n=4
N

Figure 19 Piezo Harmonics

The wavelength of" harmonic is

A =—= (4.22)
n
and the wave velocity
=fA = Y 4.23
C, nn ,//0 ( )
whereY is Young’'s modulus angdis the piezo density. Thus:

. n
f =nth harmonic frequency=s — [, 4.24
: ic frequency=—=. [/, (4.24)

IX

The mechanical quality factor for each harmonicdbed bys® + 27w, s+ & is

Q, = g 5 and we shall use one other parameter in our model
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These mechanical harmonics are then modeled asiedéparameters so that they can
be matched to the electrical drivers. The pieze ttdmn be modeled as a simple capacitor

at low frequencies:
X (4.26)

where ¢ is the dielectric permittivity of the piezo tub&he piezo tube model must
include the effect of harmonics, and recalling ¢tbepled piezoelectric strain coefficient

ds1 one can calculate th# harmonic parameters:

(1Y 8, .27,
o [FJ(FJ%Y( h J (4.27)
1 I.h _
R, :[gj[dszleJ(Zﬂr jan _[pj[dlezj(ZHr J( /2| j\/% (4.28)
L= (%)(dz—l\(zj( 2';;} IS a constant. (4.29)

so more specifically for first harmonic:

\ (5) G,(9) = N, (s)
Vo(s) D,(s)
1 s+ R S+ 1 (4.30)

_ RCo RGCL  RGLC,
., ((C+RCRC) ., (RC+RC+RC) , 1
RCoLC, RCoLC, RCoLC,

and more generally:

N.(s) _ b, s +..+bs+hb,
D.(s) s +a,s™"+..+as+a,

G,(s)= (4.31)
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such that the state equations in controllable ciaabform:

0 1 0 0 0
0 0 1 0 0
xX=| 0 0 0 x| 0V,
: : : .1 0
&% —a & o T8y |1
(4.32)
V, = [b0 b b, - b2n])(, n=numberof harmonics

where a,,,...a,, and R, b...[ are all positive scalars so that thematrix is Hurwitz

and therefore the harmonic electrical subsysteBiBO stable.

This leads to our model in Figure 20. Typical piézioe dimensions from Morgan
ElectroCeramics™ [5] for a tube capable of nanomstale motion would bg = 25

mm, OD = 25mm,ID = 19mm.Y = 65x10 N/m? andp = 7.75x18 kg/m® which yields:

f; = 58010 Hz,C, = 8.66 nF,C; = 890 pF,R; = 41.1 2 andL = 8.46 mH.
Different length tubes, or different configuratipng/ould yield higher or lower
bandwidths. Assuming one would operate below this\gry harmonic frequency, the
linear electrical model for the piezo tube is ardhorder system. The A matrix

eigenvalues of the electrical subsystem for thetabe used for simulation are:

-1.154e+8, -2.489e+3 +3.645e+5i, and -2.489e+3H4He+5i.
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Figure 20 The Piezo actuator linear electrical subsystem.

A typical response of this electrical model (fosimilar device) would resemble
that of Figure 21, witm pole-zero pairs corresponding to resonant andrastinant
peaks. One would normally choose to operate aquéncy below the primary harmonic

frequency when using a linear control law.
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Figure 21 Root locus and Bode plots example of piezo harnsodip

It may prove advantageous to use singular pertrabethod to decouple this
electrical subsystem into two parallel additivehgatas we are most interested in the
stability of the fast subsystem for our analysigexting the slow subsystem will remain
stable as well. The singular perturbation methoglplapplied to the open loop electrical

plant then is represented as:

el alEke)

(4.33)
Vp:CI)(+CZZ
where:
[0 1 0 --- 0]
o001 -
A,=|0 00 . 0 (4.34)
R S T |
|10 0 0 0]
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-
0
A,=|: (4.35)
0
_1_
Ay=el-a, —a -a, - -—a,,] (4.36)
A, =—&a,, (4.37)
and:
-
0
B, =|0 (4.38)
_O_
B, =[¢] (4.39)
Cl = [bo b.l. b2n—1] (4-40)
C, =[b,,] (4.41)

so by defining? = xan+1 ande= RoCo (which is Order 18) one redefines the system in

the Standard Singular Perturbation Model.

One determines that the electrical subsystem magob#letely decoupled for
any choice of harmonic model order For the first order harmonic the fast subsystem
transient must approach the stable slow resporsenva time boundary < & = 1.88e-

12 seconds. Using the previous dimensions of the pieeomax value of the control

signal input impedancd, to achieve this fast response(090212 or an equivalent 12
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gauge copper wire length40mm This is a realistic value and would guarantebikta
of both the completely separated ‘fast’ and ‘sl@ubsystem approximate models, when

separated using singular perturbation method, andrfy bounded input for all t > O.

For harmonics above first order one finds the iemanust settle much faster to
assure complete separation. For the second harpemian example, the transient time
boundary iss < & = 3.54e-24secondsR, < 4e-162 and a wire length £.5e-14 mThis
is not realistic, indicating one cannot make a s#pmEn assumption if one wishes to
apply control input signals to this system abowve finst harmonic. We have thus not
made a separation assumption for analysis of th&@I[2ontrol law. The simulations
have assumed first order harmonics, so we haveeliminput signals below these

frequencies.

4.1.3 The Complete Piezo Linear Model

The complete piezo linear state equation (assunmpgt below the first harmonic) in

controllable canonical form:

0 1 0 0 0 0
—Keg/Mm —Db/m b, b, Db, 0

X= 0 0 0 1 0 |[x+|0V,
0 0 0 0 1 0
Y 0 —8 Ta T8y 1]

(4.42)
x=[K,/m 0 0 0 Oy
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The characteristic polynomial is more space effici® show the BIBO stability of the

open loop linear system than the much longer eigleevcalculation:

beq a, eq keq a eq K, 2 a'O eq a1keq aOkeq
S+(az+mjs+(ai+m+ms+ao+m+ms+ m+m m

so that the expected positive values of all scpmameters indicate th& matrix is

Hurwitz and all eigenvalues have negative real comepts as is the specific case for our

simulation model. Where, in the general casge(t)JC" is assumed to be an

differentiable function ofanda b, m b, k,, K;UR,.

The complete linear equation of motion is represeim Figure 22.
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Figure 22 The Piezo actuator complete linear subsystem.
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4.2 Simulation of Nonlinearities of Piezo Tube Actuators

Thermal nonlinearities are the most pronounceden@devices. Voltage “creep”
and other elastic/plastic nonlinearities are foumd piezo devices. These two
nonlinearities are very slow responding comparethéohysteresis nonlinearity of piezo
devices. Thermal drift and voltage creep can bewsudlly are modeled and controlled

as slowly time varying parameters and a voltageedfdrift in the motion equations.
F (Vo) = Ky () IV, (0 A+t L, (V) (4.43)

We will follow that same practice here in order ¢oncentrate our control
attention on the more difficult hysteresis phenoamerin what follows we will resort to a

definition of seminorms unless otherwise specificalled out as.? or L norm

C’isthe space of continuous functiong@,o[ -~ R,  withsem: 44
[ ], =maxf () for fO0C° andt= 0. (4.44)

Oss<t

4.2.1 Thermal Drift: Simulation as a Slow Ramp Force Multiplier

As was evident in Figure 1, the thermal drift ofrmgiezo ceramic materials can

be several percent over even small changes in tatope, and does not present any

obvious path to mathematic representation.
F, =KV, whereK,, =277r(c,,d;; +C,d3; + Cj505,) (4.45)

Though Ky is a continuous function of the slowly changing pemature

dependent coefficientsy, ¢, G3, i1 and @z, these are measurable bounded values:
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‘= max OR,, for K,O0C’ and T> 0  (4.46)

[0,T] O<ssT

\ K

and for our purpose herein we shall then asdiynas a continuous function of time:

vf va (Si = vamax

K, (t)OC"(0,) (4.47)

and is the un-modeled dynamic bounded differenicdated to thermal drift. Simulation

of thermal drift will be accomplished with relatlyeslow ramp and/or sinusoid multiplier

to the scalaiK, .

4.2.2 Voltage Creep: Simulation as a Saturated Slow Ramp Input Offset

Application of a DC bias, such as the “engage” aiffgoltage, to a piezo tube
scanner causes an initial and abrupt change iedfh, but the subsequent “creep” to a

final position is slow as in Figure 2.

Richter et al, in 2001 [104] had modeled and coméid creep as a function of
impressed voltage on the input to the mechanidasystiem, reinforcing Vieira’s earlier

experimental results [125].

F (V1) = Ky () IV, (O(L+ t0f (V) (4.48)
This representation is somewhat misleading, in thatvalue might appear unbounded,
this is not the case, &gepis assumed bounded continuous function of voltage:

V.

sat

so that| \, (3= @ﬁx| Y ()< .

OR, and lim f (V) =0
ot (4.49)

so we will assume:
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Vi @+t e, (V) = Vi (D4 Ve D (4.50)

where V___ ()0 C"(0,»)is the dynamic un-modeled bounded difference aitedh to

creep

voltage creep.

To repeat, the control system will necessarily néedoe tolerant of slowly
varying position, velocity and acceleration err@sembling measurement uncertaiimty
classic control scenarios. Simulation of positioaep will also be accomplished with

relatively slow ramp offsets to inputs.

4.2.3 Hysteresis: The quasilinear model choice for simulation.

One has several choices how to model the piezoatctisystem, the most
common method to model the piezo actuator is tarsé@ the linear and nonlinear
components of the model as in Figure 23 and Fi@dreand model the hysteresis as a
series operator acting on either the input or ttpwt of the linear subsystem. Then most
researchers to date have resorted to an inverserésis operator to linearize the system

such that various linear control laws may be applie

The contribution of hysteretic energy dissipatismot manifest in the commonly
applied semilinear series configuration. In Chaf@ewe discussed the reasons for our

preference of the quasilinear mechanical modelgnre 25.
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Figure 23 Semilinear piezo model with inverse hysteresis cemsption.
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Figure 24 Semilinear piezo model with feed forward hysteresismpensation.
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Figure 25 Quasilinear piezo mechanical model with hysteresergy dissipation.

Our open loop piezo system model then becomesgume 26.
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Figure 26 Complete piezo quasilinear model with hystereses@ndissipation.
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K
Vo (D) —ﬁ(l +P) 4D (4.51)

0

. LK
= f (X, (I + P) J va ) fcreep’d Vi Vin’t)+_ Vin (t)
m

in?

4.2.4 Semilinear vs Quasilinear: Results Validate the Preference

A Comparison of the open loop simulation results ddinear system model, a
semilinear model and a quasilinear model vividlysirate the reasons for choosing the

guasilinear model for the equations of motion. @ation results are in Figure 27 and
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Figure 28. The sinusoidal input (blue-solid line) near the mechanical subsystem

eigenvalue frequency and includes DC offsets aiftd dr

Input reference (blue-solid) versus Linear output(yellow-dash),
Semilinear(cyan-dot), Quasilinear(red-dashdot)

meters

seconds x10°
Input-Output difference (damping), Linear system (yellow-dash),
x 10° Semilinear (cyan-dot), Quasilinear (red-dashdot)

meters

Piezo actuator with equal mass load. Open loop response. x10°
Linear, Semilinear, Quasilinear Systems

Figure 27 Open loop piezo model energy dissipation response.

The upper graphic in Figure 27 overlays the ougfubhe three open loop models
on top of the input reference signal. The lowerpgra in Figure 27 overlays the
difference of the three open loop models, compaoethe input reference signal. The
linear model and the semilinear model with a sengsteresis operator have negligible
energy dissipation, dependent solely on the “edentehysteresis damping” coefficient,
beq and it is remarkable the series hysteresis adsofor little additional energy

dissipation. The energy dissipation evident in tjuasilinear model is apparent, and
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proportional to displacement, not rate. The valdes the “equivalent hysteresis
damping”, beg, and “equivalent elastic coefficientk.,, were the same in the three
models. It should also be noted the load mass redttie piezo actuator mass in this
simulation, a large mismatch of mass would exadertizese differences, as in other

methods of actuation.

.[ > J’ > Linear
Output
— (yellow-dash)
Semilinear
Reference | > [ > > Hysteresis
(blue-solid) (cyan-dot)
/ < w = Vv+P[V]
J‘J‘ N Quasilinear
” Hysteresis

Dissipation

‘ % (red-dashdot)
< v = (1+P)wl

Figure 28 Open loop piezo model Simulation diagrams.

A

A

In conclusion, the difference in fidelity to expeental results between the
semilinear model and the quasilinear model couldoeomore stark, as shown in Figure
27. The energy dissipation is well accounted andsistent with rate independent
hysteresis. Thus the quasilinear mechanical modlklbe utilized. As for the linear

electrical subsystem model, singular perturbatioalysis reveals a simulation with input
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frequency up to the first harmonic would be validigcoupled from the mechanical
subsystem, and practically achievable. The slovetieg thermal parameter drift and
voltage creep are modeled as a slow time varyingpranultiplier for the voltage control
variable. The unknown disturbance is modeled &&ed brief square pulse equal to 50%
if the max control signal during the sinusoid injpetiod, and then followed by a 50%
step offset during the OVDC regulation period of gimulation. Thermal noise on the
input reference is simulated by a white noise sewgual to iV superimposed on the
reference signal. Electrical sensor noise is dlsalated by a white noise source equal to

1uV superimposed on the feedback signal.

Therefore, we will use a simulation verification deb as in Figure 26 in order to
validate our control design strategies. Our refegemput is a 1nm sinusoid at the
mechanical resonant frequency of a common piezander actuator, 21kHz. This
reference is modulated by a trapezoid offset dutiagfirst 5 cycles, and then followed

by 5 cycle periods of OVDC reference input.
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CHAPTER 5

CONTROL STRATEGIES IN THE DISTURBANCE REJECTION PARADIGM

Three disturbance rejection strategies, one aabive passive, and one hybrid, are
considered. All three strategies are novel in tlwim, and certainly novel for this
application to a hysteretic process. The authdnssis is that these strategies are
particularly well suited for many difficult hystdie applications, not just this application.
The results demonstrate all three strategies aglpevformance superior to that reported
previously. Performance in this regard is the gbilo compensate for the hysteresis
nonlinearity, rendering the apparent system esaBniinear. The LADRC has been
demonstrated before to compensate for unknownrtiestices and nonlinear behavior by
canceling these effects and presenting an equivhiezar double integrator plant to the

position controller,y = u,. A similar effect can be achieved if one can famdaggressive

inner velocity loop which can successfully pressmequivalent single integrator plant to

the position controllery = u,.

Linear plants and linear controls using cascadegdavould likely be attempted
here by the uninitiated, but are unsuccessful ls#ue device energy dissipation is so

low, the energy stored is so high, and the hysteessids additional unknown phase lag.



Variations of PID control were investigated as aonmétion, in both single position loop
and cascaded velocity and position configuratiovi) feed forward and feedback. The
stable bandwidth for these controls was not acbtéptgiven the very low damping for
the system, even without the hysteresis lag. Theltseare available but not part of this
document, due to length. The use of a velocityrezfiee command for an inner velocity
control loop is still valid and a key componenttbis aggressive disturbance rejection

strategy, given the appropriate reactive controls.

The active disturbance rejection strategy compessftr hysteresis disturbance
by estimating and canceling its effects in realetinihe passive disturbance rejection
strategy compensates for hysteresis by generatountaol sequence to drive the device
to 0= 0, the zero disturbance equilibrium, the anhystededhavior. The third strategy is
a hybrid which combines positive attributes fronthbactive and passive solutions. What
significantly differentiates these strategies frpast recorded efforts are the minimal
knowledge required of the process, particularlyttde not use any complex and unique
inverse model of hysteresis. Hysteresis is a texdiand difficult phenomenon to
characterize, and cannot be done while the prasesa line, so this alone is a major

positive contribution in the search for a practsalution to this application problem.

We consider control strategies which can be imphaate with minimal process
knowledge and tuned using a heuristic as supeviattier choices, assuming they meet
the performance and stability criteria, becausg @re more likely to be implemented
and maintained. We have followed that guide hetéim,controls were designed with the
minimum data book knowledge and tuned using a bgcriexplained in the text.

Afterward we analyze the empirically designed amtket control against our simulation
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model to determine how stable it might be. Thislgmsa is noted in Appendix B:
Simulation Tuning Analysis. In most cases the hstiarapproached the desired response

very closely.

The results for our passive disturbance rejecticategy are quite remarkable for
such an elegantly simple implementation. The kndg#eof the process required for
these results is minimal and the margin in choosiregdesign and tuning parameters is
relatively broad. Even more encouraging for ourspas strategy alternative is that the
design parameters are related to the controlletvee and software rather than the plant

limitations. These are desirable choices.

The same criteria apply to our proposed activeutisince rejection strategy. One
desires exceptional accuracy for tracking duriagsitions as well as steady state, as well
as minimal reaction time to disturbances for regoha Additionally, one should not only
compensate for the nonlinear and/or un-modeled rdiggof the device, heretofore the
concentration of hysteresis modeling strategiest hiso compensate for the
unaccountable and inevitable system disturbancasa@ive control strategy should also
minimize, if not completely obviate, the need fopracess model, and for any process
knowledge that must be used the margin of errdhénestimation should be as large as

possible.
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5.1 The Limitations of Model-Based Control in the context of Hysteretic Dynams

The hysteresis control problem is a definitive gturd the limit of model-based
control. There is still today significant debate amg the engineers and applied
mathematicians on the best model to use for theaaof hysteretic phenomena. What is
lost in the discussion is any question of the feeédny model. These phenomenological
models require copious data to characterize hystete an acceptable level of accuracy,
and even afterward the model is unique to eachcdegontrolled. The model is so
computationally intense as not to be readily appiie some processes, even though
computational power grows exponentially. These diactclarify and amplify the

limitations of model-based control strategies fams applications.

We have therefore made a conscious choice hereiattmvestigate model-based
control strategies. These would include state faekllcontrols with or without observers,
H., controls, loop shaping controls based on frequelmyain models, etc. These have

been demonstrated in prior research.

5.2 The Disturbance Rejection Paradigm provides the Necessary Capabds

Model-based controls would not meet our “practtgalcriteria, while error based
linear control variations cannot be made suffidierdggressive to compensate the
hysteresis and emulate a linear plant for the qudsition controller, without becoming

unstable. Aggressive disturbance rejection providesiecessary capabilities.
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“Aggressiveness” is a key component of our constoategy. We will shortly
introduce the “Han Function”. Though one may da#l Han Function “passive” because
it reacts to disturbance rather than actively chdsturbance, it is by no means passive
in its reaction. Aggressive rejection of disturbariom external sources and aggressive
compensation for the hysteresis disturbance isssacg for meeting the goals. This was
confirmed early in our testing, a single Han Fumetin the position loop was difficult to
apply successfully. The challenge of compensatnghfe natural phase lag of the device
and the low dissipation and large energy storagehef device, plus the phase lag
introduced by the hysteresis, put a single positmyp solution “on the edge”. The
introduction of an external disturbance would tagghe control to saturate to maintain

performance, or the detuning to prevent contralrsdibon would not meet performance.

Conversely, by aggressively reducing the delayeaction to disturbance with an
inner velocity loop one is able to achieve remaldkatesults using only the Han
Function. The disturbance reaction time reductiaves critical for this passive strategy
as well as the active strategy. A quick reactind aggressive inner velocity loop has a
similar effect as the active disturbance rejecparadigm, the outer position control loop

observes an approximate systgmns u, .

5.3 Passive Disturbance Rejection Control: The “Han Function”

Experimental evidence has demonstrated the hyisteesipponse will converge to

an analytic function referred to as the “anhysteteturve [127]. Control signal
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“dithering”, a technique studied [2,81,115,127] awtcessfully used during 1960 and
1970 decades, was demonstrated to accelerateotivergence, and was the inspiration
for investigating time optimal control as the passistrategy. Dithering injects a
continuous and open loop “bang-bang” disturbante tine device in order to force the
device to more quickly approach the “anhysteretiofve response. This technique is
effective, but very energy inefficient. Our passoantrol thesis is that a nonlinear, first
order, closed form discrete time optimal contrdfoduced by Han in 1999 and further
developed by Gao [37], when used as an inner \gltmp, can serve a similar purpose
in a closed loop and controlled fashion, compengator the hysteresis disturbance by
driving it to equilibrium quickly and with less engy. (We shall refer to this as the “Han
Function” from here forward.) This inner loop velgyccontrol, combined with various

choices of outer position loops, both linear andlimear, would provide an elegant
solution. The choice of Han’s closed form direcdctdéte implementation also benefits

from the fact it is a proportional control, not flzggbang”, a weakness of “dithering”.

It will be demonstrated that the simplest drder Han Function inner velocity
loop is sufficient to compensate for the +20% hystis nonlinearity, such that many
linear control choices are available to addresditieeposition. We have chosen a most
direct linear Proportional + Integral outer loopsyimn controller for illustration. An
additional benefit of the Han Function is its dpilto passively yet effectively reject

external disturbance other than hysteresis, thatss demonstrated in simulation.

We also consider a nonlinear, second order ;Haanction outer position
controller, used in concert with the simple inneog first order HanFunction. These

choices all work well under nominal conditions, bawe different disturbance and noise
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rejection capabilities. It is necessary in thisatggy to provide a reference velocity
command, whether separately pre-computed or sometenwed from the position
reference command. The accuracy of resulting posits therefore also related to the

method chosen to generate the velocity reference.

The velocity of the piezo device is not assumebdadairectly measurable, so we
have used a simple differentiator of measured jposéas one means of determination for
velocity feedback, this gives a less reliable measwm our simulation, which is
purposeful. One may choose state estimation as keran for the active control, or a
tracking differentiator (TD) [50,51,84] for more agate estimation. Accuracy and
immunity to noise in the position measurement antiie position reference, both of

which we have simulated, are factors for this choic

5.3.1 Description of the Han Function

Time optimal control study dates to the decade4380 and 1960s. It gained
much attention and spawned much research leaditfietoptimal control theory [4] of
the 1960’s best associated with the Pontryagin (@@jmum principle. The well known
2" order Continuous Time Optimal Control (CTOC) fordauble integral LTI plant

X=uadheres to a sign function usually switched, (iat teeldom are the conditions

0, x, =0 actually met), according to the relationship oé thtate to the

X% _
a 2r

guadratic switching curve:

(5.1)

u=-rsign(9, s 3<+—X22|r)<2|
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Likewise the minimum time optimum control for agl@ integral plantx=u is:
u=-rsign(g, s (5.2)

The benefits of this control law are the maximurouaacy to reference command
and minimum reaction time to disturbance, with tiegative cost of frequent switching
of the control (“bang-bang”) between its maximumlues, particularly near the
equilibrium state. Two most common suboptimal micdifons to these control laws are
the substitution of a dead zone or a linear swiighiegion in the vicinity of the

equilibrium. Another choice is replacing thigin(s)function with:

sign(9, SO

g, 4<0 (5.3)

sat(s9) =
In most all applications these continuous contewd must be implemented
digitally, commonly being susceptible to noise amdvanted cycling. Han addressed
discrete control for discrete time plants diredtly1999, developing a closed formi?2
order time optimal control law for the discrete ¢irmystem, not a sampled continuous
system. Han'’s solution benefited from the facsihot “bang-bang” control but possesses
an “Isochronic Region” (IR) wherein the control psoportional to the error and not
extreme. We will summarize that development heuwt,not in a rigorous fashion. The
results are fully explained by Gao [37] and thedezas invited to reference his detailed

development.

Consider the discrete time double integrator plant:
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x(k+1)= AX K+ BU B, | K<
where Az{l h} and B{O} (54)
01 h

In this systenr is the maximum control signal to be applied &and the sample
rate for the controller (Usually different, and wkr than, the sample period for

measurement system and the hardware itself). Tél@dean definition is then to drive the

state from the initial valux(0) back to the equilibrium state(k)=[0 0] in the

minimum steps withu(k)| < r.

find u=(K, [ B|< ¢ st k=min{ § k=[0 d] (5.5)

The methodology for developing a control law istgu@ubtle, one treats each state

x(kh) as the initial conditiox(0) and calculateg(0) accordingly at each sampling instant,
repeating untilx(k) =[O O]T. A key feature of the control law is the IsochmRiegion
(IR), G(k), within which there is at least ong0)[1G(k) with a control sequence
u(0),u(d),..u (k) which results inx(k) =[0 0] . Let us first determine a few of the early

states for the system:

X(1) = Ax(0)+ Bu(0)
x(2)= Ax(1)+ Bul)= A x0)+ ABUO}+ Bl)

(5.6)
x(K) = A X0)+ A BY0)+ A2 B@)+...+ AB(Q k 20+ B( k1)
so that if one sets(k) =[0 0]' one has:

x(0)=—-A"Bu0)- A2Bul)-...— A* By k 2)- X BQ k1) (5.7)
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1 kh 1 -kh
and with A* = ,and Ak = one has:
0 1 0 1

x(O):Zk:[itl:Ju(i—l), and thus § B={Zk:[ihrj @+1)] )< } (5.8)

i=1| —

For the sake of brevity an explanation of the aantaw sequence using a
graphical representation of the Isochronic Regigresimposed on the, X phase plane

is most instructive. The details can again be ezfeed [37] as desired by the reader.

The control sequence is dependent upon the isi#éx(0) location in the phase
plane relative to the IR. Figure 29 illustrates fiingt two regionsG(1), the line on which
an initial statex(0) reaches equilibrium in one step, a@(), the parallelogram within
which an initial statex(0) reaches equilibrium in 2 steps. The additional aegi
G(3)...G(k) are developed accordingly to determine kochronic Region shown in
Figure 30, highlighting the regiorg(1) and G(2). The boundarieg+ and/- mark the
transition between full saturated contfo| = r and the linearly scaled control region.
Any statex(0) outside these boundaries will command a conirjot r until reaching one
of the boundaries, at which time the control camts aqu| = r while the state follows
the boundary to reach the regi@(1l), at which time a control signgu| < r is
commanded to reach the equilibrium. A ste@ within these bounds will first command
a control signaju| < r which will drive the state(1) onto the boundary, from which the
state will again follow the boundary until regi@{(1), and then to the equilibrium. The
IR example herein assumes particular values @nd h, but the general shape is

consistent for different parameter values, anyed#iices consist of dilation and shear.
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Figure 29 Regions G(1) and G(2) for the HaRunction construction
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Figure 30 Han, Function Isochronic Region

The full 2 order discrete time optimal control (HaRunction) is written as

It is interesting to compare thetsiwng curves for the minimum

Equation (81).

continuous Time Optimal Control with that of therid&unctionshown in Figure 31.
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u=han(x %, rH

d=rh; d, = hd
y=x+hx
a, =4/d” +8r|y

-d .

X2+a02 sign(y, | y> d (5.9)

a=

Xt < d

rsign(a), 4> d
han, = -
an r2 la|<d

d

comparison of TOC and DTOC Switching Curves

X2

Figure 31 Harn, Function versus continuous TOC switching curves

The F' order Ham Function law for x(k+1)= x(K)+ hy B, analogous to

collapsing the linear switching zone for tH¥ @rder system down to that section of the x

axis lying between-rh and+rh, is:

68



u=han(xrh
d =rh (5.10)

rsign(x), |%> d

han = -
an ré, X|<d
d

An example of the %l order Ham Function control sequence for two different
initial values of x(0) are illustrated in Figure 32, which is the G(1)eliextended
infinitely. Full control availableJu| = r, is commanded until the stapgk-1)| < rh, at

which time a linearly scaled control(k)| < r is applied to reach the equilibriuxgk)=0.

0o . -
- _XEXUTL'_L’_L’_LI’_*_‘TL%OT _%
rh

-th

Figure 32 1% order Han Function paths to equilibrium

We will demonstrate both®1and 2¢ order Han Function in simulation, as they

provide the benefits of TOC while alleviating thests of digitizing a continuous TOC.

5.3.2 Design and Tuning considerations for the Han Function

The Han Function design parameters are the maxioantrol valuey, a limit of
the power source, and the step slzecan be chosen as some multiple of the sampling
period, & The value ofr is first, and obviously, bounded by the physicaximum
control value available, so in practice one norgeaithe gaim, after the Han Function
block. For the piezo actuator used herein, whichdraelectromechanical “gaidk/dV~

-1e° one need begin with a value> 1€”in order to approach the physical control limit
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set for our simulation#lV. One can rapidly arrive at a usable solution uding
following heuristic. The choice of “gain”y, determines most the accuracy and
disturbance rejection time for the Han FunctiomdFihat value of to achieve desired
response, usually with continuous control cyclihbe value for step sizé, then serves
to modify the width of the Isochronic region betwe€ and/". This adjustment relieves
the control from rapid switching “chatter”, and @lserves to raise the tolerance of the

system to noise. Indeed, in a noisy environmestiththe parameter to alter.

5.3.3 Velocity Loop with Han Function

U| Hysteretic | ¥
| Plant

v

Har;

d/di

Figure 33 System Diagram, HarFunction in velocity loop

One must immediately remark this most simpl& drder Ham Function
Controller, velocity only, has significantly comated for the hysteresis nonlinearity
WITHOUT a MODEL incorporated in the controller. Thgsteresis we have modeled in
the simulated plant has almost 20% nonlinearitgufé 34a is the plot of the signal
transform through the inverse hysteresis operatothe mechanical force feedback,
indicating the nonlinear strain. Figure 34b is gusition transform for the closed loop
velocity controlled piezo, from reference to outplihe piezo now appears essentially

linear, the input is a velocity referenag, and the output is the positign The velocity
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loop Han Function has made the plant appearyasuy, for any outer loop position

control.

Inverse Hysteresis in/out (meters), Closed loop system infout (meters),
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C(s)=(LKT,)s, where T_=7.5¢-6, K=1.6e-6, K =1e8 * C(s)=(L/KT,)s, where T =7.5e-6, K=1.6e-6, K =1e8 x10"
s s : s s ¢

Figure 34 Hysteresis before and after Compensation,;Hramction velocity control

This configuration establishes a baseline for ottmenparisons. The controller is
easy to implement in hardware using an amplifigthvgiaturation in the velocity loop.
The control appears as a negative gain (the pgamiegative divisor) derivative control
for small errors and signals within the IsochroRiegion, and is tuned accordingly. The
velocity reference must be fed forward to the viyodeedback loop, with the
suggestions made earlier regarding the generafitimsoreference. The accuracy results
in Figure 35 with this elegantly simple standardhponent configuration are remarkable,
particularly the fact the hysteresis nonlinearisy almost totally compensated by the
velocity loop, allowing the outer fine position |[pao better manage the accuracy
performance requirements. What is also remarkabléaé ability of the % order Han
Function velocity control to resolve disturbancedobe the position loop, and the low
level of control effort applied to achieve the rgsdue in no small part to the Han

Function minimal time response. It is a notewontegninder here, as is true for all the
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simulations, that the input reference is a sinusaidthe natural frequency of the
mechanical subsystem, which has minimal naturalpilagn This is a system normally to

be avoided by the classic “bang-bang” continuou€TOntrol law.

Velocity Reference (yellow dash-dot) Actual (green solid)
x10° dtoc1 velocity control only Velocity Error
; ; ; | 10" dtoc1 velocity control only

meters/sec

meters/sec

°
° &
| |
| |
| |
[
| |

j

| |
f T

meters/sec

| | |
| | |
T T r
| | |
e N |
| | |
| | |
T T r
| | |
1 1 1
3 4 5

seconds

C(s)=(UKT,), where T_=75¢” K=16e”, K =1¢°

C(s)=(UKT,), where T =75, K=1.6e” K =1e°

Figure 35 Velocity, Error and Control results for HaRunction velocity control

The velocity tracking error in this case 4€e’/8e°> = 0.25%. Notice also the
single sample period tracking error transientstiigggered by the abrupt velocity changes
due the triangle and square pulse modulation inréfierence inputs, and not by the
disturbances to the system. This would indicateappropriate reference input filter
would alleviate this issue, separate from the atietr. This will be seen consistently in
all simulation results, to a greater or lesser éegit must also be brought to attention the
simulated 50% max load disturbances are also afédgtquelled by the % order Han
Function. And not least, the control signal is wedunded less than the £1V saturation

constraint. This also emphasizes the benefit ofithe optimal response.

The simulation reference signal is a 1 nanometak p@ peak sine wave
modulated by a triangle signal and offset by DG laiivarious intervals for ~2@5ec, to
test tracking, eventually returning to zero anddinag zero for another 23%sec in order
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to test steady state regulation and disturbancectien. This period, to be precise,
corresponds to 5+5=10 cycles at the primary frequeof the mechanical system
(21kHz). One will note the large pulses in the eand control due to the transitions of
triangle modulation and DC offset periods. The eysexperiences a 2sec wide pulse

disturbance equal to 50% of peak force beginningOgisec, and another 50% of peak

force step disturbance beginning at 26@c.
For our simulations we have chosen to normalizeesdbasn our knowing the

model parameterst =1 (maxcontrol force), S‘I':i=§ ( sampling perigpso that
)

r

we can stress the simulation by driving input & tesonant frequency and limiting the

control to +1V.

5.3.4 Cascade Control: HapFunction velocity loop with Pl position loop

v

r e
QT
- r e U | Hysteretic | ¥
Ham = “pant

d/di

Figure 36 System Diagram, Cascade Ha&unction velocity loop with a Pl position loop

It should be obvious, given the results from thiweiéy inner loop controlled with

the ' order Han Function, that a linear PI control as the outesitiam loop would yield
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good results. The hysteresis compensation in Fi§drand the tracking accuracy and

control effort in Figure 38 illustrate these result

Inverse Hysteresis infout (meters),
x 10%° 1st order DTOC velocity control, Pl position control

! i
| | |
1 1 1
-4 -2 0 2 4 6 8
C(5)=(UKT )(s+K 5+K Kis, where T =7 5¢”,
K=(8e°)3, K =(2e°)3, K=1e 7, K =1e”

1storder DTOC velocity control, Pl position control
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C(s)=(UKT, )(52+KPS+KPKI)IS, where T =7.5¢°,
K=(8e”)8, K =(2¢%)8, K=1e”, K =1¢°

Figure 37 Hysteresis response before and after Compensatam,Function velocity

with PI position control

One observes immediately the control is well betawes the HanFunction

velocity control is tuned independently, and thes P1 position control is connected. The

controller does cycle in the presence of noise,thisdcan be adjusted with the width of

the Isochronic Region, if desired. (This was pugbpsiot done here for illustration) The

max error during discontinuous inputs<iée*41e° = .6%, which can be addressed by

careful input profiling. The noise error #l1e¥1e° = .1%, and better still is stable

damped rather than oscillatory. The 50% disturbaegection is quite good, with error

<5e¥1e° = .05%
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©10° 1storder DTOC velocity control, Pl position control
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Figure 38 Position, Error and Control Signals, Harelocity with PI position control

The simulated system additionally experiences ma#an random noise injection
of £1uV at the reference input for ~Sec beginning at ~3Q@sec, £1uV at the output
feedback for ~2%isec beginning at ~35@sec, and both sources simultaneously for
~25pusec beginning at ~4Q@sec, each random source has a different kernes. idise

level is consistent with radiated noise entering the feedback measurement, and

meters

Actual Error,

x10% 1st order DTOC velocity control, Pl position control

P R

seconds x10™

C(s)=(LKT )(52+KPS+KPK‘)IS‘ where T_=75¢°,
K=(8e")3, K =(2¢°)8, K=1e ", K =1¢°

thermal noise and/or electrical noise in the refeeeinput.

5.3.5 Parallel Control: Harp Function position and Han velocity control

One designs this system as one would design mesadad loop systems, adjust
the velocity loop to achieve the best following,igthwas done as part of the singfé 1

order Han Function control, and then tune th¥ @rder Hap Function position loop to

fine tune error.
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Figure 39 System Diagram, Parallel HaRosition and HanVelocity loops
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Figure 40 Han, Function position, Harvelocity: Position Error and Control results

The 2" order Haa Function has small signal steady state error bedifuy choice
of rh?, this may be preferable to the dynamics that apeom linear controls. The max
tracking error in Figure 40 is larger than the diestate error, tracking erree91¢e°
= 0.5% while steady state errox2e™¥1e® = 0.002%. Even s0,<0.5% error is
significantly lower than some of the inverse modated systems studied. Notice also the
max tracking error is triggered by the abrupt va#éloceference changes and not by the

disturbances to the system, this would indicateropriate reference input filter would
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alleviate this problem, separate from the contrpleEaving one with a002%disturbance

rejection controller for this Han Function pair.

5.4 Active Disturbance Rejection Control

For the active compensation strategy we have chasewvel concept known as
Active Disturbance Rejection Control (ADRC) using Bxtended State Observer (ESO).
The ESO is normally executed as a linear full stdiserver, with an augmented state
estimating the contribution of nonlinearities andogy modeled dynamics to the
measured position output. The ESO and ADRC strategy been demonstrated
exceptionally capable [35-40,43,48,49,58,59] totic@dmmacro and micro scale processes,
this will be a first effort to control at the nanetar scale. The objective for ADRC using
ESO is simplicity itself, to estimate the effect ahy unknown phenomena and
compensate in real time via the augmented stateeiESO. What differentiates this from
other augmented state observers is that a modethtrprocess is not required to
assemble the observer. An ESO using a linear Ptiopal + Derivative (PD) control
strategy will be demonstrated, referred to as LidddRC (LADRC) or ADRC(PD). The
results are extraordinarily effective, demonstigtihe ESO ability to estimate and
compensate for the hysteresis, in real time, withimnefit or complexity of an inverse

hysteresis model.

77



5.4.1 The ADRC Paradigm

The functional relationship between the input fosice acceleration is:
%= (%% wu (5.11)

where x is our position outputy is our force input, andv accounts for un-modeled
dynamics in the system state and input, as wellrdghown disturbances, including
hysteresis. Let represent the reference trajectory for a traclapglication such that

e=r-xand’e= '~ > so the goal for tracking and regulation contrdbislrive their error

to zero. One may also choose to be one step lssmethin the description of the process:
X=f(xxw+ by IR (5.12)

where all the nonlinearities and forces not trateedb the linear application afl is
enveloped by the functiori (X, X, w). Therefore, if the desired response of the syssem

that of a simple linear double integrator:
X=U, (5.13)
then our necessary control is obviously:

u:uo—f(x,x,vxb

: (5.14)

Granted, this is an ideal configuration, yet thégsophy of ESO and ADRC is to
asymptotically approach this ideal. The controlligmge then becomes how accurately
one can estimate the value 6{x, x, w) in real time, so that now one designs a simple
controlup rather than a complax In fact, the robust HarFunction is a prime candidate

for up. This is the essence of the ADRC, whereby the, rgabrly modeled, disturbed
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process is made to appear to the controller asllabekaved and trivial linear system.
There is nothing novel to estimate disturbancescamapensate for them, as this has been
a practice of Disturbance Observers (DOB) for sgeer's, but the method of estimation

using the ESO is new.

The design of the ESO is thus the determining camapb for a successful
implementation of ADRC. The ESO was proposed by IH#49] but significantly
simplified and made practical by Gao [38-40]. Th®CEis an augmentation of a full

order state observer wherg =x, x,= % and x= 1 so can be described as a linear

system with all nonlinear behavior being represgny f and h=f. The linear

representation of the state matrix A is also caestswith the boundary conditions of the
hysteretic device and the quasilinear represemtdoo the hysteresis. The hysteresis
contribution enters via the internal dynamics o ttevice and not through the input

force. The integral relations between acceleratigiocity and position at the device

boundary hold.
X = Ax+ Bu+ Ef
(5.15)
y = CX
010 0 0
with A=|0 0 1|,B=|b|,C=[1 0 ¢ ,E= and a state observer:
0O 0O 0 1
7= Az+ Bu+ h
’ Cyy (5.16)

y=Cz

may be designed with observer gains [,81 B, ,83]T . Han [48,49] proposed a generic

nonlinear observer gain vector, Gao [38-40] prodoaemore practical Linear ESO
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(LESO) whereby the observer eigenvalues are paesinetl and repeated at a single

frequency so thady is the single design parameter required for treeoker:

A (8) = §'+ﬁ1§+523"ﬁ3=( s'a)o)3

(5.17)
= B,=3w,, B, =3, B;=
The resulting values of, = X z = % z= “tand the control law:
u=b ; % (5.18)
will reduce the plant to:
x=(f-2)+ 4=y (5.19)

so that we have achieved our design goal and mapseh among many controls

appropriate for our double integrator equivaleanpl

5.4.2 The ADRC with PD control (LADRC)

A double integrator system is easily controlled dyroportional + derivative

controller:
Uy = K, (r=x) = K, X (5.20)
where one may choose to use measured values &md X or use their estimated values

z, and z respectively, from the LESO. One may simplify th®ice of the gaink, and

Kq by placing both poles for the closed loop equinklgystem at the same critically

damped location:
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o _ K
s+2mstaf S+ K st K (5.21)
=K, =20, K, =af

G, (9=

so that one may only concern oneself with tuning ¢ontroller bandwidth¢a. This
implementation is very practical and effective.idtreferred to as the Linear ADRC

(LADRC) implementation because of the linear gains.

The tuning heuristic for the LADRC is followed hereand that is to begin with
an observer frequenay, ~ 10xthe max frequency at which one desires to opesaie,
then use a scaled controller frequenqy= @/3. In our stressful simulation case that
desired operating frequency is the natural resorfeeqjuency of the mechanical

subsystemde’/3 rad/se¢ which implies an initiakw, = 4€%/3, . = 4€%/9.

Inverse Hysteresis infout (meters), Closed loop system in/out (meters),
x10™ LADRC(PD) x 107 LADRC(PD)
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LADRC(PD) w =w, *10,w =w /3 x10" LADRC(PD) w =w, *10, w =w /3 x10"

Figure 41 Hysteresis before and after Compensation, LADRC(MD)mum Observer

Bandwidth

(LADRC with PD position control, observer frequemngy= 10cn «x = 3w)

The insufficient effect on hysteresis compensatgobvious in Figure 41, and

this is the most serious limitation for our thesiis result illustrates the author’'s
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preference using the LADRC to resolve disturbargjection issues, with low control
effort, has involved dominantly linear systems.sTsystem is dominantly nonlinear, and
this puts our heuristic bias to an enlighteningd. t8sibsequent results will reinforce the

bias for the LADRC but with an altered design hstici

Reference (yellow dash-dot) vs Actual (green solid)
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LADRC(PD) w_=w, *10, w_=w /3
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Figure 42 Position, Error and Control, LADRC(PD) Minimum Olpger Bandwidth

(LADRC with PD position control, observer frequemngy= 10cn «x = 3w)

One can observe in Figure 42 the disturbances 50,0140 and 19Qsec due to
the mismatch of the modulating triangle and squaeve signals which introduce
discontinuities (bounded) into the velocity (detiva) reference of the main sinusoid
position reference signal. This error+4e*/1e® = 1% for this control and serves to
emphasize the issue of discontinuities in the egfee input for ANY control choice. One
will observe this error in all control systems,a@reater or lesser degree, as it is caused

by the sample time delay to respond to the changifegence signal. The lesson for any
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application engineer is the attention which shob#l given to supplying “smooth”

reference signals. Controls are designed to NGactegference signals.

The trade between noise immunity versus accuradydesturbance rejection is
well illustrated in Figure 43. The reference naéseor is~16**m=0.001%because the
observer frequency is low and practically zero meawment noise is injected into the
system. Unfortunately, the accuracy and disturbaegtion is an unacceptable level,

~46'/1e° = 4%, with this observer and controller frequency.
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Figure 43 Position Error and Control details, LADRC(PD) Minim Observer

Bandwidth

(LADRC with PD position control, observer frequemngy= 10cn « = 3w)

Given the unacceptable response using the “nordesdign heuristic one would
next raise the observer frequency a factor of 4@,accordingly the controller frequency.
This increases DC gaih00 fold and the bandwidtiiOx while remaining stable. The
result in Figure 44 and Figure 45 now providesdimngport for our thesis that the LADRC

can easily compensate for the hysteresis nonlityeari
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Figure 44 Hysteresis before and after Compensation, LADRC(Rerommended
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Figure 45 Position, Error and Control Signal, LADRC(PD), Revunended Observer
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(LADRC with PD position control, observer frequerngy= 100w, a: = 3aw)
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One can now more easily observe in Figure 46 agdr€i47 the disturbances at
0, 50, 140 and 190sec due to the mismatch of the modulating triaaglé square wave
signals mentioned earlier. This error is nete'%1e® = .1% (which is good, by the way)
due to the more aggressive control. The peak cosigoal (+4V), Figure 47, necessary
to achieve this response is well below the limitshe piezo device, and is proportional
to the accuracy or disturbance rejection desired;amparing Figure 43 and Figure 46

illustrate.

The trade between noise immunity versus accuradydasturbance rejection in
Figure 46 and Figure 47 is now better shown. Thisenerror~1e**m, which is now
discernable, but the control effort is now gredierachieve the measurement noise
suppression, because the observer frequency igmaid more measurement noise is
injected into the system. The reference noise immanchanged. Fortunately, the
accuracy and disturbance rejection is affectedctlyreoy the change in observer and
controller frequency. The max error for the sysismow~2e'%/1e° = 0.2% for only a
sample period and during the input discontinuitihich have been mentioned
previously. Most encouraging, the nominal error2s3é*¥/1e° = .023% and <3&%/1¢°
= .03% disturbance error, which is outstanding, an oafemagnitude better than those

controls previously reported in the literature.
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Figure 46 Position Error details, LADRC(PD), Recommended @bseBandwidth

(LADRC with PD position control, observer frequerngy= 100w, a: = 3aw)

Control

volts

LADRC(PD)w_=w. *100,w =w /3
o in c o

Figure 47 Control details, LADRC(PD), Recommended Observerd®adth

(LADRC with PD position control, observer frequerngy= 100w, a: = 3aw)

The most obvious question that now arises is wiegitefits and costs accrue
should one continue to increase the observer amtradier bandwidth. The natural

progression is another 10x increase:
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Figure 48 Error and Control detail, LADRC(PD), High ObserBandwidth

(LADRC with PD position control, observer frequemngy= 1000c)

The disturbance error at 0, 50, 140 and U86c mentioned earlier is now even
less in Figure 48;-2.36¥1e° = .023% which is excellent, due to the aggressive control
It is a concern the peak control signal (x35V) mseey to achieve this response is

uncomfortably near the limits of the piezo devie&Q0V).

The nominal tracking error is1e*¥1e° = .001% The error due to a 50% force
disturbance during tracking or steady state is al&e'm. The response to input
reference noise at 3Q&ec, output measurement noise at 3&€c and both at 4Q@ec
are notable as one raises the observer gain,as/isus in comparison to the controller
signal and error response for lowes frequencies. The error from the input reference
noise remains-1e**min all observer frequency scenarios, which is ¢celpected. One
will note immediately in these figures the trademfe must make for added accuracy and

disturbance rejection versus measurement noise mtyrand control.
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5.5 A Hybrid Disturbance Rejection Strategy

The hybrid strategy builds on the ability of the@®$% accurately estimate the
hysteresis nonlinearity in real time, and then lam Function advantage to control the
device to its natural anhysteretic response in mhitime with less peak drive energy.
We shall refer to this as ADRC(Han). We will alamslate a reduced order LESO to
estimate the unknown disturbances from a measutemhéme output velocity rather than
position, demonstrating the general nature of tbkiti®on to lower or higher order
systems, and also how it may be utilized when tineeasurement of an attribute might

not be available or computation bandwidth is anass

5.5.1 ADRC with Harm velocity and Proportional position control

Hysteretic y
Plant

v

Figure 49 System Diagram, ADRC with Hawelocity and Proportional position control

The Han Function for small signals in the Isochronic Regis a simple
proportional gain. Therefore, when used in the sigfoloop, appears as a linear

derivative position control. Thus, a HaRunction velocity controller, in parallel with a
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proportional position control, appears as a PDtmwscontrol. This is well understood to
easily control the equivalent double integral pliom the LESO. The HarFunction, by
its aggressive nature, will respond to error oatglte IR faster than other control laws.

One may tune the Hamvith K, = 1e-7,and set the proportional gainkg = 1€ to give

4e”

an equivalent small signal PD contr@l(s) = - 3 (s+ 7.5é6).

The compensation for hysteresis nonlinearity inuFég50 is as good as that for
the LADRC with PD control. And all the while therdool signal is less than that of other

controls, due in great part to the aggressive resgo

Inverse Hysteresis in/out (meters),

H ) Closed loop system infout (meters),
ADRC with dtoc1 velocity control, Kp position loop e ¢ )

x 10 ADRC with dtoc1 velocity control, Kp position loop

C(S)=(LKT )(s+K KT,), @ = *100, x 10 C(s)=(1K, T )(s+K K, T), @ =a *100, x10™
K KT 3,100, ‘T nls) =, 100
TS=7.56 ,Kn:le K =le ,Kh:le T=75e ,Kp=le K =le' K =le

Figure 50 Hysteresis Disturbance before and after CompenmsabDRC + Han

(ADRC with Han velocity control and proportional position contrabserver frequency

ap = 100cun)
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Reference (yellow dash-dot) Actual (green solid)
x10° ADRC with dtoc1 velocity control, Kp position loop

meters
=)

meters

seconds 4

Control

volts

CS)=(WK T )(s+K K, T)), @ =w, *100, «10°

T =75e° K =le' K =1e’,K =1e”
s [ r h

Figure 51 Position Error and Control, ADRC + Han

(ADRC with Han velocity control and proportional position contrabserver frequency

ap = 100cun)

What one discovers from this tuning setting is thahe decreases galify and/or
reducesK; one immediately observes the control will beginléave the Isochronic
Region for the HanFunction, and start cycling for short periods, saene results as for
the Han Function alone. The max error in Figure 51 duidigrontinuous inputs is4e’
2116° = 4%, which, to repeat, can be addressed by carefuit ippfiling, but is still
better than many other controllers reported in likerature. The tracking error is
outstanding,<4e™¥1e° = .04% and with input at the resonant frequency! The 50%
disturbance rejection is also phenomenal, withregh5e*¥/1e® = .025% The noise
error is excellent, with error from input nois8e¥1e° = .03% and measurement noise
error<le*¥1e® = .001% The most apparent error factor is the offsetrexfi@™%1e° =

.1%, which is a consequence of the size of the;Hamction Isochronic Region. The
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accuracy and disturbance rejection, not shown hergroportional to the observer

bandwidth, the same as for the Linear ADRC.

Actual Error
ADRC with dtoc1 velocity control, Kp position loop

Control
ADRC with dtoc1 velocity control, K, position loop

T T T

meters

-t

seconds x 10"

CE)=(UK, TS +K K, T)), &, *100,
T =75¢"°,K =le, K =1e’ K =1e” C(s)=(U/K, T )(S+K K, T.), @ =@ *100,
s P T h 'é s h's 70 in T
T,=75e", K =le’, K =le’ K, =le

seconds x 10"

Figure 52 Error & Control Signal Details, ADRC + Han

(ADRC with Han velocity control and proportional position contrabserver frequency

ap = 100cun)

5.5.2 The ADRC with Han, Function and reduced order LESO

This control is constructed as the previous, wiih same design parameters,
except the Linear Extended State Observer is 86tarder state observer witlh, andz,
for position and velocity respectively and the aegted statezz for the disturbance
estimate, it is now a reduced®2order state observer for the velocity, with the
augmented disturbance estimate naw This is possible because the hysteresis
nonlinearity is internal to the device, and theegmal relations between position and
velocity and acceleration boundary conditions dtidld. Thus the estimate of the

disturbance and poorly modeled dynamics may be maaeposition OR velocity
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measures. The reduced state observer providesathe performance as that of the full
state observer, all the measurements in Figuren83F&gure 54 are equivalent, and the

compensation for hysteresis is also excellent.

Inverse Fysteresis ot (meters), Closed loop system infout (meters),
with reduced order X ith re r ,
I T T I il
| | | |
oF — — — — [ RN -
| | | |
| | | | |
T [ E e R I T T T
| |
P [ N R [ B
| | |
| | |
i [t | iy
| | |
| I [ e
| I I | I
| | | |
e B B It By
| | | | |
1 1 1 1 1
-4 -2 0 2 4 6 8 K
COR, T HEHK, ), 0,760,100, x10* CLEI=UK TR KT, 9,2, 100, x10
T=75e ", K =le K =le’ K =le T=7.5¢7, K =le’, K =le, K, =1e

Figure 53 Hysteresis Disturbance before and after Compemsd®educed order LESO

(ADRC with Han velocity control and proportional position contralsing a reduced

order LESO to estimate hysteresis disturbance,r@bséequencyw, = 100awn)

Control
Actual Error ADRC with reduced order LESO,
ADRC with reduced order LESO, dtoc1 velocity control, K_position loop
dtoc1 velocity con!roI,Kp position loop P

meters
volts

seconds x10% seconds x10%
CUSWK T H KT, 0,0, "100, CLEIUK,T K, T,), 920,100,
TS:745eV B Kp:le K =le ‘Kn:le' TS:7 5e ,Kp:le ,K':le ,Kn:le

Figure 54 Error & Control Signal Details, Reduced order LESO

(ADRC with Han velocity control and proportional position contralsing a reduced

order LESO to estimate hysteresis disturbance,rebsérequencyw = 100cn)
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5.6 Observations and Summary Regarding the Disturbance Rejection Paradatig

The performance of the disturbance rejection cdmtio the compensation of
hysteresis is an order of magnitude superior tb pheviously reported in the literature.
The bandwidth is wider, allowing operation to theamanical limit of the device, and the
accuracy during both tracking and regulation aggesor. It is especially noteworthy the
hysteresis nonlinearity, when treated as a dishada can be almost entirely
compensated, without knowing anything about therasttar of that hysteresis. These
results validate the efficacy of error based cdntemd the advantages of
measurement/estimation bandwidth versus modelingracy. The knowledge necessary
to implement these controls are minimal, the stesdtie linear gain of the device is used
for the LADRC design, along with some estimateha hatural bandwidth of the device
as an initial tuning value, both readily gathereshf data book information without any
complexity or calibration. The Han Function contusles the saturation value for the
control power signal and the sampling period of hlaedware as initial tuning setting,
which together can be easily parameterized. In beglcontrol cases the tuning heuristic

is easier to apply even than that of the populBr ¢introl. This is a major advantage.

The rapid reaction of an inner velocity controlpocombined with the aggressive
Hany Function yielded performance that was particulasitisfying, as this is a
wonderfully elegant solution using passive contemhnology. The inner velocity loop
effectively compensated the hysteresis independtiny position control, delivering
almost linear position response even when the ipaositbop was left open, truly

phenomenal and better than any other of the opep hloodel-based controls. This
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enabled one to choose any number of outer posdamps for fine tuning the performance
and aggressively rejecting external disturbances $imple PI control was a natural
choice and yielded excellent results an order ofjmitade better than the best reported
adaptive H control applied using a complex statistical baseddel. Even more

gratifying is the fact all these Han Function cotgrwere constrained to 1V control
signal and still delivered this performance, anotestament to speed minimizing power
requirements. Another advantage is the ability,neafter compensating hysteresis, to
reject external disturbances of 50% full load @.63% error! If there is a caveat using
the Han Function it would be the noise susceptybilbut since there was no noise
rejection data from other published results thexdittle to compare, except to the

LADRC, which was significantly better in this redgar

The performance result for the active disturbamggection LADRC was best, as
was expected from the beginning. The LADRC was ¢éasypply and the results improve
proportional to the increase in the observer badthwiThe limitation for the LADRC is
the control signal magnitude one wishes to constféor our simulations we chose to go
no further than 4V, even though the power avadabbs +100V before saturating the
device, it was simply not necessary to prove mdhe accuracy of the LADRC is an
order of magnitude better than the best model-basedrol even at these low signal
levels. The strength of both types of disturbargection controls is the low energy and

stress on equipment one achieves while still aomgebetter performance.

The hybrid combination of ADRC and HaRunction achieved results almost as

good as the LADRC, and it is important to note ¢batrol energy was constrained. One
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would expect the performance is equal with equalgypbut that was unfortunately not

tested.

Another gratifying result is that for the reducedier ESO used to estimate and

compensate for the hysteresis uncertainty, whicly beauseful for systems where the

final position is unavailable. This result was estee as the hysteresis is internal to the

device and the integral relationships between acatbn, velocity and position are

maintained at the device boundary.

Hysteresis | Disturbance| Tracking | Control | Noise

Compensation Rejection Error Signal Error
LADRC 0.023% 0.03% 0.023% 4V 0.001%
ADRC+Han+Prop 0.04% 0.025% 0.04% +1V 0.001P6
ADRC+Han+Prop 0.04% 0.025% 0.04% +1V 0.001%
reduced order ESO
Ham+PlI 0.05% 0.025% 0.05% 1V 0.1%
Han+Han 0.5% 0.002% 0.5% 1V 0.1%
Han Velocity Only 0.25% 0.15% 0.25% 1V

Figure 55 Performance Summary for Disturbance Rejection @b&tirategies
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CHAPTER 6

STABILITY ANALYSIS OF LADRC FOR A HYSTERETIC SYSTEM

The previous chapter exhibited the excellent antberaging simulation results
for LADRC control of a hysteretic system, this ctaap considers the stability

characteristics of LADRC for a hysteretic systerhne BIBO stability of the LADRC for
unknown bounded nonlinear functioh, in the systemy = f +bu has been previously

demonstrated by Gao [38-40]. We will establish hbe¢ the piezo actuator system with
hysteresis may be represented as such a systewilasdtisfy the assumptions given by

Gao, thus showing stability for the hysteretic sgst

We will establish in this chapter that for the Ieystic system

y = f +bu, where f= w%( K B[ ¥ in Equation (6.19) the sufficient conditions for
BIBO stability of the LADRC closed loop solutioneaas follows:

o0 The guasilinear model accurately describes the rmeiclal subsystem.

0 The electrical dynamics are much faster than thehaeical dynamics.

o0 Functions of Preisach or Prandtl-Ishlinskii typeeasiccurate Hysteresis models.



o0 The associated weighting functigr,s) or o(r), and their derivative, for the

hysteresis function model must be bounded.
0 The reference input commamdand r must be bounded.
o The input voltage creep has a scalar saturationitlid, and the function

Vaeep(t) 1S piecewise continuous bounded.

o The thermal drift coefficient functiond{,(t) and K'Vf(t) are piecewise

continuous bounded.

o Any external unknown disturbanckt) is bounded.

6.1 The BIBO Stability of LADRC

The general stability demonstration for the LADR@M Gao [38] will be
included here for those unfamiliar. The LADRC st treats nonlinearities no different

than any unknown disturbance. One can write theesygquation:
y="f+bu (6.1)
wheref represents the total of one or more complex nealintime varying processes

andbu is the linear approximation for the plant. Thetcainidea of LADRC is to letf

be the estimate dfat timet and use the control law

(6.2)
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to actively reject the general disturbarfcand yield a plant which responds §s u,.

This equivalent linear plant is easy to control.
The augmented state equation for (6.1) is:

X = Ax+ Bu+ Eh

y =Cx

h = =" = -

wherex=y x="y x= f f 6.3)
010 0 0

A=|0 0 1|,B=|b|,C=[1 0 ¢ ,E=
000 0 1

and the LESO is:

z= Az+ Bu+ I( vy

wherez="y z="y z= f E[B B, ﬁs]T

For the LADRC then the tracking error for the LE®Bserver,X = x— z, leads

one to write the error equation as:

%= AX+ w with

i A 10 (6.5)
A=A-LC=|-8, 0 1|, andw= El
-$ 00

where matriced\, L, C,andE are as in equations (6.3) and (6.4).
The first question presents itself, is the obseeveor, X, bounded?

Lemma 6.1: (Boundedness of the LESO error)
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For any bounded h, assuming the observer gelins[,é’1 B, ,6’3]T are chosen such
that A is Hurwit, the observer errog is bounded.
Proof: Let V be a Lyapunov function defined as

V =X PX (6.6)
where P is the unique solution to the Lyapunov ggna

AP+ PA=- | (6.7)
Then, per Lyapunov’s first method,

V ==X %+2wW Px

(< (2= (7§ e

Since

[ -wH,>[wH,=[%],>2 7 },= Ik >2 Pl (6.9)
ThereforeV <0 if |%|,>2|Pw|,. On the other hand, if h is bounded then w = Eh is
bounded, and the® is bounded as well sina¢<O0. ]
Lemma 6.1 can be generalized to a more generamyst

X=Mx+n(x), MOR™, yOR" (6.10)
which yields Lemma 6.2.
Lemma 6.2:

The statey in (6.10) is bounded if M is Hurwitz amg{ x) is bounded. [

99



Recalling (5.18) and (5.20) the goal for LADRC isck that y=u, which

implies:

u=h~% (6.11)

Uy, = Kp(r_zl)_KdZZ (6.12)

Now we have the following Theorem.

Theorem 6.3: (BIBO stability of the LADRC)

The LADRC control law (6.11) utilizing the LESO4{6and the PD controller
(6.12) yields a BIBO stable closed loop systerhaf LESO and the state feedback PD

control are stable individually.

Proof: The observer error is bounded as proved @mima 6.1, so it remains to prove

X B} is bounded.

with a bounded reference r, as well &sbounded per Lemma 6.1, then choosipgid
Kq such thatA is Hurwitz assures BIBO stability per Lemma 6.Rjolv concludes the

proof. ]
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6.2 The System Equation and Necessary Assumptions

We refer back to Figure 26 repeated here as Figfire

Unknown
Disturbance
d(t)

A
A

)(.LL ‘[ XA‘ j

Voltage creep <+
VCTBED(t)
< Gaec
linear electrical subsvstem
Ex
o=
Thermal drift M Hysteresis
Ku(t) P!
m

Figure 56 Complete piezo quasilinear model with hysteresesg@ndissipation.

Some reasonable assumptions are necessary to regasling the unknown
disturbances and dynamics of this system in omleletnonstrate BIBO stability for this
system when controlled by LADRC. We will first apz¢ the thermal drift, voltage
creep, the linear electrical subsystem and the rmadtedisturbance, and then the
assumptions one must make to assure their boundeditions. This allows one to

illustrate a simplified model for the system whimtheres to that used in Gao’s LADRC
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stability proof. After this we can progress to aralgsis of the conditions for bounded

hysteretic behavior.

6.2.1 Assumptions for Bounded Thermal Drift

We assumeK, (t) and K'Vf (t) are piecewise continuous bounded functions, so

that the elements ofK,(t) and K,(t) are bounded. HencdK, (t)|<k, and

Ky ()] <k, . Then

K OV = Vo) < K O] |(Va= Vi) < K] (V= V)
and | K, (00 - Vi) <] KaHf |0V V= (Ve o] (6.1

for anyinduced norms

6.2.2 Assumptions for Bounded Voltage Creep

We review the definition 0¥ceepfrom Equation (4.49) and (4.50):

V.

sat

OR, and lim £ ..(V)=0
v (6.15)
so that| V()= rc')rslr%[x| Yo (s V-

Viees() = V(1) fooef V) (6.16)

What is sufficient for the BIBO stability of the IDRC is that the derivative of the

voltage creepy.

creep

(t), is bounded.

6.2.3 Assumption for Bounded Unknown Disturbante d(

The contribution of the unknown disturbanckt) and derivatived(t) are

additive components of the acceleration force arassumed bounded for our system.
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6.2.4 Assumption for BIBO Stability and Separatbthe Linear Electrical Subsystem

We review the Equation (4.32) for the electric ssbasm

O 1 0 0
X=[ 0 0 1|x+ o0y,
& Ta4 % L
(6.17)
Vp - [Q) o] bz])(
where a,,a,8, and R, b, b are positive numbers amll is Hurwitz. Consequently the

electrical subsystem is itself asymptotically stabConsidering that all inputs to this

asymptotically stable system are bounded, and \r?@ats a linear combination of its

internal states, then botf, and\]p are bounded. We further assume the dynamics of the

electrical subsystem are much faster than the nmezddasubsystem and are subsequently

disregarded in the analysis.

6.2.5 A Simplified Model for the Hysteretic System

Equation (4.51) is repeated here as Equation (6.0 have changed axis

variable name from toy in order to avoid confusion.)

g=b Sy pyay
m m
=(w+ IOU)—%(H Py (6.18)

= f(y,w,(1+P)™")+ bu
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where b=K§/m and u=V, and w encompasses the unknown dynamics and

disturbancesOur task then is to demonstrate the functibrfor this hysteretic system is

bounded.

Based on the assumptions in 6.2.1-6.2v4¢can be readily shown to be bounded.

What remains is to show that the hysteretic compoogf is bounded.

Disturbance

u> é—y'jj y

e

v

Figure 57 Simplified Piezo model with hysteresis.

y = f +bu, where f= W-%( " (6.19)

6.3 Assumptions for Bounded Hysteresis Functiofl +P)™[y](1

One discerns in these nonlinear model equationsdhgibution of the hysteretic
function (1 +P)™[y](?) in the complete motion equation functibn is additive to the

other components df. Therefore, due to the equivalence of functionmmorand the

triangle inequality for norms, if one demonstrates boundedness ¢f +P)™[y](?) and
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its derivative then the motion functionf and f are also bounded and Gao’s BIBO

stability analysis applies.

One can begin this process with an intuitive untdeding for the outcome. The
reader is referred to the hysteresis response daguae 58 and the signat in the
guasilinear mechanical model Figure 25 The diffeeerior the linear relationship
between outpuy, and the state, is J;,> 0, and the same foy,, w» and 5,<0, where
(y,vV OO OR? are members of the major hysteresis loop regidres& values are
absolutely bounded by the maximum value of satmator the device major loop, as
shown by the solid diagonal lines, and become &malt the device approaches the
anhysteretic response. Thus one may understancphfisical result of the energy
dissipation and the accounting for it as the aremmpassed by each hysteresis loop, as

well as the bounded physical limitations of thepmesse.

v =[I+P)™y]

Figure 58 Inverse Hysteresis Function as a Disturbance fl@rlLinear Response.
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The stability analysis of conditions for a boundmsdteresis function used herein
can be attributed to Brokate & Sprekels [10]. Samihnalysis are available in Krejci
[7677] and Visintin [127]. The minimal analysis, ah is still lengthy, is included as
Appendix C: Stability of Hysteresis and its Derivat which includes Lemmas C1-C6

and Propositions C7-C8.

Lemma C.1-C.koncern the Lipschitz continuity and assumptioms founded
behavior of the constituent “play” and “stop” basigeratorsLemma C.@&hen extends
these conditions to the memory curve for the hgsisrfunction, and finall{?roposition
C.7 and C.8extend these properties to the Preisach and P4ahtibhskii hysteresis
functions and derivatives, and delineate additi@ssumptions which must be made to

show bounded behavior for the complete functions.

Lemmas C1-C6 and Propositions C7-C8 in Appendixdéhtify the conditions
for a bounded hysteresis functi@md their derivativesThe conditions for bounded

output for the hysteresis functions of PreisaPhy]() and Prandtl-Ishlinskii type
(I +P)'[y](? , and their derivativesare that the input to the hysteresis functionofr
case the system outpuy,:”(f +bu) dt+ y(0) be a piecewise continuous monotonic
function. An additional requirement is that theamsated weight functionsi(r,s) and
o(r) used in the hysteresis function definiti@amd their derivativemust also be bounded.

The piecewise continuous monotorioutput condition is consistent with the bounded

condition onf and u, while the conditions on the hysteresis weigh¢ésraaw additions to

our previous conditions.

106



Practically speaking, this is not an issue forghgsical devices themselves, their
“weighting” response will not be discontinuous am @perates throughout the range of
the hysteretic device. Thus, as noted, the charattthe weight functions in Equation
(3.4) and (3.5) are an important enabling condjtexmd these bounded conditions have
now been demonstrated to lead to bounded conditionghe hysteresis functions
themselves. (This does place a continuity congtanrthe method of weighting function
interpolation for model-based discrete controlfapiementationsa limitation we do not

need to worry ovey

6.4 Stability Conditions for the Hysteretic System with LADRC

The BIBO stability of the LADRC solution for the stgm y= f +bu with
unknown but bounded nonlinear functiofishas been previously demonstrated by Gao
[38]. In this chapter we analyzed and listed theuagptions needed to assure bounded
behavior of f in our hysteretic system of Figure 25 The assumngticoncern any
unknown disturbances, voltage creep, thermal daify the hysteresis which constitute

the functionsf .

For the hysteretic systeyi= f +bu in Equation (6.19) the sufficient conditions
for BIBO stability of the LADRC closed loop solutiare as follows:

o0 The guasilinear model accurately describes the rmeical subsystem.

0 The electrical dynamics are much faster than thehaeical dynamics.
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0 Functions of Preisach or Prandtl-Ishlinskii typeeaasiccurate Hysteresis models.

o The associated weighting functigdr,s) or o(r), and their derivative, for the

hysteresis function model must be bounded.
0 The reference input commamdand r must be bounded.

o The input voltage creep has a scalar saturationitlivd,, and the function

Vaeep(t) IS piecewise continuous bounded.

o The thermal drift coefficient functiond{,(t) and K'Vf(t) are piecewise

continuous bounded.
o Any external unknown disturbanckt) is bounded.

A physically realizable system will usually possdbtese physical features
assumed here. The assumptions regarding the mosdets are reasonable as they are
proven representative of the experimental evidetiee,Preisach and Prandtl-Ishlinskii
models for hysteresis have been shown of high ifideéb actual experiment. Our
experimentation is a component of the research twhiee emphasize in our

recommendations for future work in the next chapter
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CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE WORK

The challenge of nanometer scale positioning ikalenge in compensating for
hysteresis. Positioning solutions at nanometeresitathis date have almost exclusively
relied on a model-based control paradigm. Given riagure of hysteresis, and our
purpose being compensating for the hysteresis mathan characterizing it, we
hypothesized one could treat hysteresis as a Hestae to the desired linear response,
much as one treats other unknown and unwantedlistoe. One could then compensate
for hysteresis in a manner consistent with aggvesdisturbance rejection, by either
canceling its effect or aggressively driving thetdibance error to zero. The historical
success using “dithering” as a hysteresis contethod gave credence to this thesis. We
therefore reformulated hysteresis compensation distarbance rejection problem and
recomposed the system in an error-based disturb@p@etion paradigm rather than the

model-based paradigm.

Three hysteresis compensation strategies have tdeesloped and validated
using this disturbance rejection paradigm. A festategy uses an active disturbance

rejection control which estimates the disturbamceerl time and cancels the error to the



desired reference. A second passive disturban@axti@) strategy utilizes the Han
Function, a most aggressive closed form discrete toptimal control, to drive the
disturbance error to its equilibrium zero stateqagkly as possible. A third strategy

combines the best features of both active and\g@assntrols.

As nanometer scale systems are very expensive we teied on a precise
simulation of hysteretic devices to validate ouwgmsed solutions. This has required the
development of simulation models for these devaas construction of Matlab software
modules. The control strategies have been tested their superior performance

confirmed using these simulations, thus validatiregstrategy.

Lastly, but quite important for future developmenthe LADRC, which
demonstrated the best performance, has been pMBIB@ stable for compensating
hysteretic systems. The proof is general for hgsiterprocesses with some mild
assumptions, but is not constrained to the speuifizo ceramic device used in our study,
nor constrained to second order mechanical motmpliation. So it may be easily

extended.

Future Work

The most compelling future effort would be a laltora experimental validation
for these results. Nanometer scale processes areeqoired as the most interesting

outcome regards hysteresis compensation at ang. $onaflact, a most exciting aspect of
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our result is the broad potential applicability many fields. Ferromagnetics are

constrained by hysteresis, as are phase changesges; chemical reactions, etc.

This breadth of this issue emphasizes the immedigpéication advantages to be

realized by rapidly moving these strategies intmewn use.

One very intriguing idea came to mind during theeagch in hysteresis models.
The models most used today are infinite sums andtegrals of basis functions. It
would be interesting to determine if a wavelet wpkovide advantages as a basis
function for the hysteresis model, particularly dharacterization was an issue as

important as compensation.
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APPENDICES



APPENDIX A: HYSTERESIS SIMULATION M-FILES



Code listing for “norm_load_xx...” which contains tpeezo first order transition curve

data used in the hysteresis simulation and inv&@rmsalation. This m-file is run before the

simulations.

% Hysteresis simulation parameters:

% this implementation is based on the "classical" p
% hysteresis found in section 1.4 of "Mathematical

% and Their Applications" 2ed, by Isaak D. Mayergoy
% Amsterdam, 2003

% the implementation is called "norm_preisach_xx...
% and calls an interpolation function "norm_intp_xx
% linear in both alpha and beta directions and uses
% mesh values "norm_f" for the first order transiti

% may be loaded as part of "norm_intp_xx" or loaded
% "norm_load_xx..."

% the inverse of the hysteresis is also a preisach

% the same method only using a different set of fir
% curves for the device which are clockwise. the im
% called "norm_preisach_inv_xx..." and calls the sa
% routine, but uses the "norm_f_inv" first order tr

reisach model for
Models of Hysteresis
z, Elsevier Science,

.."'which is

a set of normalized
on curves. "norm_f"
in

operator calculated
st order reversal
plementation is

me interpolation
ansition curve data.

global u_pre_hys num_alpha_hys num_beta_hys u_dir_be_hys
u_dir_temp_hys u_dir_cu_hys

global alpha_hys beta_hys alpha0_hys betaO_hys slope_hys
new_f hys new_a hys new_b_hys

global u_pre_hys inv num_alpha_hys_inv num_beta_hys_inv

u_dir_be_hys_inv u_dir_temp_hys_inv u_dir_cu_hys_in Y,

global alpha_hys_inv beta_hys_inv alpha0_hys_inv betaO_hy s_inv
slope_hys _invnew_f hys invnew_a hys invnew b hys _inv

% alphaO and beta0 are the upper and lower limits o f the half plane
% triangle "T" of book section 1.2. they are parame ters for the

% function.
alpha0_hys =1; % 2.1; % this is the upper hysteresis limit

alpha0_hys_out =1; % 2.1; % this is the output at upper limit

betaO_hys =-1; % 0; % this is the lower hysteresis limit

betaO_hys_out =-1; % 0; % this is the output at lower limit

alpha0_hys_inv =1; % 2.1; % this is the upper hysteresis limit
alpha0_hys_out_inv =1; % 2.1; % this is the output at upper limit
betaO_hys_inv =-1; % 0; % this is the lower hysteresis limit
beta0_hys_out_inv =-1; % 0; % this is the output at lower limit
u_pre_hys=0; num_alpha_hys=0; num_beta_hys=0; u_dir _be_hys=0;
u_dir_temp_hys=0; u_dir_cu_hys=0; alpha_hys=0; beta_hys=0;
u_pre_hys_inv=0; num_alpha_hys inv=0; num_beta_hys_ inv=0;
u_dir_be_hys_inv=0; u_dir_temp_hys_inv=0; u_dir_cu_ hys_inv=0;

alpha_hys_inv=0; beta_hys_inv=0;
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%

% norm_f, norm_a and norm_b are used as global
% Based on a linear spline interpolation function,
% value is computed with the information of alpha a

norm_a=[1:-1/20:0]; norm_bh=[0:1/20:1];

% norm_a and norm_b are the region of alpha and bet
% norm_f shows displacement values with respect to
% this norm_f is from piezo data and does not satur

norm_f=]

0, 0.074, 0.141, 0.206, 0.268, 0.329, 0.387, 0.444,
0.605, 0.654, 0.7, 0.747, 0.79, 0.833, 0.873, 0.911
0.979,1; ..

0, 0.073, 0.139, 0.203, 0.264, 0.324, 0.382, 0.438,
0.595, 0.643,0.69, 0.735, 0.777,0.817,
0.947,0; ..

0, 0.072, 0.137, 0.199, 0.26, 0.318, 0.375, 0.431,

0.584, 0.631, 0.676, 0.719, 0.76, 0.798, 0.833, 0.866, 0.8

0, 0.07, 0.134, 0.195, 0.255, 0.313, 0.369, 0.422,

0.572, 0.617,0.66, 0.702,0.74, 0.776, 0.809, 0.832, 0, 0

0, 0.069, 0.131, 0.191, 0.249, 0.306, 0.361, 0.414,

0.558, 0.602, 0.643, 0.683, 0.719, 0.752, 0.775, 0, 0, O,

0, 0.066, 0.127, 0.187, 0.244, 0.3, 0.353, 0.403, 0

0.544, 0.586, 0.625, 0.662, 0.695, 0.718, 0, 0, O, O, O;

0, 0.065, 0.125, 0.183, 0.239, 0.292, 0.344, 0.394,
0.528, 0.568, 0.605, 0.639, 0.66, 0, 0, 0, O, O, O;
0, 0.064, 0.122, 0.178, 0.232, 0.284, 0.334, 0.382,
0.511, 0.548, 0.582, 0.605, 0, 0, 0, 0, 0, O, O;

0, 0.061, 0.118, 0.174, 0.225, 0.277, 0.325, 0.371,
0.492, 0.527, 0.549,0,0,0,0,0,0,0, 0;

0, 0.06, 0.114, 0.168, 0.219, 0.268, 0.314, 0.358,
0.472,0.495,0,0,0,0,0,0,0,0, 0;

0, 0.057, 0.111, 0.163, 0.212, 0.259, 0.304, 0.345,
0.442,0,0,0,0,0,0,0,0,0,0;

0, 0.056, 0.107, 0.157, 0.204, 0.249, 0.29, 0329

0,00000,00,0,0,0;

0, 0.053, 0.103, 0.151, 0.196, 0.239, 0.277, 0313
0,0,0,0,0,0,0,0,0,0;

0, 0.05, 0.098, 0.145, 0.187, 0.225, 0263 0.29,0
0,0,0,0,0,0,0,0;

0, 0.049, 0.094, 0.137, 0.176, 0214 0.24,0,0,0
0,0,0,0,0,0,0;

0, 0.046, 0.089, 0.129, 0166 0.194,0,0,0,0,0
0,0,0,0,0,0;

0, 0.042, 0.084, 0.121, 0149 0,0,0,0,0,0,0,
0,0,0,0;

0,0041,0078 0107 0,0,0,0,0,0,0,0,0,
0,0,0;
0,00370068000000000000
0,0; ..
0,0.031,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o0,00000,0,0,000000000

norm_f inv =

0, 0.0754, 0.1348, 0.1952, 0.2516, 0.3058, 0.3595,
125

a displacement
nd beta.

a, respectively.
alpha and beta axes.
ate at limits

0.5, 0.553,
, 0.946,

0.492, 0.545,

0.855, 0.89, 0.923,

0.484,0.534, ...
89,0, 0;
0.473, 0.524,
0.464, o.ég’z,
o; ...
452, 0.499,
0.44, 0.485,
0.427, 0.471,
0.414, 0.455,
0.399, 0.438,
0.383, 0.418,
0.365, 0.389,
0.338, 0, 0,
,0,0,0,0,
10,0,0,0,
,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
,0,0,0,0,
0,0,0,0,0;
0,0,0, 0]

0.4128, 0.4632,



0.5136, 0.5650, 0.6139, 0.6622, 0.7094, 0.7561, 0.8
0.8827, 0.9220, 0.9611, 1;

0, 0.0745, 0.1333, 0.1930, 0.2489, 0 3026 0.3557,
0.5082, 0.5589, 0.6072, 0.6549, 0.7013, 0.7472, 0.7
0.8708, 0.9086, 0.9265, 0;

0, 0.0729, 0.1308, 0.1895, 0.2444, 0 2972 0.3494,
0.4992, 0.5488, 0.5961, 0.6425, 0.6878, 0.7323, 0.7
0.8508, 0.8685, 0, 0;

0, 0.0712, 0.1281, 0.1856, 0. 2394 0.2913, 0.3425,
0.4893, 0.5376, 0.5838, 0.6290, 0.6730, 0.7159, 0.7
0.8110, 0, 0, O; .

0, 0.0695, 0.1253, 0. 1816 0.2342, 0.2852, 0.3353,
0.4790, 0.5261, 0.5711, 0.6149, 0.6576, 0.6989, 0.7
0,0,0,0;

0, 0.0677, 0.1224, 0.1775, 0.2290, 0.2790, 0.3280,
0.4685, 0.5143, 0.5582, 0.6007, 0.6419, 0.6816, 0.7
0; ...

0, 0.0659, 0.1195, 0.1734, 0.2237, 0.2727, 0.3206,
0.4580, 0.5024, 0.5452, 0.5862, 0.6261, 0.6488, 0,
0, 0.0641, 0.1166, 0.1692, 0.2184, 0.2664, 0.3132,
0.4473, 0.4905, 0.5321, 0.5717, 0.5960, 0, 0, 0, O,
0, 0.0623, 0.1137, 0.1651, 0.2130, 0.2600, 0.3057,
0.4367, 0.4785, 0.5189, 0.5440,0,0,0,0,0,0,0

0, 0.0604, 0.1107, 0.1609, 0.2076, 0.2536, 0.2983,
0.4260, 0.4664, 0.4937,0,0,0,0,0, 0,0, 0, O;

0, 0.0586, 0.1078, 0.1567, 0.2023, 0.2472, 0.2908,
0.4153, 0.4433,0,0,0,0,0,0,0, 0, 0, O;

0, 0.0568, 0.1048, 0.1525, 0.1969, 0.2409, 0.2833,
0.3946,0,0,0,0,0,0,0,0,0, 0, 0;

0, 0.0549, 0.1019, 0.1483, 0.1915, 0.2344, 0.2758,
0,0,0,0,0,0,0,0,0,0,0,0;

0, 0.0531, 0.0989, 0.1441, 0.1861, 0.2280, 0. 2682
,0,0,0,0,0,0,0,0,0;

, 0.0513, 0.0960, 0.1399, 0.1807, 0. 2216 0.2537,

, 0,0,0,0,0,0,0,0;

0.0494, 0.0930, 0.1356, 0.1753, 0 2092 0,0,0,
0,0,0,0,0,0;

, 0.0476, 0.0900, 0.1314, 01647 0,0,0,0,0,0
0,0,0,0;

0. 008710.123200000000

,004390081300000000000

, 0;

, 0.0403, 0,0,0,00000000000

’ 0! 01 0! 01 O! 01 O! 01 O! 0! 01 0! 01 O! 01 Ol
new_a_hys = [alpha0_hys:-(alpha0_hys-beta0 hys)/(si
-1):beta0_hys]; % this is the new scaled limits for alpha
new_b hys = [beta0_hys:(alphaO_hys-beta0_hys)/(size
-1):alpha0_hys]; % this is the new scaled limits for beta

new_f hys = norm_f*(alphaO_hys-beta0_hys);
% this is the new scaled input mesh for first order

new_a_hys_inv =[alpha0_hys_inv:-(alpha0_hys_inv-
betaO_hys_inv)/(size(norm_f_inv,2)-1):beta0_hys_inv

% this is the new scaled limits for alpha
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007, 0.8420,

0.4084, 0.4583,
910, 0.8313,

0.4011, 0.4502,
747, 0.8135,

0.3931, 0.4413,
569, 0.7938,

0.3848, 0.4321,
384, 0.7564,

0.3764, 0.4227,
033,0,0,0,0,

0.3678, 0.4132,
0,0,0,0,0;
0.3592, 0.4037,
0,0,0;
0.3506, 0.3941,
0

0.3420, 0.3845,

10.3333, 0.3748,

0.3246, 0.3652,
0.3160, 0.3466,
0.2991, 0, 0, O,
0,0,0,0,0,
0,0,0,0,0,
,0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,

) Ol 0! OJ 01 O;
0,0,0,0]

ze(norm_f,2)

(norm_f,2)

transition curves



new_b hys inv =[beta0_hys inv:(alphaO_hys_inv-

betaO_hys_inv)/(size(norm_f_inv,2)-1):alpha0_hys in v];

% this is the new scaled limits for beta

new_f hys_inv = norm_f_inv*(alpha0_hys_inv-beta0_hy s_inv);

% this is the new scaled input mesh for first order transition curves
% the slope scales the output of the function separ ately. It is applied
% to the output of the hysteresis function as a separate gain block.
slope_hys = (alpha0_hys_out - betaO_hys out)/(alpha 0_hys - betaO_hys);
slope_hys_inv =(alpha0_hys_out_inv .

- betaO_hys_out_inv)/(alpha0_hys_inv - betaO_hys_inv);
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Code listing for “norm_preisach_xx...

hysteresis simulink block

% this implementation is based on the "classical" p
% hysteresis

% found in section 1.4 of "Mathematical Models of H
% Applications" 2ed, by Isaak D. Mayergoyz, Elsevie
% Amsterdam, 2003

% the implementation is called "norm_preisach_xx...

% and calls an interpolation function "norm_intp_xx

% linear in both alpha and beta directions and uses

% mesh values "norm_f" for the first order transition curv
% may be loaded as part of "norm_intp_xx" or loaded in
% "norm_load_xx..."

function  [sys,x0,str,ts] = norm_preisach_v2g(t,x,u,flag)
% “Preisach” is the same as the file name.

switch flag
case 0O
[sys,x0,str,ts] = mdlInitializeSizes();

case 3
sys = mdlOutputs(t,x,u);

case {1,2,4,9}
sys = [[;

otherwise
error((  'Unhandled flag =' , hum2str(flag)]);
end

function  [sys,x0,str,ts] = mdllnitializeSizes()
sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 1;

sizes.NumOutputs = -1; % dynamically sized
sizes.Numlnputs =-1; % dynamically sized
sizes.DirFeedthrough =1; % has direct feedthrough

sizes.NumSampleTimes =1;

Sys = simsizes(sizes);

str=1];
x0 = [0];
ts = [-1 O]; % inherited sample time

% The above code is given as default when you choos
% S-function template.
%

function  sys = mdlOutputs(t,x,u)
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% define global variables

global u_pre_hys num_alpha_hys num_beta_hys u_dir_be_hys u_dir_temp_hys
u_dir_cu_hys
global alpha_hys beta_hys alpha0_hys betaO_hys slope_hys new_f hys

new_a_hys new_b_hys

% u_pre_hys: previous input value
% num_alpha: The number of alpha in the input signa I
% num_beta: The number of beta in the input signal

% u_dir_be: previous input direction (positive(1), zero(0), or
% negative(-1))

% alpha, beta: data set of alpha and beta, respecti vely

% u_dir_temp: input direction used temporarily

% alphaO, beta0: alpha0 and betaO are the upper and lower limits
% of the half plane

% triangle "T" of book section 1.2. they are parame ters for the
% function.

% new_f, new_a, new_b: these are the scaled values for the

% hysteresis output, the alpha and beta limits resp ectfully

% u_dir_cu: current input direction (positive(1), z ero(0), or

% negative(-1))

if t<=0
u_pre_hys=0; num_alpha_hys=0; num_beta_hys=0; u _dir_be_hys=0;
alpha_hys=0; beta_hys=0;
u_dir_temp_hys=0; u_dir_cu_hys=0;
sys = 0;

end

% Determine an input direction

if u-u_pre hys>0 % if an input direction is positive,
u_dir_cu_hys =1; % define a current input direction
% (u_dir_cu_hys) as 1
elseif u-u_pre hys<O0 % if an input direction is negative,
u_dir_cu_hys =-1; % define a current input direction
% (u_dir_cu_hys) as -1
else u_dir cu_hys=0; % if u - u_pre_hys =0, a current input
% direction (u_dir_ cu_hys)=0
end
if u_dir_ be hys ~=0&&u-u_pre_hys ==
% when a current input is the same as a previous in put,

u_dir_temp_hys = u_dir_be_hys;
% memorize the previous direction

end
72
% when input is between saturation limits and chang ing

if u_dir cu_hys~=0&& u-betal_hys >0 && u - alph a0 _hys<0

% Find values of alpha and beta
% when an input direction changes,

if u_dir_cu_hys*u_dir_be hys==-1
% if a current direction is negative,
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if u_dir cu hys==-1
% increase the number of alpha,
num_alpha_hys = num_alpha_hys + 1;
% save the previous input value in the alpha data s
alpha_hys(num_alpha_hys) = u_pre_hys;
% if a current direction is positive,
elseif u_dir cu_hys==1
% increase the number of beta,
num_beta_hys = num_beta_hys + 1;
% save the previous input value in the beta data se
beta_hys(num_beta hys) = u_pre_hys;
end
end

% Find values of alpha and beta, when two conseculti
% values were the same and now changed direction
if u_dir_cu_hys*u_dir_be hys ==0 && u_dir_cu_hys *
u_dir_temp_hys == -
if u_dir cu hys==-1
num_alpha_hys = num_alpha_hys + 1;
alpha_hys(num_alpha_hys) = u_pre_hys;
elseif  u_dir_cu_hys ==
num_beta _hys = num_beta_hys +1;
beta_hys(num_beta_hys) = u_pre_hys;
end
end

% if a current input is bigger than the smallest va
% set,
% delete the recent alpha value and beta value
while  num_alpha_hys > 0 && u > alpha_hys(num_alpha_hys)
alpha_hys(num_alpha_hys) = 0;
beta_hys(hum_alpha_hys) = 0;
num_alpha_hys = num_alpha_hys - 1;
num_beta_hys = num_alpha_hys;
end

% if a current input is smaller than the biggest va
% set,
% delete the recent alpha value and beta value
while  num_beta_hys > 0 && u < beta_hys(num_beta_hys)
beta_hys(hum_beta hys) = 0;
alpha_hys(num_beta_hys + 1) = 0;
num_alpha_hys = num_beta_hys;
num_beta_hys = num_beta_hys - 1;
end

% calculate the final displacement
% when an input is increasing and there is no alpha
if num_alpha_hys == 0 && u_dir_cu_hys ==
sys = norm_intp_v2e(u,u,new_f hys,new_a_
end

% when an input is decreasing,
if u_dir cu hys==-1
if num_alpha_hys ==

130
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num_alpha_hys = 1;
alpha_hys(num_alpha_hys) = alpha0_hys;
end
sys =
norm_intp_v2e(alpha_hys(num_alpha_hys),u,new_f hys,
if num_alpha_hys > 1
for j=1:num_alpha_hys -1

Sys = sys +
norm_intp_v2e(alpha_hys(j),beta_hys(j),new_f hys,ne
end
for j=1:num_alpha_hys -1
Sys = sys -

norm_intp_v2e(alpha_hys(j+1),beta_hys(j),new_f _hys,
’ end
end
end

% when an input is increasing,
if u_dir_cu_hys==1 && num_alpha_hys ~=0
sys = norm_intp_v2e(u,u,new_f _hys,new_a_
norm_intp_v2e(u,beta_hys(num_beta_hys),new_f hys,ne

for j=1:num_alpha_hys
Sys = sys +
norm_intp_v2e(alpha_hys(j),beta_hys(j),new_f _hys,ne
end
for j=1:num_alpha_hys -1
SYysS = Sys -

norm_intp_v2e(alpha_hys(j+1),beta_hys(j),new_f _hys,

end
end

% Initialize variables when an input is betaO or al
% if u-beta0_hys ==

% u_pre_hys = betaO_hys;
% num_alpha_hys = 0;

% num_beta_hys = 0;

% u_dir_cu_hys =-1;

% alpha_hys = betaO_hys;
% beta_hys=beta0_hys;
% elseif u - alpha0_hys ==0
% u_pre_hys = betaO_hys;
% num_alpha_hys = 0;

% num_beta_hys = 0;

% u_dir_cu_hys =1,

% alpha_hys = alpha0_hys;
% beta_hys=alphaO_hys;
% end

% u_pre_hys =u;
% u_dir_be_hys =u_dir_cu_hys;
sys = beta0_hys + sys;

% when input is between saturation limits and not ¢
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elseif u_dir_cu_hys ==0 && u - beta0_hys > 0 && u - alph a0 _hys<0
SYys = X;

% when input is larger than upper hysteresis limit

elseif u-alpha0_hys >=0

Sys = u; % sys = alphaO_hys;
% pass through input to output (one can also satura te @ alpha0)
num_alpha_hys = 0; % reset alpha and beta matrices

num_beta_hys = 0;

alpha_hys = alphaO_hys;

beta_hys = alpha0O_hys;

u_dir_be_hys = 0; u_dir_temp_hys = 0;
% when input is smaller than lower hysteresis limit
elseif u-beta0_hys <=0

% pass through input to output (one can also satura te @ beta0)
Sys = u; % sys = betaO_hys;
num_alpha_hys = 0; % reset alpha and beta matrices

num_beta_hys = 0;

alpha_hys = betaO_hys;

beta_hys = beta0_hys;

u_dir_be_hys = 0; u_dir_temp_hys = 0;

end
u_pre_hys =u;

u_dir_be_hys = u_dir_cu_hys;
X = SyS;
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Code listing for “norm_intp_xx...” which contains thede for the Preisach weight

function interpolation called by the hysteresis anerse hysteresis functions

function y =norm_intp_v2e(alpha,beta,new_f,new_a,new_b)

% new_f, new_a and new_b are used as global
% Based on a linear spline interpolation function, a displacement
% value is computed with the information of alpha a nd beta.

for i= 1l:length(new_a)-1
if alpha>=new_a(i+1) & alpha <= new_a(i) % position of alpha
% alphal and alpha? in a cell having alpha value
alphal = new_a(i); alpha2 = new_a(i+1);

% When the position of alpha is known
for j= l:length(new_b)-1
if beta >=new_b(j) & beta <= new_b(j+1) % position of beta
% betal and beta2 in a cell having beta value
betal = new_b(j); beta2 = new_b(j+1);

% When the position of beta is known
% (alpha,beta) is positioned in a triangular cell.
if alpha2 == betal

% the procedure of the linear spline interpolation in a triangular cell
new_fl11 = new_f(i,j); new_fl2=ne w_f(i,j+1);
new_f21=new_f(i+1,));
new_a t=inv([1 alphal betal; 1 alphal beta2; 1

alpha2 betal]) * [new_f11 new f12 new_f21]’
% y is the output displacement value.

y =new_a_t' *[1 alpha beta]’;
% (alpha,beta) is placed in a square cell.

else
% the procedure of the linear spline interpolation in a square cell
new_f11 = new_f(i,j); new_f12 = new_f(i,j+1);
new_f21 =new_f(i+1,j); new_f22=new_f(i+1,j+1);
new_a_s =inv([1 betal alphal al phal*betal; 1 beta2
alphal alphal*beta2;
1 betal alpha2 alpha2*betal ; 1 beta2 alpha2
alpha2*beta?]) * [new_f11 new_f12 new_f21 new_f22]' ;
y =new_a_s'*[1 beta alpha alp ha*beta]’;
end

% the output becomes zero when alpha < beta.
if alpha < beta
y=0;
end

% Once the output is obtained, the FOR loops are te rminated.
break
end
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end;
end;
end
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Code listing for “norm_preisach_inv_xx...” which cais the code for the Preisach

inverse hysteresis simulink block

% this implementation is based on the "classical" p reisach model for
% hysteresis found in section 1.4 of "Mathematical Models of Hys teresis
% and Their Applications" 2ed, by Isaak D. Mayergoyz, Elsevier Science,

% Amsterdam, 2003

% the implementation is called "norm_preisach_xx...

% and calls an interpolation function "norm_intp_xx ... which is

% linear in both alpha and beta directions and uses a set of normalized
% mesh values "norm_f" for the first order transiti on curves. "norm_f"
% may be loaded as part of "norm_intp_xx" or loaded in

% "norm_load_xx..."

% “Preisach” is the same as the file name.

function  [sys,x0,str,ts] = norm_preisach_v2g_inv(t,x,u,flag )
switch flag
case 0

[sys,x0,str,ts] = mdlInitializeSizes();

case 3
sys = mdlOutputs(t,x,u);

case {1,2,4,9}
sys = [I;

otherwise
error((  'Unhandled flag =' , num2str(flag)]);
end

function  [sys,x0,str,ts] = mdllnitializeSizes()
sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 1;

sizes.NumOutputs = -1; % dynamically sized
sizes.Numlnputs =-1; % dynamically sized
sizes.DirFeedthrough =1; % has direct feedthrough

sizes.NumSampleTimes =1;

sys = simsizes(sizes);

str=J;

x0 = [0];

ts =[-1 O]; % inherited sample time

% The above code is given as default when you choos e a M-file

% S-function template.
Offymmmmmmmmmmmmmmmmmm e m e mmmmmmmmmmmmmmmmmmmmmee e

function  sys = mdlOutputs(t,x,u)
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% define global variables
global u_pre_hys_inv num_alpha_hys _inv num_beta_hys_inv
u_dir_be_hys_inv u_dir_temp_hys_inv u_dir_cu_hys _in
global alpha_hys_inv beta_hys_inv alpha0_hys_inv betaO_hy
slope_hys _inv new_f _hys_invnew_a_hys invnew_b_hys

% u_pre_hys_inv: previous input value
% num_alpha_hys_inv: The number of alpha in the inp
% num_beta_hys_inv: The number of beta in the input
% u_dir_be_hys_inv: previous input direction (posit

% zero(0), or negative(-1))
% alpha, beta: data set of alpha and beta, respecti
% u_dir_temp_hys_inv: input direction used temporar
% alphaO, beta0: alpha0 and betaO are the upper and

s_inv

_inv

ut signal
signal
ive(1),

vely
ily
lower limits

% of the half plane triangle "T" of book section 1.2. they are

% parameters for the function. new_f, new_a, new_b: these are
% the scaled values for the hysteresis output, the alpha and

% beta limits respectfully u_dir_cu_hys_inv: current input

% direction (positive(1), zero(0), or negati

if t<=0
u_pre_hys_inv=0; num_alpha_hys_inv=0; num_beta_
u_dir_be_hys_inv=0;
alpha_hys_inv=0; beta_hys_inv=0;
u_dir_temp_hys_inv=0; u_dir_cu_hys_inv=0;
sys = 0;
end

% Determine an input direction
% if an input direction is positive,
if u-u_pre hys inv>0
% define a current input direction (u_dir_cu_hys_in
u_dir_cu_hys inv=1,;
% if an input direction is negative,
elseif u-u_pre hys inv<0
% define a current input direction (u_dir_cu_hys_in
u_dir_cu_hys_inv =-1;
% if u - u_pre_hys_inv =0, a current input directi
% (u_dir_cu_hys_inv) =0
else u_dir_cu_hys inv=0;
end
% when a current input is the same as a previous in
if u_dir_be hys inv~=0&&u-u_pre hys inv==
% memorize the previous direction
u_dir_temp_hys_inv =u_dir_be_hys inv;
end

%
% when input is between saturation limits and chang

if u_dir cu_hys inv~=0&&u-betad _hys inv>0 &&
<0

% Find values of alpha and beta
% when an input direction changes,
if u_dir_cu_hys inv*u_dir_be hys inv==-1
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% if a current direction is negative,
if u_dir cu_hys inv==-1
% increase the number of alpha,

num_alpha_hys_inv = num_alpha_hys_inv + 1;
% save the previous input value in the alpha data s et
alpha_hys_inv(num_alpha_hys_inv) = u_pr e _hys_inv;

% if a current direction is positive,
elseif  u_dir_cu_hys_inv ==
% increase the number of beta,
num_beta_hys_inv = num_beta_hys inv+1 ;

% save the previous input value in the beta data se t
beta_hys_inv(num_beta_hys_inv) =u_pre_ hys_inv;
end
end
% Find values of alpha and beta, when two consecuti ve input
% values were the same and now changed direction
if u_dir cu_hys inv*u_dir be hys inv==0&&u_dir_ cu_hys_inv *

u_dir_temp_hys inv==-1

if u_dir_cu_hys inv==-1

num_alpha_hys_lnv = num_alpha_hys_inv + 1,

alpha_hys_inv(hum_alpha_hys_inv) = u_pre _hys_inv;
elseif u_dir cu_hys inv==1

num_beta _hys_inv = num_beta_hys_inv +1;

beta_hys_inv(num_beta_hys_inv) = u_pre_h ys_inv;
end

end

% if a current input is bigger than the smallest va lue of alpha data
% set,
% delete the recent alpha value and beta value
while num_alpha_hys _inv>0 && u > alpha hys_inv(num_ aIp ha_hys_inv)
alpha_hys_inv(num_alpha_hys_| |nv) = ;
beta_hys_inv(num_alpha_hys inv) =
num_alpha_hys_inv = num_alpha_hys_in v-1,
num_beta_hys_inv = num_alpha_hys_inv ;
end

% if a current input is smaller than the biggest va lue of beta data
% set,
% delete the recent alpha value and beta value
while num_beta_hys inv>0 && u < beta_hys_inv(num_beta_ hys_inv)
beta_hys_inv(num_beta_hys inv) =0
alpha_hys_inv(num_beta_hys_inv + 1) =0;
num_alpha_hys_inv = num_beta_hys_inv ;
num_beta_hys_inv = num_beta_hys_inv -1
end

% calculate the final displacement

% when an input is increasing and there is no alpha value
if num_alpha_hys inv==0&& u_dir_cu_hys inv==1
sys =
norm_intp_v2e(u,u,new_f hys inv,new_a_hys_inv,new b _hys_inv);
end

% when an input is decreasing,
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if u_dir cu_hys inv==-1
if num_alpha_hys_inv ==
num_alpha_hys inv =1,
alpha_hys_inv(num_alpha_hys_inv) = alph
end
Sys =
norm_intp_v2e(alpha_hys_inv(num_alpha_hys_inv),u,ne
s_inv,new_b_hys inv);
if num_alpha_hys_inv>1
for j=1:num_alpha_hys inv-1
Sys = sys +
norm_intp_v2e(alpha_hys_inv(j),beta_hys_inv(j),new
inv,new_b_hys inv);
end
for j=1:num_alpha_hys inv-1
SyS = Sys -
norm_intp_v2e(alpha_hys_inv(j+1),beta_hys_inv(j),ne
s_inv,new_b_hys inv);
end
end
end

% when an input is increasing,

if u_dir cu_hys inv==1&& num_alpha_hys inv~=0

sys =
norm_intp_v2e(u,u,new_f _hys inv,new_a_hys_inv,new_b
norm_intp_v2e(u,beta_hys_inv(num_beta_hys_inv),new_
inv,new_b_hys inv);
for j=1:num_alpha_hys_inv
Sys = sys +
norm_intp_v2e(alpha_hys_inv(j),beta_hys_inv(j),new _
inv,new_b_hys inv);
end
for j=1:num_alpha_hys inv-1
SyS = Sys -
norm_intp_v2e(alpha_hys_inv(j+1),beta_hys_inv(j),ne
s_inv,new_b_hys inv);
end
end

% Initialize variables when an input is betaO or al
% ifu-beta0 _hys inv==0

% u_pre_hys_inv = beta0_hys_inv;
% num_alpha_hys_inv = 0;

% num_beta_hys_inv = 0;

% u_dir_cu_hys_inv = -1;

% alpha_hys_inv = betaO_hys_inv;
% beta_hys_inv=betaO_hys_inv;
% elseif u - alpha0_hys_inv ==

% u_pre_hys_inv = beta0_hys_inv;
% num_alpha_hys_inv = 0;

% num_beta_hys_inv = 0;

% u_dir_cu_hys inv=1,;

% alpha_hys_inv = alpha0_hys_inv;
% beta_hys_inv=alphaO_hys_inv;
% end
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% u_pre_hys inv =u;
% u_dir_be_hys_inv =u_dir_cu_hys_inv;

sys = beta0_hys_inv + ((u - betaO_hys_inv) + ((
sys)); % sys =beta0_hys_inv + sys;

u - beta0_hys inv) -

% when input is between saturation limits and not ¢ hanging
elseif  u_dir_cu_hys_inv==0 && u - beta0_hys_inv>0 && u-
alpha0_hys_inv<0
SYys = X;
% when input is larger than upper hysteresis limit
elseif u-alphaO_hys inv>=0
% pass through input to output (one can also satura te @ alpha0)
Sys = u; % sys = alpha0_hys_inv;
num_alpha_hys inv = 0; % reset alpha and beta matrices
num_beta_hys_inv = 0;
alpha_hys_inv = alphaO_hys_inv;
beta_hys_inv = alpha0_hys_inv;
u_dir_be_hys_inv =0; u_dir_temp_hys_inv =0;
% when input is smaller than lower hysteresis limit
elseif u-beta0_hys inv<=0
% pass through input to output (one can also satura te @ beta0)
Sys = u; % sys = beta0_hys_inv;
num_alpha_hys _inv = 0; % reset alpha and beta matrices

num_beta_hys_inv = 0;

alpha_hys_inv = beta0_hys_inv;

beta_hys inv = betaO_hys_inv;
u_dir_be_hys_inv =0; u_dir_temp_hys _inv =0;

end
u_pre_hys_inv = u;

u_dir_be_hys_inv =u_dir_cu_hys_inv;
X = SYS;
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APPENDIX B: SIMULATION TUNING ANALYSIS



1% order Han Function velocity control tuning analysis

For small error signals where the system does monhtand saturated control, the

1% order Han Function equations are those of the Isochronidd®egjone:

u= fst(xrh
d=rh (B1)

fstlz—rg:—ih(, X< d=|%< rh

The nonlinear action of the control, to drive largeor quickly into the Isochronic
Region, is a heuristic tuning process to achievaesperformance parameters, and then
fine tune to achieve a non-cycling control whilethre IR. One can tune the linear
response within the IR, if one has the benefit alystem model. The transfer function
from control to velocity is:

va
(b +m) s+ K,

* Gelec( 3 (BZ)

v
—

Gelec [ .[

A 4

—»CT?—r Han

Figure 59 Han, Function velocity

(The electrical subsystem harmonic zero and poles e beyond the mechanical

complex poles, shown in the Bode plots, and ardiqielg for the tuning.) One may
choose a stable closed loop controls) = -7 € with greater than unity gain abote’

rad/sec as a starting point, which gives the Bddes pn Figure 60. The result was the
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accuracy was “optimum?”, but with almost constanhtoal cycling, with slow control

magnitude decay until some input change occurred.
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Figure 60 Han, Function velocity, open and closed loop Bode tgrmlots:

Increasing the value of the tuning variablesandr in the simulation blocks
allows one to improve the performance to the pevhere the state remains in the
Isochronic Region without cycling the control, abgyond this point may improve
accuracy and disturbance rejection at the expefiseomtrol energy. Small Signal
C(s) =-8é* The velocity tracking error in this case<i@e’/8e° = 0.25%.We tuned the
Han, Function without benefit of a model, using theviwes heuristic method, arriving

at values close to these.
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1% order Han Function velocity plus Pl position control tuniagalysis

The equivalent SMALL SIGNAL control is a PID condigation, where the Han
Function gain,1/KyTs, is the overall control gain, the derivative gaifa, = 1, and the
values ofK,/2=133k andK; = K,/4 are chosen to place the pair of real zeros irldfte
half plane and critically damped at the plant resdrpoles. This gives one a stable
system with no phase lag past 180°. (One shouldmerthe low gain side if tuning

manually,K, < 8€’/3)

1 K_K,
u(s)=(KTj(s¢ 3+ %e)&"—s (e)%

(1 )[s+K st KK
_(KhTsj( S Je(g

If one chooses, as before, to start designing wisftable system with no phase lag past

(B3)

180° and gain > 1 below the resonant frequency, tme haskn=4e°%3, K, = 1e',

" :_1é4(sz+(8e5/3) s+(16& /9)} ‘s o)

S

What one discovers from this initial tuning settisghat one is at the boundary
where the control cycles constantly if the inpuaighis resonant frequency. If one then
increases sample tinte(K,) and/or the saturation limrt(K;) one immediately observes
the control will begin to enter the Isochronic Regifor the Hap Function, and stop
cycling for short periods. This is a practical lesa be desired, so one can choése=
1€%, as for the velocity controller only. Doing sollsprovides a stable system with

practical performance:
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Figure 61 Ham Function velocity with PI position control: Bodaning plots.
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1% order Han Function velocity plus™ order Han position control tuning analysis

C(9)= Han(9+ Har( »
[ o+ ) e
KTZ ) 2K.T.) LK.,

_[2+T, o 1
K,T? (2+T,) K, T,

S

As a starting point exercise one can place the aetbe resonance and calculate

the gain values for gain > 1 below the resonarmjueacy.

C(9= —ﬁ( s+§

Small Signal j but there is not enough steady state error

correction in this tuning choice, even though tefgrmance is acceptable otherwise.

5
One would next raise the valuelf = 1.33€° and testC(s) = _lel?( s+ %}
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Figure 62 Han Function position and velocity control: Bodaitiy plots.
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Linear Active Disturbance Rejection Control(LADR@Ning analysis

The LESO presents an equivalent double integrdamt o the controller:

b -25.33

G (9= =" (87)

Using these heuristics that observer frequesacy 10xthe max frequency at which one
desires to operate, and then use a controller &y = /3. the initial PD controller

is:

G.(9 = K, st Kp:Za)Csti:Za)C( s}%):%ﬁ( s%) (B8)

The open loop Bode plot and disturbance responsehfe design indicates that the
response will lag the input ~ 1°, which is not qateble performance, but the system is

stable with excellent phase margin.

LADRC(PD) Open-Loop Bode Editor (C)
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Figure 63 LADRC(PD), Bode plot & Disturbance Response
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Active Disturbance Rejection Control with Harelocity and Proportional position

control tuning analysis

The Han Function velocity control has the transfer funiatio

u(s){KlT j ¢ 3= C B E): (89)

so that the HanFunction in velocity mode appears as a lineawvdérie control for small
signals.

The small signal transfer function for Harunction combined with proportional

position control is:

u(s):[(KlTjs+ rgjw{KlTj( s KK} ©s 04 (Bl0)

One may tune the preferred response Withe le-7, K, = 1€’ to give a small

2

signal control:C(s) = — 4:1 ( s+7.5 é6)

What one discovers from this tuning setting is tifiane the decreases gaii
and/or reduceK; one immediately observes the control will begimetave the Isochronic
Region for the HanFunction, and start cycling for short periods, saene results as for

the Han Function alone.
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APPENDIX C: STABILITY OF HYSTERESIS AND ITS

DERIVATIVE



Any analysis of necessity assumes the physicalesss accurately represented
by the model equation, in this case our assumptoaanot only Newtonian mechanics
but also that the hysteresis model is an accuegieesentation. Recalling Equations (3.4)

and (3.5) for the Preisach and Prandtl-Ishlinskstaresis in terms of the “relay” basis

function:
PLU() = -
=" [" 4r,9R_,..[U0) dsd (€12
PI[u(D) =
(C.1b)

w0 =[] -20R . [d() dsdr GXf] Ay d

it becomes apparent, as Krejci [76,77] demonstratbe quasilinear equation
encompasses a Prandtl-Ishlinskii operator invewd@ch is itself a Prandtl-Ishlinskii
operator, where the integral of the weight equadsitientity operator, in our case = 1. It

is the character of the weight function(r) , more so than the simple integral value, that
is important for our proof. Specifically, are(r) and po(r) and/or u(r,s) and f(r,s)

Lipschitz bounded over the operating range?

The mathematic models of hysteretic behavior areposed of infinite sums or
integrals of weighted basis “relay”, “play” or “gtboperators. It is usual to pass from the
double integral of the weighted basis operatorrt@iga integral of the weight function
over the “Preisach Plane”, whereby the “memory ewoh” curve which bisects the
plane into positive and negative regions contaih<w@rent condition and history to
calculate the output for any input. This is alse technique most used in practical

applications.
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The progression for the analysis in this appendikich can be attributed to
Brokate & Sprekels [10], is first to demonstrate thpschitz continuity and boundedness
of the constituent basis operators, and then extetd_ipschitz condition to the memory
curve, and finally to the full hysteresis functigelf. Similar proofs to this are available
in Krejci [76,77] and Visintin [127]. Once Lipschitbboundedness is established for the
hysteresis transformation it is straightforwardsteow the BIBO stability of the LESO

observer and the closed loop LADRC feedback coiitself, as we claimed in Chapter 6.

C.1 Lipschitz Properties of the “play” and “stop” basis operators

One primary condition for the Lipschitz propertytbe hysteresis function is the
assumption of continuous piecewise monotonic ifgattions. This is not a constraint in
practical applications, control signal power ameig have rise time and saturation
limits. Most applications have smooth input profilesigns. The strategy of the proof are
consideration of a continuous input as a sequehpeoewise monotonic functions and
then extended to the limit. Before proceeding wvte the main result in this section we

introduce the sets of appropriate inputs.

M [0, T] the setof all piecewise monotone functionfoT],

C,l0,T]=M [0, T] n 4O, T] (C.2)
the set of all continuous piecewise monotonections off0, T.
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Figure 64 “Stop” and “Play” Operators

Recalling the definitions of Equation (3.3)

F.LA°, ul() = w(d,
W(0) = f, (u(0),0),

w(t) = . (u(t), w(t)), fort<tst,, 0<i< N-1,

where ) is monotone in N subintervals [@ ],
f (u,w)= max{ u-r,mif u+ r V\}} r= 0,

E[A° ul() = w(9,
w(0) = & (u(0)),

w(t) =g (UD- WD+ WD), fori< £, 0< i N-1,
where ) is monotone in N subintervals[@, ], T

e (U= min{ r,max —r u}} r= 0,

F +E =1, suchthatF [ul() +E[J(} =@},

it follows that

Flul(9 <u9 and B I()t< O}

FIU'()+E[J() =@}

and E[d'()=< i) and § M()t= Ut

From the definition (C.3a)
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furcw+g= f(uw+g¢
f.(-u,—w)=-1(uw,
fo(u, f.(uw)=f(uw,

one obtainsgtraightforward proof omitted

w, = F[A° u)(0),

Fluw] = FElu-w] +w

F-u-w]=-F[u w]

Flu Elu wl(0)] = F o w,

FIRIu Y W =F.luw = Fo E for| y- W<
and

Flusw < F[u; w] if usu,and w< w,

Lemma C.1 (Continuity of the “play” operator’'s ugpte function

Function f, :RxR - R defined by
f (u,w)= max{u— r, mir{ u+ rV\}} r=(
satisfies the inequality
[ (U, W) = £ (U, W) < max{| u= ul+| = rh | wi Wj}
foranyr, 20,u; ,w, OR,j=1,2
Proof: For anya, b, c, dlJR, one has
‘max{a,b}— max ¢ ,d}‘s maf a- ¢ |.b- ¢
The same holds for “min” function on left side. Téfere

| frl(ul’ Wl) - fr 2(“2! W2)|
< max{‘(ul =1) = (uy=1,)| J(ug+ ) = (u )| jw,- wi}
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which implies Equation (C.4a). ]

From Lemma C.1 (Continuity of the “play” operator'sipdate function f one can

conclude
Frl[ul’ Wo,z](t) - Fr :[ u, Wo,l( )‘
< max{|rl —r2|+osutﬁul t)ru,t I)‘,Woyl— WO’J] (C.5)
forallu,u, 0M [0, T]and any 1[0, T

by induction.

One then may continue from the boundedness of f&y™ operator update

function to that for the basis operator itself.

Lemma C.2 (Lipschitz continuity of “play” operatBf[u](t) on C[0,T])

For anyr =0and the “play” operatorF, : C[0, T]xR - (0, T] we have

Flwswo ] - FLu; wo | smax{|u-uf, .| w - wj}, (C.6a)
Folus wel(9 = RL w( 9 |<sup|ur) - u b, (C.6b)
Fluw]=FElu-vw]+w (C.6c¢)
Flu;w )< Flu; w) ifus<u, and ws w, (C.6d)
FIF[U Yol wl = Bl u v, if| = w<r (C.6e)

for all u,u,u, 00, T] and for anys=0, wherew,, w,,, W, ,, y,JR and0<t'<t<T.

Proof: For u,u,u, 00 M [0, T] Equation (C.6c), (C.6d) and (C.6e) follow from BEtion

(C.3f). Equation (C.6a) follows directly from Eqiomt (C.5). If one sets
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u, =u, and y = y then (C.6b) follows from (C.6a) and one can extendontinuously

on the dense subs€&}, [0, T[xR 0 O, T]xR onto C[O, T]xR itself. [

Similarly, one may also follow the same procesdliier“stop” operator as for the

“play” operator to show the Lipschitz boundedness.

Lemma C.3 (Lipschitz continuity of “stop” operat&ifu](t) on C[0,T])

Definee :R — R as a Lipschitz continuous operator as in Equa(or8b)

E[A%u() =e(u) - ¢ h+ Wi,

& (U) = min{ r, max{—r ,u}} r> 0. (C.7a)

Then for any initial value w,OR, E :C[0,T]xR - 0, T holds for all

u,u,u,0d0, Tland for anys>0, where wy, w,,, W, ,00R ,and0<t'<t<T, we have

|E[ul-E[u]], 2]y~ u]., (C.7b)
[E[ul() - E[U( 9 <2 fgrgl ur)- u b, (C.7¢)
[E.[ul() - E[d( §]s2 tja;grpstl ur) - uzr), (C.7d)
Efuwl+Fuw=u (C.7e)
E[u w] = E[ u- w, (C.7f)
Efw wl<Ely wj ifusu andws w, (C.79)
E[E[u wl W = EJ u g if| y— w<.r (C.7h)
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Proof: Equation (C7e) follows from (C.3c) and the proof of (C.7gelementary from
(C.3b). Equations (C.7b), (C.7c), (C.7f) and (C.Willow from comparable equations of
Lemma C.2. Equation (C.7d) may be proved by setting
ublC,[0,T], and t< tJ[O, T, and w HE .. Consider the case

w(t) —u(t) < w(t) = u f). (C.70)
From Figure 65 it is clear thatP = (u(t)+r—-w(t), r) must be passed at some time
r O[t',t] so that:

W(T) =1, u(r) —u(t) = r—w(t) (C.7)
Since r is an upper bound for both vé&nd w(t) one obtains from (@) and (C.7j)

w(t) = w(t)|< max{ r—w(t),r—wi}

7k
<maxqu)-u(),uf)- u(t} (©79

which proves the assertion. ]

W
A
r
L - |P
w(t) - :
amy o/ uln
w(t) f------

Figure 65 The casew(t) —u(t) < w(t) — u(f)
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C.2 Lipschitz Properties of the “play” and “stop” basis operator derivatives

As important as the boundedness of the basis apsrdhemselves for the

stability property of the ADRC is the boundednetsheir derivatives. Let us define a

new subset of continuous functior@;[0, T ={ uD 40, T]| u is piecewise lineh

Lemma C.4Lipschitz properties of fu](t)and E[u](t) derivatives)

Letr >0 andu,,u,0C,[0, T]. Then

FIul() - FluJO)[+[Bl 4 - § ¢ [Ot<]@)t-"¢)1 (C.8a)
for all t0[0,T] except for at most a finite number of points.
Proof: Let

o(t)=sign( E[yl(} - & J(t) (C.8b)

Choose an open interval,{t.1) where the derivatives in (C.8a) exist amds identically

zero or nowhere zero. &= 0 then (C7e) implies (C.8a) is an equality. Otherwise

IFIw'() -RIWO[=(F d(Xx - & &Ot)d)t (C.8¢)
Since

Eful-ElW[(r=(E 4Ot~ E 3O 1)d)H (C.8d)
one may add (C.8c) and (C.8d) and apply7€) to prove the assertion. [
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Lemma C.5 (Lipschitz continuity Bf and E on W%(0,T))

The operators Fand E are Lipschitz continuous on§0,T) and
F.lul - Rl [y, <[ Juy - ¥ des2| o) - o), (C.93)
|ELul - Bl Wy, <2[u-ufy, (C.9b)

for all u,u, DW*(0, T).

Proof: Letu,, u,[J C,[0, T] One infers from Equation (C.8a) that

[7[FwC) - FLu ) |dt+ [ L 9( T - & & T
<70 -t (bjdt+| ELuI©) - B YO (C.90)
< [ 6,0 - 0, (0]dt+u(0) - w().

Adding |Fr[u1](0) - E[u2](0)| to both sides one concludes from (C.9a) from (teat

[TELuI() - ELW (Y] dt

T T (C.9d)
< [J IR Iul() - FLuJ () [dt+ | o ¥ = u x|t

Thus (C.9b) follows from (C.9c). Sin€g[0,T] is dense iW"(0,T) both (C.9a) and

(C.9b) extend taW“*(0, T). m

157



C.3 Lipschitz Properties of the Memory function

Referring again to Section 3.2 Hysteresis Transorm Infinite Series of Basis
Functions one may easily comprehend that the memaslution curvesi(r) .= F,[u; A°]

define the boundary between the positive and negaggions of the “Preisach Plane”
and contain equivalent information of the stateéhef basis operator for all points in the
plane. Thus the use of the memory evolution fumciiothe integral evaluated along the
single dimensionr is equivalent to integration of the basis functiatong both
dimensiong ands at any instant, and for all its history. This megnevolution function,

integrated along and aoc-finite Borel measurey on R, , enables one to alternatively

evaluate the Preisach and Prandtl-Ishlinskii hestisrfunctions.

We introduce the following definitions from Broka8eSprekels [10]:

« Continuous memory evqutimﬁF[u; (%) )( 1) :=F[u AL N](D.

* Hysteresis operator of Preisach typ&fu() = Q()l()) where Q is the “output
mapping”.

» Memory evolution:(A(t))(r) = F,[u; A°J(t) = f, (4 A%(r)) = f, (u, w,), which implies
A(t) is the memory evolution curvé(t) := F[u; A°](1) at timet for allr.

Lemma C.6 (Reqularity Properties of the Memory Ehioh)

Suppose that, u, 10, T] and the initial memory curved®*,A®*0A are given, and

let A :=F[u;A%1],i=12. Then
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EXORZAG RS max{(gﬂqu1 ¢ yu, t) H)Io'l—)l O’ZHMJ (C.10a)

holds. Moreover, for any0C[0, T] and A°OA, the memory evolution := F[u; A°]

satisfies

IA@) =A@ < §up|u C)-ut) Osts<t<T (C.10Db)

Finally, if uOW"(0,T), then the distributional time derivativé® A belongs to

L'((0,T)xR, ;A Ov) for everyo-finite Borel measurer and satisfies

04 077y |0/ ,
E(t,r):Fr[u;A (NI, ‘E(t,r) s|u(t)| (C.10c)

a.e.in(0,T)xR, as well as a.e. in (0,T) for every fixed r.

Proof: The estimates (C.10a) and (C.10b) are direohsequence of Lemma C.2.

Equation (C.10c) holds a.e. in t for evarg 0 from Equation (C.3d) and Lemma C.&.

The following definitions then formalize our naivat regarding the properties of
the memory evolution and transition to integratioh the memory function along

r,vUR,.

Definitions C7:

The o=finite Borel measurez oRR, , whereodL*(R,) is any density function angis a

one dimensional Lebesque measureign

v = p(p)dp3, - py. (C.11a)

The output mapping for the Prandtl-Ishlinskii fuoatis defined by
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Q) = J':)l(r)dv( . (C.11b)

The output mapping for the Preisach function isreef by

QM) = [ alr, A(r)av(r) + wy,

. (C.11c)
whereq r, 9= ZIO,u( o), WwOR, 40 LR, xRy Oy).
The modulus of continuity of output mappings isneefby
n(5;Q)= sup |Q@)- Q| (C.11d)
pyon°
l6-¢l. <o

C.4 Lipschitz Properties of the Preisach and Prandtl type operators andetivatives

We state the followindProposition C.7 and C.8eeded in Chapter 6. In all cases
it is assumed that the input to the hysteresis atperullC [0, T], is piecewise
continuous monotonid?roposition C.7establishes properties of operators of Preisach
type, a set including Prandtl-Ishlinskii operatosen the modulus of continuity of the
memory function output mapping is boundPdoposition C.8quantifies the bound of the
Preisach and the Prandtl-Ishlinskii functioaad their derivativesbased on the bounds
for the corresponding “relay” basis operator weifyliction x(r,s), and its derivative
The condition for the boundedness of the weighttions is thus established, additional

to the previous bounded condition on the input.
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Proposition C.7: (Reqularity properties of Preisatyipe Operators)

Let W denote a hysteresis operator of Preisach ggsociated with the output

mappingQ: A - R. Then the following statements (i), (ii) and (hDld:
(i) If

lim7(5,Q) =0 (C.12a)
then W is uniformly continuous o€[0,T]xA and thus maps bounded subsets of
C[0, T]xA onto bounded subsets Gf0, T] .
(i) If

n(9;Q) < Co” (C.12b)

for some constants C>0 and[1(0,1], then W isa-Holder continuous orC[0, T]xA.

That is, whenevefu.,A° ) O C[0, T]xA, i=1,2, then

ot 271-W 4 291 < anax{| o ol =21 }) . 20
and W maps bounded subsets ©f#[0, T]xA onto bounded subsets 6f“[0,T]xA
for any £0(0,1].

(i) If (C.12b) holds fora=1, then W is Lipschitz continuous &j{0,T]xA and maps
bounded subsets of x/A onto bounded subsets of X, where X equals eB\§0, T] or

W"P(0,T) with 1< p< o, endowed with their standard norms. And

WId'(Y] < Cig | (C.12d)
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at everyt (1[0, T] where both derivatives exist.

Proof: To apply Lemma C.6, we let00C[0, T], A% OA, and A :=F[u;A%], i=1,2 be

given. Then for everyJ[0,T] Equation (C.10a) yields

WLu; A0 =Wy A0 < (a0 x-A4 0]
sn(max{||u1—u2|Lo ,H/]O'l—/lo‘z‘ w} ;Q) :

Now if any(u,A°) 0 C[0, T]xA is given, settingl := F[u; A°] (and omitting the assumed

(C.12¢e)

reference tad° in remainder of proof) one infers from Equation@b) that
W) =W Y | < (| X=A ). qsr/[:ggrg @)~ @; g(C.lzf)

for any t,t'00[0,T]. In particular, W[U O GO, T if (C.12a) holds. All the other

assertions of (i) follow from (C.12e).

Next, suppose Equation (C.12b) holds, then onambfeom (C.12f) that

WLd() - W K )Isc{i‘ri?'“ ‘“‘““J C.129)

-t t-t|”

for any t,t' J[0,T] with S0(0,1]. Thus W maps bounded subsetsof[0, T]xA into
bounded subsets &[0, T]. If Equation (C.12b) is satisfied with =1 then (C.12f)

implies
W[d()-W I §|< %upt| @r)- ¢, 0 t'O[0, T. (C.12h)
Consequently, for any partitioA ={t} __ of [0,T], we obtain
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D WIU(H -W I )< O sup | @)+ ¢t,)|< Cvdrl (C.12i)

i=1 i-1 ST

Hence it follows that the operator W maps bounddissts ofBV[0, T]|xA into bounded

subsets oBV[0, T]. Now assume that JW"*(0, T) and lete >0. Since u is absolutely

continuous there exists some> 0 such that

2l -t <d= Y |u(t)-u() <e (C.12))

ial i<

for any finite collection([t.t )iDI of disjoint subintervals of [0,T]. Choosing O[t/,t ]

suitably one finds from Equation (C.12h) that

SWU(H-W I )< S|t - GX|s @ (C.12K)

il il
Hence W is absolutely continuous. Dividing (C.lﬁhjt—t’| and passing to the limit as

t' -t one obtains Equation (C.12d). Since (C.12d) hads. if uOW"*(0,T) the

assertions concerningv/** (0, T) follow. [

Proposition C.8: (Regularity Properties of the Fy@&th and Prandtl functions)

Let P be the Preisach operator having the initiate A° OA . Then the following

statements (i) and (ii) hold:
@) If

C, = J':sup|,u(r s)dV (r)<e (C.13a)

then
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n(3;Q) < 2CJ (C.13b)

and P[u](? is Lipschitz continuous o@[0,T]. P[u](?) also maps bounded subsets of X

onto bounded subsets of X, where X eq@2I1$[0, T] with @ J(0,1], or W*?(0,T) with

1< p<w, or BV[0, T]. Moreover, for a.et ([0, T],

PlU'(9 =24(r, KLy A°(N](9) TRLu AY0I(Y au ). (C.13c)
In particular,

PLU(8] <2G 1Y) (C.13d)
at all pointst [0, T] where both derivatives exist.

(i) If w is measurable and if, in addition to (C.13a),
S

C,:= jo“’ ﬁﬁ% d[V (r)< o (C.13e)
then
[Prul - Ryl <2 (Gl + Q)l y= dly- (C.13f)

Therefore, P[U](?) is a Lipschitz continuous mapping on bounded dabsen**(0, T)
and P:W"?(0, T) — WP (0, T) is continuous foll< p< . For the Prandtl function the

above conditions hold if the measwrés finite.

Proof: By the definition oP[u](?) one has:
o mA(r)
Q=] [, 2u(rs)dsd (9+ w, (C.139)
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so that

Q) = Q)| <[ = An)|2supu € 5 )dl] €)

(C.13h)
<2C A=A, -

Except Equation (C.13c) all assertions in (i) felldrom Proposition Z. To prove

(C.13c) setd .= F[u,A°] and observe that

At,r

244t $ dsai( )

A(0r)

=["[ 2ut A@r ))% Crymdve) (C.13i)

PlU(Y) - R O) =

:J';j:Z,u(r,A(r,r ))% Cryveyr.

Now we are ready to prove Equation (C.13f). Uet= F[u; A°], i =1,2. From Equation

(C.3d), Lemma C.2 and Lemma C.5 one finds:

[PLul - Ry,
<2 [ Jue ACr R €)=t A 0 B o

<[]

oA,
—=(t,r
at( )

9 .
st €5 ) (1 )4, 1) (13)
SR | 0S

A ¢y
+sg;,|Rq,u(r s) 3t tr) P €r Ddth €)
< 2u; CfJu -yl +2G] u-ul,
from which Equation (C.13f) follows.

Next suppose thati, — uin W-"(0, T) for some fixedpO(1,»). From the proof of

(C.13f) one infers that

Plu]’' -~ A" in KO, 7). (C.13K)
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Since

Plul'(9] 2G|y (3], ae in(O, T) (C.13)
and sinceu, — u in L°(0,T) Lebesque’s theorem yields

Plu] - B4 in YO, T). (C.13m)
Hence P[u](D is continuous orW*?(0,T). Finally, in the case of the Prandtl function

one has,u:% and w,, =0, thus Equation (C.13a) and (C.13e) are satisfied iis

finite. This concludes the proof. [
Conclusion

The proofs in this Appendix C then establish theiuted behavior of the
Preisach and Prandtl-Ishlinskii hysteresis funciand their derivativesThis bounded
behavior, and the conditions which lead to thisrumd behavior, support the BIBO

stability proof for the LADRC control of the hys&tic system in Chapter 6.
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