
 

CONTROL SYSTEM DESIGN FOR NANOMETER SCALE 

POSITIONING SYSTEMS 

 

 

FRANK JAMES GOFORTH 

 

 

 

Bachelor of Science in Electrical Engineering 

 

Massachusetts Institute of Technology 

 

June, 1977 

 

Master of Science in Industrial Engineering 

 

Cleveland State University 

 

May, 2000 

 

 

submitted in partial fulfillment of requirements for the degree 

 

DOCTOR OF ENGINEERING 

 

at the 

 

CLEVELAND STATE UNIVERSITY 

 

May, 2006 



 

  

This dissertation has been approved 

for the Department of Electrical and Computer Engineering 

and the College of Graduate Studies by 

 

________________________________________________ 
Dissertation Committee Chairperson, Dr. Zhiqiang Gao 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Dan Simon 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Ana Stankovic 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Lili Dong 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Hanz Richter 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Nolan Holland 

________________________________ 
Department & Date 

 

________________________________________________ 
Dr. Sally Shao 

________________________________ 
Department & Date 



 

  

ACKNOWLEDGEMENT 

I must thank my dissertation advisor, Dr. Zhiqiang Gao, for his encouragement, 

guidance and instruction. I am also grateful for the support and patience of my 

dissertation committee members, Dr. Dan Simon, Dr. Ana Stankovic, Dr. Lili Dong, Dr. 

Hanz Richter, Dr. Nolan Holland and Dr. Sally Shao.  

I must extend special appreciation to Dr. Xiaobo Tan, Assistant Professor, 

Michigan State University and Dr. Kam Leang, Assistant Professor, Virginia 

Commonwealth University for the gracious use of their hysteresis model measurement 

data used in the construction of my simulation.  

I must extend my profound appreciation to Dr. Pavel Krejci, Academy of 

Sciences of the Czech Republic, for enthusiastically providing me a rare copy of his 

widely referenced and impossible to obtain book, “Hysteresis, Convexity and Dissipation 

in Hyperbolic Equations”. This information was critical to my understanding of 

hysteresis and the analysis of stability using the Active Disturbance Rejection Control.  

Most importantly, I owe my eternal gratitude to my spouse, Lynn Lilly, who has 

been steadfast and patient these past four years. I am blessed. 

 



 

 iv 

CONTROL SYSTEM DESIGN FOR NANOMETER SCALE 

POSITIONING SYSTEMS 

 

 

FRANK JAMES GOFORTH 

 

 

 

ABSTRACT 

Nanometer positioning presents unique challenges because devices capable of this 

accuracy exhibit hysteretic behavior. Hysteresis is characterized by rate independent 

memory and multi-valued output, limiting even the application of nonlinear control. 

Previous researchers have pursued a control strategy dependent on precision models of 

hysteresis. The physical principles of these hysteretic devices are not well understood and 

the models exhibiting best fidelity to experimental evidence are phenomenological, not 

analytic, thus they are computationally intensive for reasonable accuracy and their 

behavior is unique to each device.  

Our thesis is that one may treat hysteretic behavior as a disturbance and 

compensate for it as one would for other disturbance.  Three hysteresis compensation 

strategies are demonstrated which exhibit performance superior to prior reported results 

and none of which require a hysteresis model. Novel passive and active disturbance 

rejection strategies, as well as a hybrid combination inheriting favorable characteristics of 

both strategies, are successfully developed and implemented. 
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xm: Mechanical Stress 

dem:  Piezoelectric Strain Coefficient relates electrical Polarization, Pe, to 

mechanical strain Xm. 

eem:  Piezoelectric Stress Coefficient relates electrical Polarization, Pe, to 

mechanical stress xm. 

smn:  Elastic compliance coefficient. 

cmn:  Elastic stiffness coefficient. 

E: Electric field. 

D: Electric displacement. 

P:  Electric polarization. 
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Y: Young’s elastic modulus = tensile stress/ tensile strain. 
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λn: Wavelength of nth harmonic.   
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CHAPTER 1 

INTRODUCTION 

The 20th century saw the transition from macro to micro scale precision in 

measurement and control. The 21st century begins with the inevitable step to the 

nanometer scale. But this is not an easy step, for one now stands on the threshold of 

quantum physics. One leaves the relatively weak Newtonian mechanics forces behind and 

moves into the uncertain realm of the strong atomic forces. Model-based controls will not 

likely, and certainly not easily, make this transition.  

Nanometer scale research requires new tools to yield its potential, and positioning 

at this scale is an early challenge. The Atomic Force Microscope (AFM) is today the 

most common tool for measuring and/or manipulating nanometer scale objects. It is the 

tool of choice for research in semiconductors, nano biology, nano materials, etc. As such 

it provides a leading edge reference for the study of nanometer scale positioning control. 

The AFM vividly illustrates measurement and control technology must be reevaluated at 

a fundamental level because many of the advancements at the macro and micro scale in 

the past century have led to assumptions which are no longer valid.  
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Sensor dynamics are again significant, if not critical, components of the control 

loop. Mechanical disturbances of very minor consequence at macro, or even micro scale, 

now overwhelm the sensors, not to mention their effect on tool holders and samples 

measured in micro and nano grams. Nano sensors are significantly disturbed by footsteps, 

even when mounted on anti-vibration tables, on a concrete slab, in the basement. 

Disturbances are easily nano scale. Radio frequency radiation is more prevalent today 

with wireless connections ubiquitous, so while meters of displacement requires amps of 

current at the human scale, this does not scale well to nano amps with so many noise 

sources available. Thermal noise can deflect tools hundreds of nanometers, requiring 

hourly recalibration of an AFM using linear controls. Mechanical tolerance buildup, not 

to mention thermal expansion and contraction, imply energy must be directly converted 

to mechanical displacement for nanometer scale precision, no intervening transmission 

medium has been found acceptable. So, as the distance becomes smaller by three orders 

of magnitude, the problems scale in inverse proportion. 

Piezoceramic actuators are used for both cantilever oscillator and sample scanner 

for the AFM because they leverage relatively large voltages and forces to small distances, 

thus providing manageable signal/noise ratios. They convert energy directly to small 

displacement, and generate significant force relative to their mass, so a mismatch with 

their load is to be expected. They also exhibit some of the nonlinear control issues shared 

with other sensor/actuator materials capable of meeting the nanometer scale challenges. 

Piezo ceramics generate displacement via strain in their crystalline structure, and thus 

their axes motion is highly coupled. Their electrical properties vary significantly with 

temperature. They operate due to their polarization, which can change due to voltage 
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“creep”. And, common to many useful devices at every scale, they exhibit significant 

hysteresis, but whereas thermal drift and voltage creep are relatively slow, hysteresis 

affects motion at the desired operating frequencies.  

The Primary Challenge: Hysteresis 

During the course of research it became apparent hysteresis would be the most 

difficult and interesting challenge to face in nanometer positioning, and also provided a 

topic that had much broader impact. It is a critical challenge for so many processes, 

whether mechanical, thermal, chemical, pressure, flow, etc. so it was natural to 

concentrate on this nonlinearity. Hysteresis exhibits rate independent behavior and non 

local memory, its output is multi valued and so not conducive to straightforward methods 

of linear or nonlinear analysis and control. The piezo ceramic actuator as used in the 

AFM will be used as the example medium for study, but as will be seen, our results are 

more broadly applicable to hysteretic processes in general, and thus open the door wider 

for future research opportunities.  

Controlling hysteretic piezo ceramic devices has been a low bandwidth 

compromise to date. A precision model-based linearization using either series inversion 

or feed forward compensation has been the rule, and as will be shown, precision of 

modeling has differentiated performance in control. Unfortunately, each hysteretic device 

is unique, and with no first principle knowledge to guide the process the models are 

empirical, by necessity. In most all examples of nanometer scale positioning, of which 
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there are still relatively few, linear control methods have been used, sometimes with the 

addition of nonlinear adaptive tuning. It seemed natural, in this environment, to study the 

Active Disturbance Rejection Controller (ADRC), using the Extended State Observer 

(ESO), as a plausible solution. The present dependency on unique precision modeling for 

control and the highly disturbing environment matches the strengths previously exhibited 

by the ADRC addressing these challenges at the macro scale. The historical effectiveness 

of “dithering” a device to alleviate hysteresis inspired consideration of Time Optimal 

Control (TOC) as another alternative to compensate hysteresis, as it too can be 

empirically designed and tuned independent of a precise model. 

An explanation of the technical challenges, a summary of prior control strategies 

and a review of literature are contained in Chapter 2. Chapter 3 contains a more detailed 

explanation of hysteresis fundamentals, and how we creatively frame them as a 

disturbance rejection problem. In Chapter 4 the complete model for the piezo ceramic 

actuator is developed, only in order to facilitate the simulation and testing of the 

hysteresis compensation strategies, not as a component of those strategies. Simulation 

results will be presented in Chapter 5 for the ADRC and closed form discrete time 

optimal control of Han Jingqing, demonstrating their superiority to existing hysteresis 

compensation methods. The stability of the ADRC with ESO solution will be analyzed 

and shown for this hysteretic process in Chapter 6. Conclusions and future research 

possibilities in this dynamic field are discussed in Chapter 7.  



 

 

CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW  

The progress in controlling position at the nanometer scale has been sporadic 

since Binnig, Quate, and Gerber invented the AFM in 1986 [6]. They had first 

implemented simple Proportional plus Integral (PI) control, and this remains the choice in 

commercial systems today.  The bandwidth for even a pure linear piezoceramic actuator 

would be limited by this choice, as shall be shown when the model is developed in 

Chapter 4. Qualitatively, a piezoceramic develops significant power for the mass, so 

inertia matching is a challenge from the start. The positive contribution from the direct 

energy to displacement conversion is balanced by an absence of viscous damping in a 

transmission, moving high frequency complex eigenvalues even closer to and farther 

along the imaginary axis. Exacerbating this is the elastic properties of the material, 

contributing harmonics of its natural resonant/anti-resonant pairs of eigenvalues, which, 

due to the nanometer scale displacements considered, can place the primary harmonic 

very near the force transmission eigenvalues, as we have simulated.  

Santosh Devasia has studied this problem over a decade, and I quote from his 

paper [131].  
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“In general, the tracking performance of piezo-based positioning systems can be 

improved by using feedback control, for example, to reduce positioning errors due to 

creep and hysteresis. … However, a problem with using feedback-based approach is the 

low-gain margin, of piezo-based positioners, that limits the achievable improvements 

because high-gain feedback tends to destabilize piezo-based STM scanners. (The low 

gain margin is due to low structural damping in piezo-actuators that results in high-

quality factor Q, i.e., a sharp-resonant peak accompanied by a rapid-phase drop in the 

frequency response.) In practice, a compromise is sought between performance and 

instability; feedback gains are adjusted to improve performance without instability. Thus, 

the tendency to become unstable at high gains (due to low-gain margins) has limited the 

success of typical feedback-based techniques to achieve high-speed positioning in STM 

applications.”  

We agree this is a valid comment for linear controls, sometimes even with 

hysteresis linearization, but is not necessarily true for nonlinear controls, as will be 

shown. 

2.1 Nano-positioning Control: Stuck in a Model-Based Paradigm 

The control details for commercial nanometer scale positioning tools are not 

shared, but what is known is that they use calibrated models of the actuator to 

compensate for their linear PI controls. Research in the past two decades has focused 

almost exclusively on improving these calibration models and continued use of standard 
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linear PI [19,33,41,69,83], loop shaping [26,121] or H∞ [16,53,107-114,121] control 

techniques. Some researchers modeling techniques have been straightforward linear 

frequency or time domain empirical models [83,108,121], while most have attempted to 

model the nonlinear hysteresis [16,19,22,23,34,41,53,57,63,82,96] and/or voltage creep 

[22,63,69,104,125]. A few have been unique [16,23,34,53,82,83], but most have adapted 

known hysteresis theory, which unfortunately has very few recognized experts 

[10,61,70,76,89-91,100-102,127]. Almost all these hysteresis models have been empirical 

models, by necessity, and only recently have a very few researchers chosen to explore 

anew the challenging fundamental principles underlying hysteresis [53].  

Hysteresis compensation has generally followed 3 alternatives, all classical, and 

all critically dependent on a precise model of hysteresis. One alternative is feed forward 

compensation, a similar alternative is a classic “prefilter” configuration, and a third 

popular alternative is the application of an inverse of the hysteresis nonlinearity in series 

with the process.  

Many researchers evaluate strain displacement of the piezo device without 

external load. A more valid example applies a force to an external load, which introduces 

2 poles, usually very near the axis. Additionally, even those comparisons with an external 

load utilize a semilinear hysteresis model [10,76,127] relying on an “equivalent”, but 

nonexistent, hysteresis damping coefficient, beq. [14,62,87,124,129] 

( ) ( ) ( ) ( ) [ ]( )eqmx t b x t kx t F t P x t+ + = +ɺɺ ɺ  (2.1) 

A more recent alternative model attributed to Della Torre [27] is quasilinear,  

1( ) ( ) ( ), ( ) ( )[ ]( ), ( ) ( ) [ ]( )mx t kv t F t x t I P v t v t I P x t−+ = = + = +ɺɺ  (2.2) 
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and we will explain our preference for this model in Chapter 3.  

D. A. Hall [47] has recently presented an excellent overview of the state of the 

understanding for piezo ceramic actuators. Thermal nonlinearities are the most 

pronounced in piezo devices, whereas voltage “creep” and other elastic/plastic 

nonlinearities are less pronounced and better managed. These two nonlinearities, though 

significant, are very slow responding compared to the hysteresis nonlinearity of piezo 

devices. Thermal drift and voltage creep can be and usually are modeled and controlled 

as slowly time varying parameters in the motion equations. 

2.1.1 Thermal Drift Models 

 

Figure 1 Variation of piezoelectric constant with temperature.  

(Morgan Electro Ceramics, Inc. Bedford, Ohio, USA, Technical Publication TP-226 [5]) 
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There has been minimal research done to date to address thermal drift within the 

nanometer control system [97,103], even though it is the most significant nonlinear factor 

affecting the performance accuracy, because its effect is very slow. Requicha [103] has 

reported, “A typical value for drift velocity is 0.05 nm/s.” It is evident in Figure 1 the 

thermal drift of many piezo ceramic materials can be several percent over even small 

changes in temperature, and is extremely nonlinear, so a model-based solution is a 

questionable strategy. The preferred solution thus far has usually been to tightly manage 

the operating environment for both temperature and vibration, but we will demonstrate a 

better solution. 

2.1.2 Voltage Creep Models 

 

Figure 2 Piezo DC Input Creep (courtesy Physik Instrumente) 

Application of a DC bias, such as the “engage” offset voltage, to a piezo tube 

scanner causes an initial and abrupt change in deflection, but the subsequent “creep” to a 
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final position is slow. This slow change in position bias is additional to any localized 

oscillation in position due to the scanning. As with thermal drift, little research having 

been done to date [46,63,69,104]. 

S. Vieira did the earliest study of AFM creep at IBM research labs in 1986 [125], 

no doubt with the direction of Binnig, Quate and Gerber [6]. The mechanical strain, 

∆length/length, changed 1-2% over a period of 200 seconds. Richter et al, in 2001 [104] 

had modeled and confirmed creep as a function of impressed voltage on the input to the 

mechanical subsystem, reinforcing Vieira’s earlier experimental results. Again, our 

proposed solutions address voltage creep well. 

2.1.3 Hysteresis Models 

The earliest study of the hysteresis phenomenon began in the late 19th century in 

the area of elasto-plasticity and ferromagnetism. A few descriptions existed before the 

20th century, as that of Duhem [30], but the most detailed analysis occurred early in the 

20th century with Ludwig Prandtl [100,101] 1924 study of fluid flow, rediscovered by 

Ishlin’skii in 1944 [61]. Ferenc Preisach [102] 1935 research into ferromagnetism led to 

an alternative phenomenological description which is more general, and which we use in 

our simulated plant. Stephen Timoshenko [124] in 1928 refers to hysteresis dissipation in 

the first edition of his seminal work on harmonic elastic/plastic motion, wherein he 

diagrammed the hysteresis similar to Prandtl’s “play” and “stop” operators, and even 

describes an “equivalent hysteretic damping constant” for calculating the dissipation 

attributed to the nonlinear motion. Cady [14] also describes in his book on 
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piezoelectricity a “friction factor” with units of mass/(distance*time) and for the same 

purpose as Timoshenko, to account for the observed energy damping, for otherwise there 

is no component in the unforced linear equations to explain the observed dissipative 

behavior when the device is disturbed from equilibrium and released. Both Timoshenko 

and Cady resorted to a semilinear model description of the system utilizing the 

“equivalent hysteretic damping constant” to determine the dissipative force, 

xxbF eqd ɺ)(= . 

Fundamental research in closed loop control of piezo actuator position had some 

early and positive results reported by Tamer & Dahleh in 1994 [121], so the authors, 

triggering the bias to model-based control, recommended future research toward better 

modeling. Ge and Jouaneh in 1995 [41,42] suggested the phenomenological Preisach 

hysteresis model as a piezo compensator. Their techniques measured the first order 

reversal curves of a particular piezoceramic actuator, without any load, and used these 

data points within an algorithm to predict the hysteretic response of the particular device. 

Chen et al in 1999 [16], with a very precise stochastic model of their hysteretic device 

and a linear H∞ control, achieved 0.8% error. Other researchers 

[19,22,34,57,60,63,83,131], as did Chen, have tried alternatives to the Preisach model in 

both feed forward and feedback configurations, with less success. Mittal and Meng [96], 

in 2000, used an inverse Preisach operator within the closed loop of a nonlinear H∞ 

controller and achieved 0.3% error. These controls all followed the semilinear plant 

model.  

Ku et al in 2000 [78] as well as Li and Tan in 2005 [82] proposed the use of 

neural networks to adapt their hysteresis model in real time. Their results were 
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acceptable, but not exemplary, and slow. Neural network adaptive controllers might be 

feasible with much higher bandwidth processors. 

2.2 The Active Disturbance Rejection Control Paradigm: New Thinking 

Excellent controllers existed before the development and mathematical rigor of 

process models. The practical preference for Minorsky’s [95] Proportional, Integral, 

Derivative (PID) controls and Ziegler-Nichols [130] associated empirical design methods 

attest to this.  Models enable detailed mathematical design and analysis, and knowledge 

of them improve the design, but by definition the quality of model-based controls are 

directly correlated to the quality of the model, if one exists, as well as the quality of the 

output measurement. Control design in the absence of a model must be empirical, by 

necessity, and most often are based on minimizing an error to some desired response. The 

quality of error based designs is correlated to the quality of the measurement. Error based 

designs may also be analyzed as is a model-based design, using the same derived, and 

assumed valid, model. Most times these error based controls represent themselves quite 

well under analysis, or they may not, but seldom is the model challenged. The value of 

this analysis is no more or less than before, independent of the control choice.  

In the presence of a perfectly accurate model and absence of any disturbance no 

feedback would be required, one could command a reference control signal and the 

desired position would result, x u=ɺɺ . This is not reality. The sources of error to the 

desired response may be varied, and under many names. Poorly modeled internal 
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dynamics, whether in the model of the process or the realized controller hardware and 

software, is one common cause of error. External disturbances to the load are even more 

common, as are disturbances in measurement, and the list grows.  

The disturbance paradigm is simplicity itself, all difference to the desired 

reference, whether internally or externally provoked, is considered a disturbance. The 

disturbance may be passively filtered, or it may be actively rejected. The design emphasis 

is on timeliness and accuracy of measurement and/or estimation of the disturbance, rather 

than on accuracy of a model. In many practical cases this is quite achievable, where 

modeling may not be.  

Most often reality is a process output the sum of a control command u scaled by 

some factor b and perturbed by some general disturbance f, x f bu= +ɺɺ . The difference 

between the practical control command u and the desired control u0 is: 

0
ˆu f

u
b

−=  (2.3) 

such that the accuracy and timeliness of the estimate f̂  determines the convergence of 

0x u≈ɺɺ .  

Passive disturbance rejection via a closed form discrete optimal control solution is 

described by Gao in 2003 [37]. We will adapt this for our passive strategy. We will also 

follow his active disturbance rejection paradigm from 2006 [38]. In this effort we will 

treat hysteresis as a disturbance like any other, so in the next chapter we will develop this 

thesis.  

 



 

 

CHAPTER 3 

HYSTERESIS AS A DISTURBANCE: REFORMULATING THE PROBLEM 

Our primary thesis is that hysteresis may be treated as any other disturbance in the 

context of compensating its effect in a control system. The hysteresis phenomena has 

been characterized by the leading authorities as a nonlinear transformation from a series 

of piecewise continuous monotonic inputs to similar series of outputs, possessing the rate 

independent memory and multi-output characteristics from experimental data. Unlike 

previous research which attempts to compensate for hysteresis through inversion of these 

complex models, we will account for hysteresis as a deviation from an otherwise linear 

input to output transformation.  

It is well understood that it is not necessary to characterize external disturbances 

in order to compensate for them in control systems, and in fact systems are proven stable 

given unknown yet bounded disturbance. Our thesis is not different from this, full 

knowledge of the hysteresis character is not necessary for our purpose, given that it is 

bounded. It should be necessary to examine these complex models in order to best satisfy 

ourselves in this reformulation of the problem.  
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The understanding of hysteresis has been extensively enhanced recently through 

the work of mathematicians Krasnosel’skii & Pokrov’skii [70], Brokate & Sprekels [10], 

Visintin [127], Krejci [76] and Mayergoyz [91]. The majority of the development 

contained herein are based on Brokate & Sprekels [10] and Krejci [76], so their books are 

recommended. Mayergoyz’ book [91] is more “engineer friendly” and so is 

recommended as a first primer for those interested in learning more. The other 

researchers are mostly mathematicians, and thus their work more abstract.  

 3.1 Hysteresis: A Qualitative Review of its Characteristics 

 

Figure 3 Hysteresis Input/Output Relationship 
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The Greek “υστερεσυσ” means “to lag in arrival”. This qualitatively describes 

what is observed, the output of some process is not synchronous with the change of input. 

The fundamental physics being observed is not always well understood for processes 

exhibiting hysteretic reaction, as is the case for our investigation, so an alternative 

mathematical device is required to describe the phenomena, a phenomenological 

description. A narrative is a much easier way to begin, before we investigate the 

mathematics. 

Hysteresis, illustrated in Figure 3, is a process where a time dependent scalar 

valued variable u is transformed into time dependent multi-valued variables, w. We 

assume that if u increases from uA to uE, then the state (u,w) moves along the path ABCE, 

and if u decreases from uE to uA then state (u,w) moves along path EFA. The “major 

hysteresis loop” ABCEFA defines a closed region 2Θ∈ℝ . Moreover, if u inverts its 

movement at uC , or any other state uA < u < uE along the boundary∂Θ , it moves into the 

interior of Θ and will describe a “minor hysteresis cycle” according to the hysteresis 

model. The limit of these minor cycles is the “anhysteretic” [127] curve. If u < uA, or  uE 

< u then the state (u,w) will move along the boundary as illustrated by the double ended 

direction arrows. At any instant t, including the initial instant, t0, the value of w(t) 

depends on the evolution of the state as well as the initial state. The hysteresis transform 

must be causal but the output w(t) must not depend on u|(t,T] .  

0 0 0( ) [ , , ]( ), [ , ]w t P u w t t t Tλ= ∀ ∈ . (3.1) 

A defining characteristic of most, but not all, hysteresis is rate independent 

memory, the output depends on the input value and its history regardless of rate of 
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change. It transforms the input to one of infinitely many possible values, dependent on its 

history, thus most common nonlinear analysis techniques are not applicable. The Preisach 

operator used for our simulation is a phenomenological model, it is a mathematic device 

to describe the transform and it is not based in physics first principles.  

Hysteresis is associated with energy dissipation, which is proportional to the area 

enclosed by the hysteresis cycle described by the operator (whether minor or major). Rate 

independent hysteresis dissipation, a function of strain, and rate dependent “viscous” 

dissipation, a function of strain “velocity”, usually exist simultaneously, with the latter 

vanishing as the rate tends to zero, while the former is more dominant at slower speeds. 

Accounting for this dissipation, or disregarding it, will prove a differentiating factor in 

our preferred choice of hysteresis model.  

3.2 Hysteresis Transforms: An Infinite Series of Basis Functions 

Most hysteresis transformations are constructed as an infinite series sum or 

integral using a basis function, and then taken to the limit as the quantity or time 

approaches infinity. The quality of the transform is then contingent on the quantity or 

time interval used. (One could speculate a wavelet would be a better basis function 

candidate, but that is a thesis for another dissertation.) 

The scalar Preisach model uses a fundamental relay with delay operator as a basis 

function and the output is a weighted sum/integral of the constituent basis. The practical 

constraint on this model is that the weight function(s) must be empirically determined in 
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each instance and accuracy is dependent on the dimension of the weight vector. The 

advantage is the fidelity to actual results, compared to other models (again dependent on 

the weight vector dimension), and the simplicity of implementation as linear algebraic 

equations in real time. This is consistent with the application of model-based controls. A 

Preisach operator, per Brokate & Sprekels [10], Visintin [127] and Krejci [76], will be 

used for our simulation. It is globally Lipschitz and invertible, as is its derivative, and 

results in continuous piecewise monotonic output for comparable input.  

Definition: The Preisach memory curve: 

{ }
{ }

: : , ( ) ( ) , 0, ( )

( ) : sup 0, ( ) 0

supp

supp

r r r r for all r r R

R r r r

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
+Λ = → − ≤ − ≥ < +∞

= ≥ ≠

ℝ ℝ
(3.2) 

where Rsupp represents the saturation value for the hysteresis. Examples of elements of 

this set, 1( , )t t rλ ∈ Λ  and 0
0( , )t t rλ λ= ∈ Λ  are shown in Figure 6.  

The “relay” operator Rρ1,ρ2[λ0,u](t) = Rs-r,s+r[λ0,u](t) = w(t) is shown in Figure 4.  

The “stop” and “play” operators are shown in Figure 5.  

The “play” operator may be defined inductively, referring to Figure 5, as: 

{ }{ }

0

1

[ , ]( ) ( ),

(0) ( (0),0),

( ) ( ( ), ( )), , 0 1,

( ) [0, ],

( , ) max ,min , , 0.

r

r

r i i i

r

F u t w t

w f u

w t f u t w t for t t t i N

where u t is monotone in N subintervals of T

f u w u r u r w r

λ

+

=
=
= < ≤ ≤ ≤ −

= − + ≥

 (3.3a) 

The “stop” operator may be defined inductively, referring to Figure 5, as: 
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{ }{ }

0

1

[ , ]( ) ( ),

(0) ( (0)),

( ) ( ( ) ( ) ( )), , 0 1,

( ) [0, ],

( ) min ,max , , 0

r

r

r i i i i

r

E u t w t

w e u

w t e u t u t w t for t t t i N

where u t is monotone in N subintervals of T

e u r r u r

λ

+

=
=
= − + < ≤ ≤ ≤ −

= − ≥

 (3.3b) 

The single dimension “play” operator is an instance of the two dimension “relay” 

operator, as it can be expressed as a superposition of relay elements: 

0 0
,

1
[ , ]( ) [ , ]( )

2r s r s rF u t R u t dsλ λ
∞

− +−∞
= ∫  (3.3c) 

where Rs-r,s+r[λ0,u](t) = +1 for s < 0 and -1 for s ≥ 0. 

The “play” and “stop” operator are related by the identity operator: 

r r dF E I+ =   such that  0 0[ , ]( ) [ , ]( ) ( )r rF u t E u t u tλ λ+ =  (3.3d) 

   

Figure 4 The “Relay” Operator 
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Figure 5 “Stop” and “Play” Operators 

NOTE: In the interest of brevity one may here forward drop the understood dependence 

of hysteresis operators on the initial memory curve λ0. 

A Preisach operator then transforms a continuous piecewise monotonic input 

function u(t) into another continuous piecewise monotonic output w(t) as: 

,0
[ ]( ) ( ) ( , ) [ ]( )s r s rP u t w t r s R u t dsdrµ

∞ ∞

− +−∞
= = ∫ ∫  (3.4) 

Where µ(r,s) is a nonnegative weighting function assumed to vanish for large values of  r 

and s. The Prandtl-Ishlinskii operator can be expressed in terms of the “stop” and “relay” 

operators as: 

0

.0 0

[ ]( ) ( ) ( ) [ ]( )

( )
[ ]( ) ( ) ( )

2

r

s r s r

PI u t w t r E u t dr

r
R u t dsdr u t r dr

ρ

ρ ρ

∞ ∞

−∞

∞ ∞ ∞

− +−∞

= =

= − +

∫ ∫

∫ ∫ ∫

 (3.5) 

where ρ(r) is a calculated weighting function different from, but similar to, µ(r,s).  

w 

u 

-r 

r 
“stop”  

w 
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“play”  



 

 21 

 

Figure 6 The Preisach Operator memory curve ( , )ts t rλ=  

For input u(t) a piecewise continuous monotonic function, and 0λ ∈ Λ  the 

memory curve at time t0 recording all past history of local minimum and local maximum 

values for u(t0-) in the Preisach plane is shown in Figure 6. “M” is the maximum past 

value of r,s which is usually, but not always, the saturation value, Rsupp. The bold line 

demarks the boundary λt(t1,r) which separates the two sets: 

{ }0
,( , ) [ , ]( ) 1 , 1 1s r s rA r s R u t A and Aλ± + − + + −= ∈ × = ± = + = −ℝ ℝ  (3.6) 

So that: 

( ) ( )
[ ]( ) ( ) ( , ) ( , )

A t A t
P u t w t r s dsdr r s dsdrµ µ

+ −

= = −∫∫ ∫∫  (3.7) 

and if one can determine the boundary function λt(t,r) = ∂A+(t)∩ ∂A-(t), where λt(t0,r) = 

λ0, then one can determine w(t).  By the definition of the “play” operator one has the 

identity: 

( , ) [ ]( )t rt r F u tλ =  (3.8) 

(This defines the method for most digital estimation algorithms, whereby a set of discrete 

weights µ(r,s) for the right half plane, determined from measured data of the hysteretic 

u 

r t 

s 

t1 t0 0 0 

1( , ), ( ,0) ( )t ts t r t u tλ λ= =  

0( )s rλ=
 

M 

A+ 

A- 
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device first order reversal curves, can be interpolated over the areas A+ and A- determined 

by the function λt(t,r) and then summed for the value w(t).)   

The Preisach operator can also be expressed in terms of the “play” operator: 

( ) 000
[ ]( ) , [ ]( )rP u t q r F u t dr w

∞
= +∫  (3.9a) 

where:  

0

0

00 0 0 0

( , ) 2 ( , ) ,

( , ) ( , )

s
q r s r d

w r s dsdr r s dsdr

µ ξ ξ

µ µ
∞ ∞ ∞

−∞

=

= −

∫

∫ ∫ ∫ ∫
 (3.9b) 

and if the hysteresis is symmetric: 

00 0 ( , ) ( , )w if r s r s for all r and sµ µ= = −  (3.9c) 

This becomes very important as one determines the energy equations for the stress/strain 

relationships of the piezoceramic.  

3.3 Hysteresis Represents Dissipated Energy 

Hysteresis is a manifestation of the energy dissipated in the device. The area 

prescribed by a hysteresis cycle is proportional to the energy dissipated during that cycle. 

This relationship has been extensively studied only the past decade, predominately by 

Brokate & Sprekels [10,11] and Krejci [71,76,77], and it is a critical dimension 

connecting hysteresis transformations and physical reality. This relation explains the 

convergence of the phenomena toward the anhysteretic response, and why techniques 
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such as dithering are effective. These energy relations are not incorporated in the 

hysteresis transforms, the appropriate incorporation of hysteresis transforms in the system 

force equations are crucial to proper accounting for the energy dissipation, and were first 

posed by Della Torre [27]. This proper accounting for energy allows one to reframe 

hysteresis as a disturbance, because it represents energy dissipation, it is not simply a 

mathematic transformation.  

The potential energy operator, associated with the Preisach operator, using the 

“play” operator as basis, is: 

( )
0

[ ]( ) , [ ]( )rU u t Q r F u t dr
∞

= ∫  (3.10) 

where:  

0
( , ) 2 ( , )

s
Q r s r dξµ ξ ξ= ∫  (3.11) 

and the dissipation operator is: 

( )
0

[ ]( ) , [ ]( )rD u t r q r F u t dr
∞

= ∫  (3.12) 

and again:  

0
( , ) 2 ( , )

s
q r s r dµ ξ ξ= ∫  (3.13) 

where the following identity holds: 

( ) ( ) [ ]( ) [ ]( )
d d

w t u t U u t D u t
dt dt

= +ɺ  (3.14) 

This is the energy dissipation justification for the quasilinear form of the mechanical 

force equation of the piezo actuator.  
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3.4 The Dynamic of Hysteresis: semilinear versus quasilinear 

The contribution of hysteretic energy dissipation does not manifest itself in the 

commonly applied semilinear series configuration for the mechanical subsystem in 

Figure 7. Hysteretic dissipation can only be incorporated as part of an “equivalent 

hysteretic damping coefficient”, beq, in this series connection, in which case it acts as a 

rate dependent viscous damping, rather than as a rate independent dissipation. This does 

not match the observed behavior of hysteresis dissipation at slow rates.  

 

Figure 7 The semilinear mechanical subsystem diagram. 

 

Figure 8 The quasilinear mechanical subsystem diagram. 
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The mechanical system model in Figure 8 has much to recommend it for 

matching observation and the saturation effects, as well as simulation in regards 

dissipation. This modified “moving model” may trace its origin to Della Torre [27] 

research in magnetic media. The model incorporates the inverse of the hysteresis operator 

[10,76,127] in the elastic feedback of the device, thus its dissipation contribution is rate 

independent, as observed, and not dependent on an “equivalent hysteresis damping” 

coefficient (beq=0, there is no separate viscous damping in our system). Additionally, 

extending the simple saturated operator P[u]  in Figure 9 to I+P[u]  as shown in Figure 10 

and Figure 11 as proposed by Krejci [76,77] has addressed the saturation limit and 

provided a hysteresis model which more realistically represents observed behavior, even 

if used simply as a series inverse.  

This system is quasilinear, incorporating the Preisach hysteresis operator and its 

derivative [10,71,73,76,77,126,127]. 

1

2 0

( ) ( ) ( ), ( ) ( ) [ ]( ), ( ) ( ) [ ]( ),

, , (0, ), 0

x

x

x t v t F t x t v t P v t v t I P x t

x C v C F L t

−

∞

+ = = + = +

∈ ∈ ∈ ∞ ≥

ɺɺ
 (3.15) 

and the Preisach operators, inverse operators and their derivatives are Lipschitz 

[10,11,28,29,76,127] under the assumption of continuous piecewise monotonic inputs:  

0,,][)(][)(

][][

0

],0[

11

],0[

≥∈−≤+−+

−≤−
−− tCwuwuwPIuPIand

wuwPuP
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t
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1

( )
( ) ( )

( )
( ) [ ]( )

eqx

eqx

kF t
x t v t

m m
kF t

I P x t
m m

−

= −

= − +

ɺɺ

 (3.17) 
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Figure 9 Simple Hysteresis Operator and Inverse  

(Note the operator’s counterclockwise, CCW, and the inverse clockwise, CW, evolution, 

as well as the major loop region and the “anhysteretic” collapsed curve.)  

 

Figure 10 Extended Hysteresis Model and inverse 
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Figure 11 Extended Hysteresis model block diagram representation. 

3.5 Hysteresis as a Disturbance: the Problem Reformulated 

 

Figure 12 Inverse Hysteresis Function as a Disturbance from the Linear Response. 

Let us consider for now only the nonlinearity attributed to hysteresis and assume a 

simplified model encompassing only the hysteretic mechanical subsystem. Regard then 

the hysteresis response curve Figure 12 and the quasilinear mechanical model Figure 8. 
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the same for x2, v2 and δ2<0, where 2( , )x v ∈Θ ⊂ ℝ  are members of the major hysteresis 

loop region. These values are absolutely bounded by the maximum value of saturation for 

the device major loop, and become smaller as the device approaches the anhysteretic 

response due to the “accommodation” [91] process. One can then write the equation: 

( )
0

,

: , 0, 0vf eq
in

x v bu x bu

K k
where u V b and

m m

α α δ

α

= − + = − − +

= = > = >

ɺɺ

 (3.18) 

and δ is the nonlinear component in position.  

This reduces the characterization of hysteresis to that necessary to compensate for 

it in a control context. Granted this definition does not enable one to predict the expected 

value of the output at some future time given an input profile, a valid use for a complex 

model, but it serves our purpose to compensate the nonlinear position quite elegantly.  

The Active Disturbance Rejection Control paradigm [38] treats these 

nonlinearities no different than any unknown disturbance, estimating them and canceling 

their effect in real time in order to render the system as an apparent double integrator to 

the control force, 0x u≈ɺɺ . The passive disturbance rejection paradigm implements Han’s 

closed form discrete control [37,49], which applies minimal time optimal control to reach 

the disturbance equilibrium, δ = 0. This is quite similar to and inspired by the “dithering” 

historically and effectively applied to hysteretic processes to drive them to their 

anhysteretic, minimum energy response, except that Han’s control is not necessary to be 

maximum cycling “bang-bang” control.  



 

 

CHAPTER 4 

SIMULATION DEVELOPMENT 

Experimental equipment to verify the performance of position controls at the 

nanometer scale is expensive to acquire and difficult to maintain. These are not available 

at Cleveland State University at the time of this writing. In their absence we have resorted 

to developing a simulation of the piezoceramic actuator similar to that process followed 

by earlier researchers. In fact, we have relied on the kindness of other researchers to share 

their hysteresis model data in order to assemble this simulation [23,80,82], and we are 

very grateful to them. We will succinctly review the simulation development, and those 

desiring details of the dynamics may consult the references. The simulation will adhere to 

the quasilinear mechanical model and utilize an inverse hysteresis operator simulation 

written as a Matlab m-file in C code. The code is in Appendix A:  Hysteresis Simulation 

m-files.  
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4.1 The Linear Subsystem 

The simulation system will be composed of a linear portion representing the piezo 

ceramic coupled stress/strain relationships, which result in the hyperbolic wave equations 

with multiple harmonics. We simulate this as the IEEE standard piezo ceramic model, a 

linear electrical equivalent. In series with and following the linear electrical equivalent 

harmonic subsystem will be the quasilinear mechanical subsystem incorporating the 

hysteresis operator. We will first establish the linear version of the mechanical subsystem 

for comparison, using the equivalent friction, beq, and spring, keq, coefficients as 

calculated using the stress/strain parameters. 

4.1.1 Piezo Elastic Stress and Strain Simulation 

The following model descriptions are based on “Piezoelectricity” by Walter G. 

Cady [14], “Piezoelectric Ceramics” by B. Jaffe, W. R. Cook and H. L. Jaffe [62] and 

“An Introduction to the Theory of Piezoelectricity” by Jiashi Yang [129]. The monolithic 

piezoceramic tube actuator is physically represented in Figure 13. The x axis is the tube 

axis, with tube length = lx, radius r, and thickness h. The power source for the piezo tube 

actuator is the piezo voltage Vp impressed across the thickness of the tube.  
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Figure 13 Monolithic Piezo Tube Actuator 

Stress is a tensor force of extension, compression or shear as shown in Figure 14 

with the definitions: 
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Figure 14 Elastic stress tensors 

The axes used are shown in Figure 15.  

 

Figure 15 Axes definitions for piezo equations.  

The variable “u” is an incremental displacement along x-axis in Figure 15, as is 

“v” to y-axis and “w” to z-axis. 1, 2 and 3 are alternative names for x, y and z linear 

vectors. 4, 5 and 6 are rotations about the x, y and z-axis respectively. Polarization is 

along z axis. 

Strain is the deformation displacement along an axis caused by these stresses and 

defined by the equations: 
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The general relationships between stress and strain for all piezoelectric crystals are the 

elastic compliance ‘s’ and elastic stiffness ‘c’ matrices: 





















































=



























y

x

z

z

y

x

y

x

z

z

y

x

X

Z

Y

Z

Y

X

ss

ss

x

z

y

z

y

x

6661

1611

....

..

..

..

..

....

 (4.2) 





















































=



























y

x

z

z

y

x

y

x

z

z

y

x

x

z

y

z

y

x

cc

cc

X

Z

Y

Z

Y

X

6661

1611

....

..

..

..

..

....

 (4.3) 

Fortunately, for Lead Zirconate Titanate (PZT) ceramics, the crystal structure is 

such that many elements of the matrices are zero value or duplicates of other values. This 

greatly simplifies, but does not eliminate, the mechanical coupling between axes. 
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There are also piezoelectric relationships between the electric fields and voltages along 

axes and the stress and strain. We will define only those needed for our purposes. 
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The scalars d15 , d31 and d33 are piezoelectric strain coefficients. 
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The x-axial strain can be expressed as: 
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The x-axial stress (where c11, c12, c13, are “elastic stiffness coefficients”, d31, d33, are are 

piezoelectric strain coefficients) is expressed as: 
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The x-axial force is the integral of stress across the normal surface area, which 

determines the voltage to force gain, dFx/dV : 
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consequently one determines the “piezoelectric spring constant”, keq : 
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The equivalent viscous damping coefficient is given as a function of the driving force 

frequency ω, the wave velocity, c, the resultant wavelength, λ, the damping factor, Q, the 

material density ρ, and Young’s elastic modulus Y: 

ωπ
ω
π

ρ
ρ

π
λρ

Q

Y

Q

cY

Q

c
beq ===

2

2

2
 (4.15) 

 (Remark: the measurement units for beq, [Kg/(m*sec)], are a function of strain, related to 

driving force amplitude [m] and so are different than for simple bulk viscous damping, 

which is [Kg/sec], and is not a constant) 
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so that one now has a dynamic system motion equation with a load:  

pvfxeqeq VKFxkxbxm ==++ ɺɺɺ  (4.16) 

and the static equilibrium of gravity and elastic spring:  

mglhrYF xm =⋅= π2  (4.17) 

and the state equation in controllable canonical form is: 
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 (4.18) 

and as keq/m >0 and beq/m >0 this A matrix is Hurwitz and the linear mechanical 

subsystem is BIBO stable.  

Typical piezo tube dimensions from Morgan ElectroCeramics™ [5], capable of 

nanometer scale accuracy positioning, would be lx = 25 mm, OD = 25mm, ID = 19mm, Y 

= 65x109 N/m2 and ρ = 7.75x103 kg/m3. The A matrix eigenvalues of the mechanical 

subsystem for the piezo tube used in simulation are:  

-3.975e-5 +1.333e+5i  and -3.975e-5 -1.333e+5i.  

These eigenvalues illustrate the extremely low dissipation, even when using 

“equivalent hysteresis damping”, and the high elasticity of the material. The qualitative 

comments from many authors regarding their experimental results confirm these results.  
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Figure 16 The Piezo actuator linear mechanical subsystem.                                           

4.1.2 Piezo Harmonic Electric Simulation 

The presently accepted electrical model for piezo devices, shown in Figure 17, 

IEEE Std.176-1987, is derived from W.G. Cady’s original work. Cady addressed the 

issues of dynamics at resonance by referencing Young’s analytic work in elastics and 

then defining an equivalent electric model for the combined unforced and unloaded piezo 

electric/elastic/plastic displacement equations.  
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Figure 17 IEEE Std.176-1987 

The more detailed electrical model in Figure 18 shows the relation from the 

physical power source voltage Vin through a source impedence R0 to the impressed piezo 

voltage Vp, which will exhibit multiple harmonics.  
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Figure 18 Piezo electrical subsystem schematic. 
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The “n” harmonics are determined by the bar/tube physical dimensions and natural 

frequencies of mechanical oscillations and exhibit themselves as harmonics of the 

impressed voltage Vp.  

 

Figure 19 Piezo Harmonics 

The wavelength of nth harmonic is 

n
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2
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and the wave velocity 
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where Y is Young’s modulus and ρ is the piezo density. Thus: 
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These mechanical harmonics are then modeled as electrical parameters so that they can 

be matched to the electrical drivers. The piezo tube can be modeled as a simple capacitor 

at low frequencies: 

h
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C xπε 2

0 ⋅=  (4.26) 

where ε  is the dielectric permittivity of the piezo tube. The piezo tube model must 

include the effect of harmonics, and recalling the coupled piezoelectric strain coefficient 

d31 one can calculate the nth harmonic parameters: 
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so more specifically for first harmonic: 
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and more generally: 
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such that the state equations in controllable canonical form: 
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where 0 1 2 0 1 2, ... , ...n na a a and b b b  are all positive scalars so that the A matrix is Hurwitz 

and therefore the harmonic electrical subsystem is BIBO stable. 

This leads to our model in Figure 20. Typical piezo tube dimensions from Morgan 

ElectroCeramics™ [5] for a tube capable of nanometer scale motion would be lx = 25 

mm, OD = 25mm, ID = 19mm, Y = 65x109 N/m2 and ρ = 7.75x103 kg/m3 which yields: 

f1 = 58010 Hz, C0 = 8.66 nF, C1 = 890 pF, R1 = 41.1 Ω and L = 8.46 mH. 

Different length tubes, or different configurations, would yield higher or lower 

bandwidths. Assuming one would operate below this primary harmonic frequency, the 

linear electrical model for the piezo tube is a third order system. The A matrix 

eigenvalues of the electrical subsystem for the piezo tube used for simulation are:  

-1.154e+8,  -2.489e+3 +3.645e+5i, and  -2.489e+3 -3.645e+5i.  
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Figure 20 The Piezo actuator linear electrical subsystem.  

A typical response of this electrical model (for a similar device) would resemble 

that of Figure 21, with n pole-zero pairs corresponding to resonant and anti-resonant 

peaks. One would normally choose to operate at a frequency below the primary harmonic 

frequency when using a linear control law.  
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Figure 21 Root locus and Bode plots example of piezo harmonics [1]. 

It may prove advantageous to use singular perturbation method to decouple this 

electrical subsystem into two parallel additive paths, as we are most interested in the 

stability of the fast subsystem for our analysis, expecting the slow subsystem will remain 

stable as well. The singular perturbation methodology applied to the open loop electrical 

plant then is represented as:  
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[ ]ε=2B  (4.39) 

[ ]12101 −= nbbbC ⋯  (4.40) 

[ ]nbC 22 =  (4.41) 

so by defining ζ = χ2n+1 and ε = R0C0 (which is Order 10-8) one redefines the system in 

the Standard Singular Perturbation Model. 

One determines that the electrical subsystem may be completely decoupled for 

any choice of harmonic model order n. For the first order harmonic the fast subsystem 

transient must approach the stable slow response within a time boundary ε < ε* = 1.88e-

12 seconds. Using the previous dimensions of the piezo the max value of the control 

signal input impedance, R0 to achieve this fast response is .00021 Ω or an equivalent 12 
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gauge copper wire length ~ 40mm. This is a realistic value and would guarantee stability 

of both the completely separated ‘fast’ and ‘slow’ subsystem approximate models, when 

separated using singular perturbation method, and for any bounded input for all t > 0.  

For harmonics above first order one finds the transient must settle much faster to 

assure complete separation. For the second harmonic, as an example, the transient time 

boundary is ε < ε* = 3.54e-24 seconds, R0 < 4e-16 Ω and a wire length < 7.5e-14 m. This 

is not realistic, indicating one cannot make a separation assumption if one wishes to 

apply control input signals to this system above the first harmonic. We have thus not 

made a separation assumption for analysis of the ADRC control law. The simulations 

have assumed first order harmonics, so we have limited input signals below these 

frequencies.   

4.1.3 The Complete Piezo Linear Model  

The complete piezo linear state equation (assuming input below the first harmonic) in 

controllable canonical form: 
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The characteristic polynomial is more space efficient to show the BIBO stability of the 

open loop linear system than the much longer eigenvalue calculation: 
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so that the expected positive values of all scalar parameters indicate the A matrix is 

Hurwitz and all eigenvalues have negative real components as is the specific case for our 

simulation model. Where, in the general case, n
in CtV ∈)(  is assumed to be an n 

differentiable function of t and , , , , ,i j eq eq vfa b m b k K +∈ℝ .  

The complete linear equation of motion is represented in Figure 22.  
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Figure 22 The Piezo actuator complete linear subsystem. 
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4.2 Simulation of Nonlinearities of Piezo Tube Actuators 

Thermal nonlinearities are the most pronounced in piezo devices. Voltage “creep” 

and other elastic/plastic nonlinearities are found in piezo devices. These two 

nonlinearities are very slow responding compared to the hysteresis nonlinearity of piezo 

devices. Thermal drift and voltage creep can be and usually are modeled and controlled 

as slowly time varying parameters and a voltage offset drift in the motion equations.  

))(1)(()(),( VfttVtKtVF creeppvfx ⋅+⋅=  (4.43) 

We will follow that same practice here in order to concentrate our control 

attention on the more difficult hysteresis phenomenon. In what follows we will resort to a 

definition of seminorms unless otherwise specifically called out as L2 or L∞ norm: 

0

0

[0, ] 0

:[0, [ ,

: max ( ) 0.
t s t

C is the spaceof continuous functions f with seminorm :

f f s for f C and t
≤ ≤

∞ →
= ∈ ≥

ℝ
(4.44) 

4.2.1 Thermal Drift: Simulation as a Slow Ramp Force Multiplier 

As was evident in Figure 1, the thermal drift of many piezo ceramic materials can 

be several percent over even small changes in temperature, and does not present any 

obvious path to mathematic representation.  

)(2 331331123111 dcdcdcrKwhereVKF vfpvfx ++== π  (4.45) 

Though Kvf is a continuous function of the slowly changing temperature 

dependent coefficients c11, c12, c13, d31 and d33, these are measurable bounded values: 
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0
max[0, ] 0

: max ( ) , 0vf vf vf vfT s T
K K s K for K C and T+≤ ≤

= ≤ ∈ ∈ ≥ℝ  (4.46) 

and for our purpose herein we shall then assume Kvf as a continuous function of time: 

( ) (0, )n
vfK t C∈ ∞  (4.47) 

and is the un-modeled dynamic bounded difference attributed to thermal drift. Simulation 

of thermal drift will be accomplished with relatively slow ramp and/or sinusoid multiplier 

to the scalar 0
vfK .  

4.2.2 Voltage Creep: Simulation as a Saturated Slow Ramp Input Offset 

Application of a DC bias, such as the “engage” offset voltage, to a piezo tube 

scanner causes an initial and abrupt change in deflection, but the subsequent “creep” to a 

final position is slow as in Figure 2.  

Richter et al, in 2001 [104] had modeled and confirmed creep as a function of 

impressed voltage on the input to the mechanical subsystem, reinforcing Vieira’s earlier 

experimental results [125].  

( , ) ( ) ( )(1 ( ))x vf in creepF V t K t V t t f V= ⋅ + ⋅  (4.48) 

This representation is somewhat misleading, in that the value might appear unbounded, 

this is not the case, as fcreep is assumed bounded continuous function of voltage: 

0

lim ( ) 0

( ) : max ( ) .
sat

sat creep
V V

in in sat
r t

V and f V

so that V t V r V

+ →

≤ <

∈ =

= ≤

ℝ

 (4.49) 

so we will assume:  
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( )(1 ( )) : ( ) ( )in creep in creepV t t f V V t V t+ ⋅ = +  (4.50) 

where ( ) (0, )n
creepV t C∈ ∞ is the dynamic un-modeled bounded difference attributed to 

voltage creep. 

To repeat, the control system will necessarily need to be tolerant of slowly 

varying position, velocity and acceleration errors resembling measurement uncertainty in 

classic control scenarios. Simulation of position creep will also be accomplished with 

relatively slow ramp offsets to inputs.  

4.2.3 Hysteresis: The quasilinear model choice for simulation. 

One has several choices how to model the piezo actuator system, the most 

common method to model the piezo actuator is to separate the linear and nonlinear 

components of the model as in Figure 23 and Figure 24, and model the hysteresis as a 

series operator acting on either the input or the output of the linear subsystem. Then most 

researchers to date have resorted to an inverse hysteresis operator to linearize the system 

such that various linear control laws may be applied.  

The contribution of hysteretic energy dissipation is not manifest in the commonly 

applied semilinear series configuration. In Chapter 3 we discussed the reasons for our 

preference of the quasilinear mechanical model in Figure 25. 
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Figure 23 Semilinear piezo model with inverse hysteresis compensation.  

 

Figure 24 Semilinear piezo model with feed forward hysteresis compensation. 

 

Figure 25 Quasilinear piezo mechanical model with hysteresis energy dissipation. 

Our open loop piezo system model then becomes as in Figure 26.  
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Figure 26 Complete piezo quasilinear model with hysteresis energy dissipation. 
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 (4.51) 

4.2.4 Semilinear vs Quasilinear: Results Validate the Preference 

A Comparison of the open loop simulation results for a linear system model, a 

semilinear model and a quasilinear model vividly illustrate the reasons for choosing the 

quasilinear model for the equations of motion.  Simulation results are in Figure 27 and 
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Figure 28. The sinusoidal input (blue-solid line) is near the mechanical subsystem 

eigenvalue frequency and includes DC offsets and drift.  
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Figure 27 Open loop piezo model energy dissipation response.  

The upper graphic in Figure 27 overlays the output of the three open loop models 

on top of the input reference signal. The lower graphic in Figure 27 overlays the 

difference of the three open loop models, compared to the input reference signal. The 

linear model and the semilinear model with a series hysteresis operator have negligible 

energy dissipation, dependent solely on the “equivalent hysteresis damping” coefficient, 

beq, and it is remarkable the series hysteresis accounts for little additional energy 

dissipation. The energy dissipation evident in the quasilinear model is apparent, and 
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proportional to displacement, not rate. The values for the “equivalent hysteresis 

damping”, beq, and “equivalent elastic coefficient”, keq, were the same in the three 

models. It should also be noted the load mass matched the piezo actuator mass in this 

simulation, a large mismatch of mass would exacerbate these differences, as in other 

methods of actuation.  

 

Figure 28 Open loop piezo model Simulation diagrams. 

In conclusion, the difference in fidelity to experimental results between the 

semilinear model and the quasilinear model could not be more stark, as shown in Figure 

27. The energy dissipation is well accounted and consistent with rate independent 

hysteresis. Thus the quasilinear mechanical model will be utilized. As for the linear 

electrical subsystem model, singular perturbation analysis reveals a simulation with input 
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frequency up to the first harmonic would be validly decoupled from the mechanical 

subsystem, and practically achievable. The slow reacting thermal parameter drift and 

voltage creep are modeled as a slow time varying ramp multiplier for the voltage control 

variable. The unknown disturbance is modeled as either a brief square pulse equal to 50% 

if the max control signal during the sinusoid input period, and then followed by a 50% 

step offset during the 0VDC regulation period of the simulation. Thermal noise on the 

input reference is simulated by a white noise source equal to 1µV superimposed on the 

reference signal. Electrical sensor noise is also simulated by a white noise source equal to 

1µV superimposed on the feedback signal.  

Therefore, we will use a simulation verification model as in Figure 26 in order to 

validate our control design strategies. Our reference input is a 1nm sinusoid at the 

mechanical resonant frequency of a common piezo ceramic actuator, 21kHz. This 

reference is modulated by a trapezoid offset during the first 5 cycles, and then followed 

by 5 cycle periods of 0VDC reference input.  

 



 

 

CHAPTER  5 

CONTROL STRATEGIES IN THE DISTURBANCE REJECTION PARADIGM 

Three disturbance rejection strategies, one active, one passive, and one hybrid, are 

considered. All three strategies are novel in their own, and certainly novel for this 

application to a hysteretic process. The author’s thesis is that these strategies are 

particularly well suited for many difficult hysteretic applications, not just this application. 

The results demonstrate all three strategies achieve performance superior to that reported 

previously. Performance in this regard is the ability to compensate for the hysteresis 

nonlinearity, rendering the apparent system essentially linear. The LADRC has been 

demonstrated before to compensate for unknown disturbances and nonlinear behavior by 

canceling these effects and presenting an equivalent linear double integrator plant to the 

position controller, 0y u≈ɺɺ . A similar effect can be achieved if one can find an aggressive 

inner velocity loop which can successfully present an equivalent single integrator plant to 

the position controller, 0y u≈ɺ .  

Linear plants and linear controls using cascaded loops would likely be attempted 

here by the uninitiated, but are unsuccessful because the device energy dissipation is so 

low, the energy stored is so high, and the hysteresis adds additional unknown phase lag. 
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Variations of PID control were investigated as confirmation, in both single position loop 

and cascaded velocity and position configurations, with feed forward and feedback. The 

stable bandwidth for these controls was not acceptable, given the very low damping for 

the system, even without the hysteresis lag. The results are available but not part of this 

document, due to length. The use of a velocity reference command for an inner velocity 

control loop is still valid and a key component of this aggressive disturbance rejection 

strategy, given the appropriate reactive controls.  

The active disturbance rejection strategy compensates for hysteresis disturbance 

by estimating and canceling its effects in real time. The passive disturbance rejection 

strategy compensates for hysteresis by generating a control sequence to drive the device 

to δ = 0, the zero disturbance equilibrium, the anhysteretic behavior. The third strategy is 

a hybrid which combines positive attributes from both active and passive solutions. What 

significantly differentiates these strategies from past recorded efforts are the minimal 

knowledge required of the process, particularly they do not use any complex and unique 

inverse model of hysteresis. Hysteresis is a tedious and difficult phenomenon to 

characterize, and cannot be done while the process is on line, so this alone is a major 

positive contribution in the search for a practical solution to this application problem.  

We consider control strategies which can be implemented with minimal process 

knowledge and tuned using a heuristic as superior to other choices, assuming they meet 

the performance and stability criteria, because they are more likely to be implemented 

and maintained. We have followed that guide herein, the controls were designed with the 

minimum data book knowledge and tuned using a heuristic explained in the text. 

Afterward we analyze the empirically designed and tuned control against our simulation 
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model to determine how stable it might be. This analysis is noted in Appendix B: 

Simulation Tuning Analysis. In most cases the heuristic approached the desired response 

very closely. 

The results for our passive disturbance rejection strategy are quite remarkable for 

such an elegantly simple implementation. The knowledge of the process required for 

these results is minimal and the margin in choosing the design and tuning parameters is 

relatively broad. Even more encouraging for our passive strategy alternative is that the 

design parameters are related to the controller hardware and software rather than the plant 

limitations. These are desirable choices.   

The same criteria apply to our proposed active disturbance rejection strategy. One 

desires exceptional accuracy for tracking during transitions as well as steady state, as well 

as minimal reaction time to disturbances for regulation. Additionally, one should not only 

compensate for the nonlinear and/or un-modeled dynamics of the device, heretofore the 

concentration of hysteresis modeling strategies, but also compensate for the 

unaccountable and inevitable system disturbances. Our active control strategy should also 

minimize, if not completely obviate, the need for a process model, and for any process 

knowledge that must be used the margin of error in the estimation should be as large as 

possible.  
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5.1 The Limitations of Model-Based Control in the context of Hysteretic Dynamics 

The hysteresis control problem is a definitive study in the limit of model-based 

control. There is still today significant debate among the engineers and applied 

mathematicians on the best model to use for the control of hysteretic phenomena. What is 

lost in the discussion is any question of the need for any model. These phenomenological 

models require copious data to characterize hysteresis to an acceptable level of accuracy, 

and even afterward the model is unique to each device controlled. The model is so 

computationally intense as not to be readily applied in some processes, even though 

computational power grows exponentially. These factors clarify and amplify the 

limitations of model-based control strategies for some applications.  

We have therefore made a conscious choice herein to not investigate model-based 

control strategies. These would include state feedback controls with or without observers, 

H∞ controls, loop shaping controls based on frequency domain models, etc. These have 

been demonstrated in prior research.  

5.2 The Disturbance Rejection Paradigm provides the Necessary Capabilities 

Model-based controls would not meet our “practicality” criteria, while error based 

linear control variations cannot be made sufficiently aggressive to compensate the 

hysteresis and emulate a linear plant for the outer position controller, without becoming 

unstable. Aggressive disturbance rejection provides the necessary capabilities. 
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“Aggressiveness” is a key component of our control strategy. We will shortly 

introduce the “Han Function”. Though one may call the Han Function “passive” because 

it reacts to disturbance rather than actively cancel disturbance, it is by no means passive 

in its reaction. Aggressive rejection of disturbance from external sources and aggressive 

compensation for the hysteresis disturbance is necessary for meeting the goals. This was 

confirmed early in our testing, a single Han Function in the position loop was difficult to 

apply successfully. The challenge of compensating for the natural phase lag of the device 

and the low dissipation and large energy storage of the device, plus the phase lag 

introduced by the hysteresis, put a single position loop solution “on the edge”. The 

introduction of an external disturbance would trigger the control to saturate to maintain 

performance, or the detuning to prevent control saturation would not meet performance.  

Conversely, by aggressively reducing the delay in reaction to disturbance with an 

inner velocity loop one is able to achieve remarkable results using only the Han1 

Function. The disturbance reaction time reduction proves critical for this passive strategy 

as well as the active strategy. A quick reacting and aggressive inner velocity loop has a 

similar effect as the active disturbance rejection paradigm, the outer position control loop 

observes an approximate system 0y u≈ɺ .  

5.3 Passive Disturbance Rejection Control: The “Han Function” 

Experimental evidence has demonstrated the hysteretic response will converge to 

an analytic function referred to as the “anhysteretic” curve [127]. Control signal 
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“dithering”, a technique studied [2,81,115,127] and successfully used during 1960 and 

1970 decades, was demonstrated to accelerate this convergence, and was the inspiration 

for investigating time optimal control as the passive strategy. Dithering injects a 

continuous and open loop “bang-bang” disturbance into the device in order to force the 

device to more quickly approach the “anhysteretic” curve response. This technique is 

effective, but very energy inefficient. Our passive control thesis is that a nonlinear, first 

order, closed form discrete time optimal control introduced by Han in 1999 and further 

developed by Gao [37], when used as an inner velocity loop, can serve a similar purpose 

in a closed loop and controlled fashion, compensating for the hysteresis disturbance by 

driving it to equilibrium quickly and with less energy. (We shall refer to this as the “Han 

Function” from here forward.) This inner loop velocity control, combined with various 

choices of outer position loops, both linear and nonlinear, would provide an elegant 

solution. The choice of Han’s closed form direct discrete implementation also benefits 

from the fact it is a proportional control, not “bang-bang”, a weakness of “dithering”.  

It will be demonstrated that the simplest 1st order Han1 Function inner velocity 

loop is sufficient to compensate for the +20% hysteresis nonlinearity, such that many 

linear control choices are available to address the fine position. We have chosen a most 

direct linear Proportional + Integral outer loop position controller for illustration. An 

additional benefit of the Han Function is its ability to passively yet effectively reject 

external disturbance other than hysteresis, this is also demonstrated in simulation.  

We also consider a nonlinear, second order Han2 Function outer position 

controller, used in concert with the simple inner loop first order Han1 Function. These 

choices all work well under nominal conditions, but have different disturbance and noise 
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rejection capabilities. It is necessary in this strategy to provide a reference velocity 

command, whether separately pre-computed or somehow derived from the position 

reference command. The accuracy of resulting position is therefore also related to the 

method chosen to generate the velocity reference.  

The velocity of the piezo device is not assumed to be directly measurable, so we 

have used a simple differentiator of measured position as one means of determination for 

velocity feedback, this gives a less reliable measure in our simulation, which is 

purposeful. One may choose state estimation as done herein for the active control, or a 

tracking differentiator (TD) [50,51,84] for more accurate estimation. Accuracy and 

immunity to noise in the position measurement and/or the position reference, both of 

which we have simulated, are factors for this choice.  

5.3.1 Description of the Han Function 

Time optimal control study dates to the decades of 1950 and 1960s. It gained 

much attention and spawned much research leading to the optimal control theory [4] of 

the 1960’s best associated with the Pontryagin [99] minimum principle. The well known 

2nd order Continuous Time Optimal Control (CTOC) for a double integral LTI plant 

x u=ɺɺ adheres to a sign function usually switched, (in that seldom are the conditions 

2 2
1 10, 0

2

x x
x x

r
+ = =  actually met), according to the relationship of the state to the 

quadratic switching curve: 

2 2
1( ),

2

x x
u r sign s s x

r
= − = +  (5.1) 
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Likewise the minimum time optimum control for a single integral plant x u=ɺ  is: 

( ),u r sign s s x= − =  (5.2) 

The benefits of this control law are the maximum accuracy to reference command 

and minimum reaction time to disturbance, with the negative cost of frequent switching 

of the control (“bang-bang”) between its maximum values, particularly near the 

equilibrium state. Two most common suboptimal modifications to these control laws are 

the substitution of a dead zone or a linear switching region in the vicinity of the 

equilibrium. Another choice is replacing the sign(s) function with: 

( ),
( , )

,

sign s s
sat s s

s

δ
δ

δ
δ

>
=  ≤

 (5.3) 

In most all applications these continuous control laws must be implemented 

digitally, commonly being susceptible to noise and unwanted cycling. Han addressed 

discrete control for discrete time plants directly in 1999, developing a closed form 2nd 

order time optimal control law for the discrete time system, not a sampled continuous 

system. Han’s solution benefited from the fact it is not “bang-bang” control but possesses 

an “Isochronic Region” (IR) wherein the control is proportional to the error and not 

extreme. We will summarize that development here, but not in a rigorous fashion. The 

results are fully explained by Gao [37] and the reader is invited to reference his detailed 

development. 

Consider the discrete time double integrator plant: 
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( 1) ( ) ( ), ( )

1 0

0 1

x k Ax k Bu k u k r

h
where A and B

h

+ = + ≤

   
= =   
   

 (5.4) 

In this system r is the maximum control signal to be applied and h is the sample 

rate for the controller (Usually different, and slower than, the sample period for 

measurement system and the hardware itself). The problem definition is then to drive the 

state from the initial value x(0), back to the equilibrium state [ ]( ) 0 0
T

x k =  in the 

minimum steps with ( )u k r≤ . 

[ ]{ }*( ), ( ) , . . * min | ( ) 0 0
T

find u k u k r s t k k x k≤ = =
 (5.5) 

The methodology for developing a control law is quite subtle, one treats each state 

x(kh) as the initial condition x(0) and calculates u(0) accordingly at each sampling instant, 

repeating until [ ]( ) 0 0
T

x k = . A key feature of the control law is the Isochronic Region 

(IR), G(k), within which there is at least one (0) ( )x G k∈  with a control sequence 

(0), (1),... ( )u u u k  which results in [ ]( ) 0 0
T

x k = . Let us first determine a few of the early 

states for the system: 

2

1 2

(1) (0) (0)

(2) (1) (1) (0) (0) (1)

( ) (0) (0) (1) ( 2) ( 1)k k k

x Ax Bu

x Ax Bu A x ABu Bu

x k A x A Bu A Bu ABu k Bu k− −

= +

= + = + +

= + + + + − + −

⋯

…

 (5.6) 

so that if one sets [ ]( ) 0 0
T

x k =  one has: 

1 2 1(0) (0) (1) ( 2) ( 1)k kx A Bu A Bu A Bu k A Bu k− − − −= − − − − − − −…  (5.7) 
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and with 
1 1

,
0 1 0 1

k kkh kh
A and A− −   

= =   
   

 one has: 

2 2

1 1

(0) ( 1), ( ) ( 1), ( )
k k

i i

ih ih
x u i and thusG k u i u i r

h h= =

     = − = − ≤    − −     
∑ ∑  (5.8) 

For the sake of brevity an explanation of the control law sequence using a 

graphical representation of the Isochronic Region superimposed on the x1, x2 phase plane 

is most instructive. The details can again be referenced [37] as desired by the reader.  

The control sequence is dependent upon the initial state x(0) location in the phase 

plane relative to the IR. Figure 29 illustrates the first two regions, G(1), the line on which 

an initial state x(0) reaches equilibrium in one step, and G(2), the parallelogram within 

which an initial state x(0) reaches equilibrium in 2 steps. The additional regions 

G(3)…G(k) are developed accordingly to determine the Isochronic Region shown in 

Figure 30, highlighting the regions G(1) and G(2). The boundaries Γ+  and Γ- mark the 

transition between full saturated control |u| = r and the linearly scaled control region. 

Any state x(0) outside these boundaries will command a control |u| = r until reaching one 

of the boundaries, at which time the control continues as |u| = r while the state follows 

the boundary to reach the region G(1), at which time a control signal |u| < r is 

commanded to reach the equilibrium. A state x(0) within these bounds will first command 

a control signal |u| < r which will drive the state x(1) onto the boundary, from which the 

state will again follow the boundary until region G(1), and then to the equilibrium. The 

IR example herein assumes particular values of r and h, but the general shape is 

consistent for different parameter values, any differences consist of dilation and shear. 
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Figure 29 Regions G(1) and G(2) for the Han2 Function construction 
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Figure 30 Han2 Function Isochronic Region 

The full 2nd order discrete time optimal control (Han2 Function) is written as 

Equation (81). It is interesting to compare the switching curves for the minimum 

continuous Time Optimal Control with that of the Han2 Function shown in Figure 31.  
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Figure 31 Han2 Function versus continuous TOC switching curves 

The 1st order Han1 Function law for ( 1) ( ) ( )x k x k hu k+ = + , analogous to 

collapsing the linear switching zone for the 2nd order system down to that section of the x 

axis lying between  –rh and +rh , is: 
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 (5.10) 

An example of the 1st order Han1 Function control sequence for two different 

initial values of x(0) are illustrated in Figure 32, which is the G(1) line extended 

infinitely. Full control available, |u| = r, is commanded until the state |x(k-1)| < rh, at 

which time a linearly scaled control |u(k)| < r is applied to reach the equilibrium x(k)=0.  

 

Figure 32 1st order Han1 Function paths to equilibrium  

We will demonstrate both 1st and 2nd order Han Function in simulation, as they 

provide the benefits of TOC while alleviating the costs of digitizing a continuous TOC.  

5.3.2 Design and Tuning considerations for the Han Function 

The Han Function design parameters are the maximum control value, r, a limit of 

the power source, and the step size, h, can be chosen as some multiple of the sampling 

period, Ts. The value of r is first, and obviously, bounded by the physical maximum 

control value available, so in practice one normalizes the gain r, after the Han Function 

block. For the piezo actuator used herein, which has an electromechanical “gain” dx/dV ≈ 

-1e-9 one need begin with a value r > 1e9 in order to approach the physical control limit 

r r r r -r -r x 0 
xA(0) xB(0) 

rh -rh 
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set for our simulation, ±1V. One can rapidly arrive at a usable solution using the 

following heuristic. The choice of “gain”, r, determines most the accuracy and 

disturbance rejection time for the Han Function. Find that value of r to achieve desired 

response, usually with continuous control cycling. The value for step size, h, then serves 

to modify the width of the Isochronic region between Γ- and Γ+. This adjustment relieves 

the control from rapid switching “chatter”, and also serves to raise the tolerance of the 

system to noise. Indeed, in a noisy environment this is the parameter to alter.  

5.3.3 Velocity Loop with Han1 Function  

 

Figure 33 System Diagram, Han1 Function in velocity loop  

One must immediately remark this most simple 1st order Han1 Function 

Controller, velocity only, has significantly compensated for the hysteresis nonlinearity 

WITHOUT a MODEL incorporated in the controller. The hysteresis we have modeled in 

the simulated plant has almost 20% nonlinearity. Figure 34a is the plot of the signal 

transform through the inverse hysteresis operator in the mechanical force feedback, 

indicating the nonlinear strain. Figure 34b is the position transform for the closed loop 

velocity controlled piezo, from reference to output. The piezo now appears essentially 

linear, the input is a velocity reference, rɺ , and the output is the position y. The velocity 

_ 
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d/dt 
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loop Han1 Function has made the plant appear as 0y u≈ɺ  for any outer loop position 

control. 
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Figure 34 Hysteresis before and after Compensation, Han1 Function velocity control  

This configuration establishes a baseline for other comparisons. The controller is 

easy to implement in hardware using an amplifier with saturation in the velocity loop. 

The control appears as a negative gain (the piezo is a negative divisor) derivative control 

for small errors and signals within the Isochronic Region, and is tuned accordingly. The 

velocity reference must be fed forward to the velocity feedback loop, with the 

suggestions made earlier regarding the generation of this reference. The accuracy results 

in Figure 35 with this elegantly simple standard component configuration are remarkable, 

particularly the fact the hysteresis nonlinearity is almost totally compensated by the 

velocity loop, allowing the outer fine position loop to better manage the accuracy 

performance requirements. What is also remarkable is the ability of the 1st order Han1 

Function velocity control to resolve disturbances before the position loop, and the low 

level of control effort applied to achieve the result, due in no small part to the Han 

Function minimal time response. It is a noteworthy reminder here, as is true for all the 
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simulations, that the input reference is a sinusoid at the natural frequency of the 

mechanical subsystem, which has minimal natural damping. This is a system normally to 

be avoided by the classic “bang-bang” continuous TOC control law.  
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Figure 35 Velocity, Error and Control results for Han1 Function velocity control  

The velocity tracking error in this case is <2e-7/8e-5 = 0.25%. Notice also the 

single sample period tracking error transients are triggered by the abrupt velocity changes 

due the triangle and square pulse modulation in the reference inputs, and not by the 

disturbances to the system. This would indicate an appropriate reference input filter 

would alleviate this issue, separate from the controller. This will be seen consistently in 

all simulation results, to a greater or lesser degree. It must also be brought to attention the 

simulated 50% max load disturbances are also effectively quelled by the 1st order Han1 

Function. And not least, the control signal is well bounded less than the ±1V saturation 

constraint. This also emphasizes the benefit of the time optimal response. 

The simulation reference signal is a 1 nanometer peak to peak sine wave 

modulated by a triangle signal and offset by DC bias at various intervals for ~235µsec, to 

test tracking, eventually returning to zero and holding zero for another 235 µsec in order 
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to test steady state regulation and disturbance rejection. This period, to be precise, 

corresponds to 5+5=10 cycles at the primary frequency of the mechanical system 

(21kHz). One will note the large pulses in the error and control due to the transitions of 

triangle modulation and DC offset periods. The system experiences a 25 µsec wide pulse 

disturbance equal to 50% of peak force beginning at 10 µsec, and another 50% of peak 

force step disturbance beginning at 250 µsec. 

For our simulations we have chosen to normalize based on our knowing the 

model parameters: 
1 1

1 ( ( )
133s

r

u maxcontrol force), T sampling period
kω

= = = so that 

we can stress the simulation by driving input at the resonant frequency and limiting the 

control to ±1V.  

5.3.4 Cascade Control: Han1 Function velocity loop with PI position loop 

 

Figure 36 System Diagram, Cascade Han1 Function velocity loop with a PI position loop  

It should be obvious, given the results from the velocity inner loop controlled with 

the 1st order Han1 Function, that a linear PI control as the outer position loop would yield 
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good results. The hysteresis compensation in Figure 37 and the tracking accuracy and 

control effort in Figure 38 illustrate these results. 
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Figure 37 Hysteresis response before and after Compensation, Han1 Function velocity 

with PI position control 

One observes immediately the control is well behaved, as the Han1 Function 

velocity control is tuned independently, and then the PI position control is connected. The 

controller does cycle in the presence of noise, and this can be adjusted with the width of 

the Isochronic Region, if desired. (This was purposely not done here for illustration) The 

max error during discontinuous inputs is <6e-12/1e-9 = .6%, which can be addressed by 

careful input profiling. The noise error is <11e-13/1e-9 = .1%, and better still is stable 

damped rather than oscillatory. The 50% disturbance rejection is quite good, with error 

<5e-13/1e-9 = .05%.  
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Figure 38 Position, Error and Control Signals, Han1 velocity with PI position control  

The simulated system additionally experiences zero mean random noise injection 

of ±1uV at the reference input for ~25 µsec beginning at ~300 µsec, ±1uV at the output 

feedback for ~25 µsec beginning at ~350 µsec, and both sources simultaneously for 

~25 µsec beginning at ~400 µsec, each random source has a different kernel. This noise 

level is consistent with radiated noise entering via the feedback measurement, and 

thermal noise and/or electrical noise in the reference input.  

5.3.5  Parallel Control: Han2 Function position and Han1 velocity control 

One designs this system as one would design most cascaded loop systems, adjust 

the velocity loop to achieve the best following, which was done as part of the single 1st 

order Han1 Function control, and then tune the 2nd order Han2 Function position loop to 

fine tune error.  
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Figure 39 System Diagram, Parallel Han2 Position and Han1 Velocity loops 
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Figure 40 Han2 Function position, Han1 velocity: Position Error and Control results 

The 2nd order Han2 Function has small signal steady state error bounded by choice 

of rh2, this may be preferable to the dynamics that accompany linear controls. The max 

tracking error in Figure 40 is larger than the steady state error, tracking error <5e-12/1e-9 

= 0.5% while steady state error <2e-14/1e-9 = 0.002%. Even so, <0.5% error is 

significantly lower than some of the inverse model-based systems studied. Notice also the 

max tracking error is triggered by the abrupt velocity reference changes and not by the 

disturbances to the system, this would indicate an appropriate reference input filter would 
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alleviate this problem, separate from the controller, leaving one with a .002% disturbance 

rejection controller for this Han Function pair.  

5.4 Active Disturbance Rejection Control 

For the active compensation strategy we have chosen a novel concept known as 

Active Disturbance Rejection Control (ADRC) using an Extended State Observer (ESO). 

The ESO is normally executed as a linear full state observer, with an augmented state 

estimating the contribution of nonlinearities and poorly modeled dynamics to the 

measured position output. The ESO and ADRC strategy has been demonstrated 

exceptionally capable [35-40,43,48,49,58,59] to control macro and micro scale processes, 

this will be a first effort to control at the nanometer scale. The objective for ADRC using 

ESO is simplicity itself, to estimate the effect of any unknown phenomena and 

compensate in real time via the augmented state in the ESO. What differentiates this from 

other augmented state observers is that a model for the process is not required to 

assemble the observer. An ESO using a linear Proportional + Derivative (PD) control 

strategy will be demonstrated, referred to as Linear ADRC (LADRC) or ADRC(PD). The 

results are extraordinarily effective, demonstrating the ESO ability to estimate and 

compensate for the hysteresis, in real time, without benefit or complexity of an inverse 

hysteresis model.  
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5.4.1 The ADRC Paradigm 

The functional relationship between the input force and acceleration is: 

( , , , )x f x x w u=ɺɺ ɺ  (5.11) 

where x is our position output, u is our force input, and w accounts for un-modeled 

dynamics in the system state and input, as well as unknown disturbances, including 

hysteresis. Let r represent the reference trajectory for a tracking application such that 

e r x and e r x= − = −ɺ ɺ ɺ  so the goal for tracking and regulation control is to drive their error 

to zero. One may also choose to be one step less abstract in the description of the process: 

( , , ) ,x f x x w bu b= + ∈ɺɺ ɺ ℝ  (5.12) 

where all the nonlinearities and forces not traceable to the linear application of u is 

enveloped by the function ( , , )f x x wɺ . Therefore, if the desired response of the system is 

that of a simple linear double integrator: 

0x u=ɺɺ  (5.13) 

then our necessary control is obviously: 

0 ( , , )u f x x w
u

b

−=
ɺ

 (5.14) 

Granted, this is an ideal configuration, yet the philosophy of ESO and ADRC is to 

asymptotically approach this ideal. The control challenge then becomes how accurately 

one can estimate the value of ( , , )f x x wɺ  in real time, so that now one designs a simple 

control u0 rather than a complex u. In fact, the robust Han1 Function is a prime candidate 

for u0. This is the essence of the ADRC, whereby the real, poorly modeled, disturbed 
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process is made to appear to the controller as a well behaved and trivial linear system. 

There is nothing novel to estimate disturbances and compensate for them, as this has been 

a practice of Disturbance Observers (DOB) for some years, but the method of estimation 

using the ESO is new. 

The design of the ESO is thus the determining component for a successful 

implementation of ADRC. The ESO was proposed by Han [48,49] but significantly 

simplified and made practical by Gao [38-40]. The ESO is an augmentation of a full 

order state observer where 1 2 3, ,x x x x and x f= = =ɺ  so can be described as a linear 

system with all nonlinear behavior being represented by f and h f= ɺ . The linear 

representation of the state matrix A is also consistent with the boundary conditions of the 

hysteretic device and the quasilinear representation for the hysteresis. The hysteresis 

contribution enters via the internal dynamics of the device and not through the input 

force. The integral relations between acceleration, velocity and position at the device 

boundary hold. 

x Ax Bu Eh

y Cx

= + +
=
ɺ

 (5.15) 

with [ ]
0 1 0 0 0

0 0 1 , , 1 0 0 , 0

0 0 0 0 1

A B b C E

     
     = = = =     
          

 and a state observer: 

ˆ( )

ˆ

z Az Bu L y y

y Cz

= + + −
=
ɺ

 (5.16) 

may be designed with observer gains [ ]1 2 3

T
L β β β= . Han [48,49] proposed a generic 

nonlinear observer gain vector, Gao [38-40] proposed a more practical Linear ESO 
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(LESO) whereby the observer eigenvalues are parameterized and repeated at a single 

frequency so that ωo is the single design parameter required for the observer: 

3 2 3
1 2 3

2 3
1 2 3

( ) ( )

3 , 3 ,

o o

o o o

s s s s sλ β β β ω
β ω β ω β ω

= + + + = +

⇒ = = =
 (5.17) 

The resulting values of 1 2 3
ˆˆˆ, ,z x z x z f= = =ɺ and the control law: 

0 3u z
u

b

−=  (5.18) 

will reduce the plant to: 

3 0 0( )x f z u u= − + ≈ɺɺ  (5.19) 

so that we have achieved our design goal and may choose among many controls 

appropriate for our double integrator equivalent plant.  

5.4.2 The ADRC with PD control (LADRC) 

A double integrator system is easily controlled by a proportional + derivative 

controller: 

0 ( )p du K r x K x= − − ɺ  (5.20) 

where one may choose to use measured values for x and xɺ  or use their estimated values 

1 2z and z  respectively, from the LESO. One may simplify the choice of the gains Kp and 

Kd by placing both poles for the closed loop equivalent system at the same critically 

damped location: 
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2

2 2 2

2

( )
2

2 ,

pc
cl

c c d p

d c p c

K
G s

s s s K s K

K K

ω
ω ω

ω ω

= =
+ + + +

⇒ = =
 (5.21) 

so that one may only concern oneself with tuning the controller bandwidth, ωc. This 

implementation is very practical and effective. It is referred to as the Linear ADRC 

(LADRC) implementation because of the linear gains.  

The tuning heuristic for the LADRC is followed herein, and that is to begin with 

an observer frequency ωo ≈ 10x the max frequency at which one desires to operate, and 

then use a scaled controller frequency ωc = ωo/3. In our stressful simulation case that 

desired operating frequency is the natural resonant frequency of the mechanical 

subsystem, 4e5/3 rad/sec, which implies an initial ωo = 4e6/3, ωc = 4e6/9.  
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Figure 41 Hysteresis before and after Compensation, LADRC(PD) Minimum Observer 

Bandwidth 

(LADRC with PD position control, observer frequency ωo = 10ωin,ωc = 3ωo) 

The insufficient effect on hysteresis compensation is obvious in Figure 41, and 

this is the most serious limitation for our thesis. This result illustrates the author’s 
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preference using the LADRC to resolve disturbance rejection issues, with low control 

effort, has involved dominantly linear systems. This system is dominantly nonlinear, and 

this puts our heuristic bias to an enlightening test. Subsequent results will reinforce the 

bias for the LADRC but with an altered design heuristic.  
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Figure 42 Position, Error and Control, LADRC(PD) Minimum Observer Bandwidth  

(LADRC with PD position control, observer frequency ωo = 10ωin,ωc = 3ωo) 

One can observe in Figure 42 the disturbances at 0, 50, 140 and 190 µsec due to 

the mismatch of the modulating triangle and square wave signals which introduce 

discontinuities (bounded) into the velocity (derivative) reference of the main sinusoid 

position reference signal. This error is ~1e-11/1e-9 = 1% for this control and serves to 

emphasize the issue of discontinuities in the reference input for ANY control choice. One 

will observe this error in all control systems, to a greater or lesser degree, as it is caused 

by the sample time delay to respond to the changing reference signal. The lesson for any 
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application engineer is the attention which should be given to supplying “smooth” 

reference signals. Controls are designed to NOT reject reference signals.  

The trade between noise immunity versus accuracy and disturbance rejection is 

well illustrated in Figure 43. The reference noise error is ~1e-14m=0.001% because the 

observer frequency is low and practically zero measurement noise is injected into the 

system. Unfortunately, the accuracy and disturbance rejection is an unacceptable level, 

~4e-11/1e-9 = 4%, with this observer and controller frequency.  
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Figure 43 Position Error and Control details, LADRC(PD) Minimum Observer 

Bandwidth  

(LADRC with PD position control, observer frequency ωo = 10ωin,ωc = 3ωo) 

Given the unacceptable response using the “normal” design heuristic one would 

next raise the observer frequency a factor of 10, and accordingly the controller frequency. 

This increases DC gain 100 fold and the bandwidth 10x while remaining stable. The 

result in Figure 44 and Figure 45 now provides the support for our thesis that the LADRC 

can easily compensate for the hysteresis nonlinearity. 
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Figure 44 Hysteresis before and after Compensation, LADRC(PD), Recommended 

Observer Bandwidth  

(LADRC with PD position control, observer frequency ωo = 100ωin,ωc = 3ωo) 
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Figure 45 Position, Error and Control Signal, LADRC(PD), Recommended Observer 

Bandwidth  

(LADRC with PD position control, observer frequency ωo = 100ωin,ωc = 3ωo) 
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One can now more easily observe in Figure 46 and Figure 47 the disturbances at 

0, 50, 140 and 190 µsec due to the mismatch of the modulating triangle and square wave 

signals mentioned earlier. This error is now ~1e-12/1e-9 = .1% (which is good, by the way) 

due to the more aggressive control. The peak control signal (±4V), Figure 47, necessary 

to achieve this response is well below the limits of the piezo device, and is proportional 

to the accuracy or disturbance rejection desired, as comparing Figure 43 and Figure 46 

illustrate.  

The trade between noise immunity versus accuracy and disturbance rejection in 

Figure 46 and Figure 47 is now better shown. The noise error ~1e-14m, which is now 

discernable, but the control effort is now greater to achieve the measurement noise 

suppression, because the observer frequency is higher and more measurement noise is 

injected into the system. The reference noise impact is unchanged. Fortunately, the 

accuracy and disturbance rejection is affected directly by the change in observer and 

controller frequency. The max error for the system is now ~2e-12/1e-9 = 0.2%, for only a 

sample period and during the input discontinuities which have been mentioned 

previously. Most encouraging, the nominal error is ~2.3e-13/1e-9 = .023% and <3e-13/1e-9 

= .03% disturbance error, which is outstanding, an order of magnitude better than those 

controls previously reported in the literature.  
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Figure 46 Position Error details, LADRC(PD), Recommended Observer Bandwidth  

(LADRC with PD position control, observer frequency ωo = 100ωin,ωc = 3ωo) 
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Figure 47 Control details, LADRC(PD), Recommended Observer Bandwidth  

(LADRC with PD position control, observer frequency ωo = 100ωin,ωc = 3ωo) 

The most obvious question that now arises is what benefits and costs accrue 

should one continue to increase the observer and controller bandwidth. The natural 

progression is another 10x increase: 
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Figure 48 Error and Control detail, LADRC(PD), High Observer Bandwidth  

(LADRC with PD position control, observer frequency ωo = 1000ωin) 

The disturbance error at 0, 50, 140 and 190 µsec mentioned earlier is now even 

less in Figure 48, ~2.3e-13/1e-9 = .023%, which is excellent, due to the aggressive control. 

It is a concern the peak control signal (±35V) necessary to achieve this response is 

uncomfortably near the limits of the piezo device (±100V).  

The nominal tracking error is ~1e-14/1e-9 = .001%. The error due to a 50% force 

disturbance during tracking or steady state is also ~1e-14m. The response to input 

reference noise at 300 µsec, output measurement noise at 350 µsec and both at 400 µsec 

are notable as one raises the observer gain, as is obvious in comparison to the controller 

signal and error response for lower ωo frequencies. The error from the input reference 

noise remains ~1e-14m in all observer frequency scenarios, which is to be expected. One 

will note immediately in these figures the tradeoff one must make for added accuracy and 

disturbance rejection versus measurement noise immunity and control.  
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5.5 A Hybrid Disturbance Rejection Strategy 

The hybrid strategy builds on the ability of the ESO to accurately estimate the 

hysteresis nonlinearity in real time, and then the Han Function advantage to control the 

device to its natural anhysteretic response in minimal time with less peak drive energy. 

We shall refer to this as ADRC(Han). We will also simulate a reduced order LESO to 

estimate the unknown disturbances from a measurement of the output velocity rather than 

position, demonstrating the general nature of the solution to lower or higher order 

systems, and also how it may be utilized when direct measurement of an attribute might 

not be available or computation bandwidth is an issue.  

5.5.1 ADRC with Han1 velocity and Proportional position control 

 

Figure 49 System Diagram, ADRC with Han1 velocity and Proportional position control   

The Han1 Function for small signals in the Isochronic Region is a simple 

proportional gain. Therefore, when used in the velocity loop, appears as a linear 

derivative position control. Thus, a Han1 Function velocity controller, in parallel with a 
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proportional position control, appears as a PD position control. This is well understood to 

easily control the equivalent double integral plant from the LESO. The Han1 Function, by 

its aggressive nature, will respond to error outside the IR faster than other control laws. 

One may tune the Han1 with Kh = 1e-7, and set the proportional gain to Kp = 1e7 to give 

an equivalent small signal PD control: ( )
12

64
( ) 7.5

3

e
C s s e−= − + .  

The compensation for hysteresis nonlinearity in Figure 50 is as good as that for 

the LADRC with PD control. And all the while the control signal is less than that of other 

controls, due in great part to the aggressive response. 
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Figure 50 Hysteresis Disturbance before and after Compensation, ADRC + Han1  

(ADRC with Han1 velocity control and proportional position control, observer frequency 

ωo = 100ωin) 
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Figure 51 Position Error and Control, ADRC + Han1  

(ADRC with Han1 velocity control and proportional position control, observer frequency 

ωo = 100ωin) 

What one discovers from this tuning setting is that if one decreases gain Kh and/or 

reduces Kr one immediately observes the control will begin to leave the Isochronic 

Region for the Han1 Function, and start cycling for short periods, the same results as for 

the Han1 Function alone. The max error in Figure 51 during discontinuous inputs is <4e-

12/1e-9 = .4%, which, to repeat, can be addressed by careful input profiling, but is still 

better than many other controllers reported in the literature. The tracking error is 

outstanding, <4e-13/1e-9 = .04% and with input at the resonant frequency! The 50% 

disturbance rejection is also phenomenal, with error <2.5e-13/1e-9 = .025%. The noise 

error is excellent, with error from input noise <3e-13/1e-9 = .03% and measurement noise 

error <1e-14/1e-9 = .001%. The most apparent error factor is the offset error <1e-12/1e-9 = 

.1%, which is a consequence of the size of the Han1 Function Isochronic Region. The 
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accuracy and disturbance rejection, not shown here, is proportional to the observer 

bandwidth, the same as for the Linear ADRC.  
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Figure 52 Error & Control Signal Details, ADRC + Han1  

(ADRC with Han1 velocity control and proportional position control, observer frequency 

ωo = 100ωin) 

5.5.2 The ADRC with Han1 Function and reduced order LESO 

This control is constructed as the previous, with the same design parameters, 

except the Linear Extended State Observer is not a 3rd order state observer with  z1 and z2 

for position and velocity respectively and the augmented state z3 for the disturbance 

estimate, it is now a reduced 2nd order state observer for the velocity z1, with the 

augmented disturbance estimate now z2. This is possible because the hysteresis 

nonlinearity is internal to the device, and the integral relations between position and 

velocity and acceleration boundary conditions still hold. Thus the estimate of the 

disturbance and poorly modeled dynamics may be made via position OR velocity 
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measures. The reduced state observer provides the same performance as that of the full 

state observer, all the measurements in Figure 53 and Figure 54 are equivalent, and the 

compensation for hysteresis is also excellent. 
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Figure 53 Hysteresis Disturbance before and after Compensation, Reduced order LESO  

(ADRC with Han1 velocity control and proportional position control, using a reduced 

order LESO to estimate hysteresis disturbance, observer frequency ωo = 100ωin) 
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Figure 54 Error & Control Signal Details, Reduced order LESO  

(ADRC with Han1 velocity control and proportional position control, using a reduced 

order LESO to estimate hysteresis disturbance, observer frequency ωo = 100ωin) 
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5.6 Observations and Summary Regarding the Disturbance Rejection Paradigm 

The performance of the disturbance rejection controls in the compensation of 

hysteresis is an order of magnitude superior to that previously reported in the literature. 

The bandwidth is wider, allowing operation to the mechanical limit of the device, and the 

accuracy during both tracking and regulation are superior. It is especially noteworthy the 

hysteresis nonlinearity, when treated as a disturbance, can be almost entirely 

compensated, without knowing anything about the character of that hysteresis. These 

results validate the efficacy of error based control and the advantages of 

measurement/estimation bandwidth versus modeling accuracy. The knowledge necessary 

to implement these controls are minimal, the steady state linear gain of the device is used 

for the LADRC design, along with some estimate of the natural bandwidth of the device 

as an initial tuning value, both readily gathered from data book information without any 

complexity or calibration. The Han Function control uses the saturation value for the 

control power signal and the sampling period of the hardware as initial tuning setting, 

which together can be easily parameterized. In both the control cases the tuning heuristic 

is easier to apply even than that of the popular PID control. This is a major advantage. 

The rapid reaction of an inner velocity control loop combined with the aggressive 

Han1 Function yielded performance that was particularly satisfying, as this is a 

wonderfully elegant solution using passive control technology. The inner velocity loop 

effectively compensated the hysteresis independent of any position control, delivering 

almost linear position response even when the position loop was left open, truly 

phenomenal and better than any other of the open loop model-based controls. This 
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enabled one to choose any number of outer position loops for fine tuning the performance 

and aggressively rejecting external disturbance. The simple PI control was a natural 

choice and yielded excellent results an order of magnitude better than the best reported 

adaptive H∞ control applied using a complex statistical based model. Even more 

gratifying is the fact all these Han Function controls were constrained to ±1V control 

signal and still delivered this performance, another testament to speed minimizing power 

requirements. Another advantage is the ability, even after compensating hysteresis, to 

reject external disturbances of 50% full load at < 0.03% error! If there is a caveat using 

the Han Function it would be the noise susceptibility, but since there was no noise 

rejection data from other published results there is little to compare, except to the 

LADRC, which was significantly better in this regard. 

The performance result for the active disturbance rejection LADRC was best, as 

was expected from the beginning. The LADRC was easy to apply and the results improve 

proportional to the increase in the observer bandwidth. The limitation for the LADRC is 

the control signal magnitude one wishes to constrain. For our simulations we chose to go 

no further than ±4V, even though the power available was ±100V before saturating the 

device, it was simply not necessary to prove more. The accuracy of the LADRC is an 

order of magnitude better than the best model-based control even at these low signal 

levels. The strength of both types of disturbance rejection controls is the low energy and 

stress on equipment one achieves while still achieving better performance.   

The hybrid combination of ADRC and Han1 Function achieved results almost as 

good as the LADRC, and it is important to note the control energy was constrained. One 
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would expect the performance is equal with equal power, but that was unfortunately not 

tested.  

Another gratifying result is that for the reduced order ESO used to estimate and 

compensate for the hysteresis uncertainty, which may be useful for systems where the 

final position is unavailable. This result was expected as the hysteresis is internal to the 

device and the integral relationships between acceleration, velocity and position are 

maintained at the device boundary.  

 Hysteresis 
Compensation 

Disturbance 
Rejection 

Tracking 
Error 

Control 
Signal 

Noise 
Error 

LADRC 0.023% 0.03% 0.023% ±4V 0.001% 

ADRC+Han1+Prop 0.04% 0.025% 0.04% ±1V 0.001% 

ADRC+Han1+Prop 

reduced order ESO 

0.04% 0.025% 0.04% ±1V 0.001% 

Han1+PI 0.05% 0.025% 0.05% ±1V 0.1% 

Han2+Han1 0.5% 0.002% 0.5% ±1V 0.1% 

Han1Velocity Only 0.25% 0.15% 0.25% ±1V  

Figure 55 Performance Summary for Disturbance Rejection Control Strategies 



 

 

CHAPTER 6 

STABILITY ANALYSIS OF LADRC FOR A HYSTERETIC SYSTEM 

The previous chapter exhibited the excellent and encouraging simulation results 

for LADRC control of a hysteretic system, this chapter considers the stability 

characteristics of LADRC for a hysteretic system. The BIBO stability of the LADRC for 

unknown bounded nonlinear function fɺ , in the system y f bu= +ɺɺ  has been previously 

demonstrated by Gao [38-40]. We will establish here that the piezo actuator system with 

hysteresis may be represented as such a system and will satisfy the assumptions given by 

Gao, thus showing stability for the hysteretic system.  

We will establish in this chapter that for the hysteretic system 

1, ( ) [ ]eqk
y f bu where f w I P y

m
−= + = − +ɺɺ  in Equation (6.19) the sufficient conditions for 

BIBO stability of the LADRC closed loop solution are as follows: 

o The quasilinear model accurately describes the mechanical subsystem.  

o The electrical dynamics are much faster than the mechanical dynamics. 

o Functions of Preisach or Prandtl-Ishlinskii type are accurate Hysteresis models.  
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o The associated weighting function µ(r,s) or ρ(r), and their derivative, for the  

hysteresis function model must be bounded.  

o The reference input command r  and rɺ  must be bounded.  

o The input voltage creep has a scalar saturation limit satV  and the function 

( )creepV tɺ  is piecewise continuous bounded. 

o The thermal drift coefficient functions ( )vfK t  and ( )vfK tɺ  are piecewise 

continuous bounded.  

o Any external unknown disturbance ( )d tɺ is bounded. 

6.1 The BIBO Stability of LADRC 

The general stability demonstration for the LADRC from Gao [38] will be 

included here for those unfamiliar. The LADRC strategy treats nonlinearities no different 

than any unknown disturbance. One can write the system equation: 

y f bu= +ɺɺ  (6.1) 

where f represents the total of one or more complex nonlinear, time varying processes 

and bu is the linear approximation for the plant. The central idea of LADRC is to let ̂f  

be the estimate of f at time t and use the control law  

0
ˆu f

u
b

−=  (6.2) 



 

 98 

to actively reject the general disturbance f and yield a plant which responds as 0y u≈ɺɺ . 

This equivalent linear plant is easy to control.  

The augmented state equation for (6.1) is: 

[ ]

1 2 3, , , ,

0 1 0 0 0

0 0 1 , , 1 0 0 , 0

0 0 0 0 1

x Ax Bu Eh

y Cx

where x y x y x f h f

A B b C E

= + +
=

= = = =

     
     = = = =     
          

ɺ

ɺɺ
 (6.3) 

and the LESO is: 

[ ]1 2 3 1 2 3

ˆ( )

ˆ

ˆˆˆ, , ,
T

z Az Bu L y y

y Cz

where z y z y z f L β β β

= + + −
=

= = = =

ɺ

ɺ

 (6.4) 

For the LADRC then the tracking error for the LESO observer, x x z= −ɶ , leads 

one to write the error equation as: 

1

2

3

,

1 0

0 1 ,

0 0

x Ax w with

A A LC and w Eh

β
β
β

= +
− 
 = − = − = 
 − 

ɺ ɶɶ ɶ

ɶ
 (6.5) 

where matrices A, L, C, and E are as in equations (6.3) and (6.4). 

The first question presents itself, is the observer error, xɶ , bounded?  

Lemma 6.1: (Boundedness of the LESO error) 
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For any bounded h, assuming the observer gains [ ]1 2 3

T
L β β β=  are chosen such 

that Aɶ  is Hurwit, the observer error,xɶ ,is bounded. 

Proof: Let V be a Lyapunov function defined as  

TV x Px= ɶ ɶ  (6.6) 

where P is the unique solution to the Lyapunov equation 

TA P PA I+ = −ɶ ɶ  (6.7) 

Then, per Lyapunov’s first method, 

( ) ( ) ( ) ( )
2T T

T TT T T T T T

V x x w Px

x w P x w P w P w P

= − +

= − − − +

ɺ ɶ ɶ ɶ

ɶ ɶ
 (6.8) 

Since 

2 22 2 2 2
2 2T T T T Tx w P w P x w P x Pw− > ⇒ > ⇒ >ɶ ɶ ɶ  (6.9) 

Therefore 0V <ɺ  if 
2 2

2x Pw>ɶ . On the other hand, if h is bounded then w = Eh is 

bounded, and then xɶ  is bounded as well since 0V <ɺ .  ■ 

Lemma 6.1 can be generalized to a more general system: 

( ), ,nxn nM Mχ χ η χ χ= + ∈ ∈ɺ ℝ ℝ  (6.10) 

which yields Lemma 6.2. 

Lemma 6.2: 

The state χ  in (6.10) is bounded if M is Hurwitz and ( )η χ  is bounded. ■ 
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Recalling (5.18) and (5.20) the goal for LADRC is such that 0y u≈ɺɺ  which 

implies: 

0 3u z
u

b

−=  (6.11) 

0 1 2( )p du K r z K z= − −  (6.12) 

Now we have the following Theorem. 

Theorem 6.3: (BIBO stability of the LADRC) 

The LADRC control law (6.11) utilizing the LESO (6.4) and the PD controller 

(6.12) yields a BIBO stable closed loop system if the LESO and the state feedback PD 

control are stable individually.  

Proof: The observer error is bounded as proved in Lemma 6.1, so it remains to prove 

y
x

y

 
=  
 ɺ

 is bounded.  

1

2

3

0 1 0 0 0 0

1p d p p d

r

x r
x x Ax B

K K K K K x x

x

 
       = + = +     − −       
 
 

ɶ
ɺ

ɶ ɶ

ɶ

 (6.13) 

with a bounded reference r, as well as xɶ  bounded per Lemma 6.1, then choosing Kp and 

Kd such that A is Hurwitz assures BIBO stability per Lemma 6.2, which concludes the 

proof. ■ 
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6.2 The System Equation and Necessary Assumptions 

We refer back to Figure 26 repeated here as Figure 56. 

 

Figure 56 Complete piezo quasilinear model with hysteresis energy dissipation.  

Some reasonable assumptions are necessary to make regarding the unknown 

disturbances and dynamics of this system in order to demonstrate BIBO stability for this 

system when controlled by LADRC. We will first analyze the thermal drift, voltage 

creep, the linear electrical subsystem and the external disturbance, and then the 

assumptions one must make to assure their bounded conditions. This allows one to 

illustrate a simplified model for the system which adheres to that used in Gao’s LADRC 
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stability proof. After this we can progress to an analysis of the conditions for bounded 

hysteretic behavior.  

6.2.1 Assumptions for Bounded Thermal Drift 

We assume ( )vfK t and ( )vfK tɺ  are piecewise continuous bounded functions, so 

that the elements of ( )vfK t  and ( )vfK tɺ  are bounded. Hence 1( )vfK t k≤  and 

2( )vfK t k≤ɺ . Then 

1 2 1 2 1 1 2

1 2 1 2 2 1 2

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

vf p p vf p p p p

vf p p vf p p p p

K t V V K t V V k V V

and K t V V K t V V k V V

for any induced norms

− ≤ − ≤ −

− ≤ − ≤ −ɺ ɺ  (6.14) 

6.2.2 Assumptions for Bounded Voltage Creep 

We review the definition of Vcreep from Equation (4.49) and (4.50): 

0

lim ( ) 0

( ) : max ( ) .
sat

sat creep
V V

in in sat
r t

V and f V

so that V t V r V

+ →

≤ <

∈ =

= ≤

ℝ

 (6.15) 

( ) : ( ) ( )creep in creepV t V t f V t= ⋅  (6.16) 

What is sufficient for the BIBO stability of the LADRC is that the derivative of the 

voltage creep, ( )creepV tɺ , is bounded. 

6.2.3 Assumption for Bounded Unknown Disturbance d(t) 

The contribution of the unknown disturbance ( )d t  and derivative ( )d tɺ  are 

additive components of the acceleration force and is assumed bounded for our system. 
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6.2.4 Assumption for BIBO Stability and Separation of the Linear Electrical Subsystem 

We review the Equation (4.32) for the electric subsystem 

[ ]

0 1 2

0 1 2

0 1 0 0

0 0 1 0

1
in

p

V

a a a

V b b b

χ χ

χ

   
   = +   
   − − −   

=

ɺ

   (6.17) 

where 0 1 2 0 1 2, , , ,a a a and b b b are positive numbers and A is Hurwitz. Consequently the 

electrical subsystem is itself asymptotically stable. Considering that all inputs to this 

asymptotically stable system are bounded, and that pVɺ  is a linear combination of its 

internal states, then both pV  and pVɺ  are bounded. We further assume the dynamics of the 

electrical subsystem are much faster than the mechanical subsystem and are subsequently 

disregarded in the analysis.  

6.2.5 A Simplified Model for the Hysteretic System 

Equation (4.51) is repeated here as Equation (6.18). (We have changed axis 

variable name from x to y in order to avoid confusion.) 

( )
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where 0 /vfb K m=  and inu V=  and w  encompasses the unknown dynamics and 

disturbances. Our task then is to demonstrate the function fɺ  for this hysteretic system is 

bounded.  

Based on the assumptions in 6.2.1-6.2.4, wɺ  can be readily shown to be bounded. 

What remains is to show that the hysteretic component of fɺ  is bounded.  

 

Figure 57 Simplified Piezo model with hysteresis.  

1, ( ) [ ]eqk
y f bu where f w I P y

m
−= + = − +ɺɺ  (6.19) 

6.3 Assumptions for Bounded Hysteresis Function 1( ) [ ]( )I P y t−+  

One discerns in these nonlinear model equations the contribution of the hysteretic 

function 1( ) [ ]( )I P y t−+  in the complete motion equation functionf , is additive to the 

other components off . Therefore, due to the equivalence of function norms and the 

triangle inequality for norms, if one demonstrates the boundedness of 1( ) [ ]( )I P y t−+  and 
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its derivative, then the motion function f  and fɺ  are also bounded and Gao’s BIBO 

stability analysis applies.  

One can begin this process with an intuitive understanding for the outcome. The 

reader is referred to the hysteresis response curve Figure 58 and the signal ν  in the 

quasilinear mechanical model Figure 25 The difference for the linear relationship 

between output y1 and the state v1, is δ1> 0, and the same for y2, v2 and δ2<0, where 

2( , )y v ∈Θ ⊂ ℝ  are members of the major hysteresis loop region. These values are 

absolutely bounded by the maximum value of saturation for the device major loop, as 

shown by the solid diagonal lines, and become smaller as the device approaches the 

anhysteretic response. Thus one may understand the physical result of the energy 

dissipation and the accounting for it as the area encompassed by each hysteresis loop, as 

well as the bounded physical limitations of the response. 

 

Figure 58 Inverse Hysteresis Function as a Disturbance from the Linear Response. 

v = (I+P)-1[y] 

y 

δδδδ = y-v 

δδδδ1 
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The stability analysis of conditions for a bounded hysteresis function used herein 

can be attributed to Brokate & Sprekels [10]. Similar analysis are available in Krejci 

[7677] and Visintin [127]. The minimal analysis, which is still lengthy, is included as 

Appendix C: Stability of Hysteresis and its Derivative, which includes Lemmas C1-C6 

and Propositions C7-C8.  

Lemma C.1-C.5 concern the Lipschitz continuity and assumptions for bounded 

behavior of the constituent “play” and “stop” basis operators. Lemma C.6 then extends 

these conditions to the memory curve for the hysteresis function, and finally Proposition 

C.7 and C.8 extend these properties to the Preisach and Prandtl-Ishlinskii hysteresis 

functions and derivatives, and delineate additional assumptions which must be made to 

show bounded behavior for the complete functions.  

Lemmas C1-C6 and Propositions C7-C8 in Appendix C identify the conditions 

for a bounded hysteresis function and their derivatives. The conditions for bounded 

output for the hysteresis functions of Preisach [ ]( )P y t  and Prandtl-Ishlinskii type 

1( ) [ ]( )I P y t−+ , and their derivatives, are that the input to the hysteresis function (in our 

case the system output, ( )y f bu dt y(0)= + +∫∫ ) be a piecewise continuous monotonic 

function. An additional requirement is that the associated weight functions, µ(r,s) and 

ρ(r) used in the hysteresis function definition, and their derivative, must also be bounded. 

The piecewise continuous monotonic y output condition is consistent with the bounded 

condition onf and u , while the conditions on the hysteresis weights are new additions to 

our previous conditions.  
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Practically speaking, this is not an issue for the physical devices themselves, their 

“weighting” response will not be discontinuous as one operates throughout the range of 

the hysteretic device. Thus, as noted, the character of the weight functions in Equation 

(3.4) and (3.5) are an important enabling condition, and these bounded conditions have 

now been demonstrated to lead to bounded conditions for the hysteresis functions 

themselves. (This does place a continuity constraint on the method of weighting function 

interpolation for model-based discrete controller implementations, a limitation we do not 

need to worry over.)  

6.4 Stability Conditions for the Hysteretic System with LADRC  

The BIBO stability of the LADRC solution for the system y f bu= +ɺɺ  with 

unknown but bounded nonlinear functions fɺ  has been previously demonstrated by Gao  

[38]. In this chapter we analyzed and listed the assumptions needed to assure bounded 

behavior of fɺ  in our hysteretic system of Figure 25 The assumptions concern any 

unknown disturbances, voltage creep, thermal drift, and the hysteresis which constitute 

the functionsfɺ .  

For the hysteretic system y f bu= +ɺɺ  in Equation (6.19) the sufficient conditions 

for BIBO stability of the LADRC closed loop solution are as follows: 

o The quasilinear model accurately describes the mechanical subsystem.  

o The electrical dynamics are much faster than the mechanical dynamics. 
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o Functions of Preisach or Prandtl-Ishlinskii type are accurate Hysteresis models.  

o The associated weighting function µ(r,s) or ρ(r), and their derivative, for the  

hysteresis function model must be bounded.  

o The reference input command r  and rɺ  must be bounded.  

o The input voltage creep has a scalar saturation limit satV  and the function 

( )creepV tɺ  is piecewise continuous bounded. 

o The thermal drift coefficient functions ( )vfK t  and ( )vfK tɺ  are piecewise 

continuous bounded.  

o Any external unknown disturbance ( )d tɺ is bounded. 

A physically realizable system will usually possess these physical features 

assumed here. The assumptions regarding the models used are reasonable as they are 

proven representative of the experimental evidence, the Preisach and Prandtl-Ishlinskii 

models for hysteresis have been shown of high fidelity to actual experiment. Our 

experimentation is a component of the research which we emphasize in our 

recommendations for future work in the next chapter. 



 

 

CHAPTER 7 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

The challenge of nanometer scale positioning is a challenge in compensating for 

hysteresis. Positioning solutions at nanometer scale to this date have almost exclusively 

relied on a model-based control paradigm. Given the nature of hysteresis, and our 

purpose being compensating for the hysteresis rather than characterizing it, we 

hypothesized one could treat hysteresis as a disturbance to the desired linear response, 

much as one treats other unknown and unwanted disturbance. One could then compensate 

for hysteresis in a manner consistent with aggressive disturbance rejection, by either 

canceling its effect or aggressively driving the disturbance error to zero. The historical 

success using “dithering” as a hysteresis control method gave credence to this thesis. We 

therefore reformulated hysteresis compensation as a disturbance rejection problem and 

recomposed the system in an error-based disturbance rejection paradigm rather than the 

model-based paradigm.  

Three hysteresis compensation strategies have been developed and validated 

using this disturbance rejection paradigm. A first strategy uses an active disturbance 

rejection control which estimates the disturbance in real time and cancels the error to the 
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desired reference. A second passive disturbance rejection strategy utilizes the Han 

Function, a most aggressive closed form discrete time optimal control, to drive the 

disturbance error to its equilibrium zero state as quickly as possible. A third strategy 

combines the best features of both active and passive controls.  

As nanometer scale systems are very expensive we have relied on a precise 

simulation of hysteretic devices to validate our proposed solutions. This has required the 

development of simulation models for these devices and construction of Matlab software 

modules. The control strategies have been tested and their superior performance 

confirmed using these simulations, thus validating the strategy. 

Lastly, but quite important for future development, the LADRC, which 

demonstrated the best performance, has been proven BIBO stable for compensating 

hysteretic systems. The proof is general for hysteretic processes with some mild 

assumptions, but is not constrained to the specific piezo ceramic device used in our study, 

nor constrained to second order mechanical motion application. So it may be easily 

extended. 

Future Work 

The most compelling future effort would be a laboratory experimental validation 

for these results. Nanometer scale processes are not required as the most interesting 

outcome regards hysteresis compensation at any scale. In fact, a most exciting aspect of 
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our result is the broad potential applicability in many fields. Ferromagnetics are 

constrained by hysteresis, as are phase change processes, chemical reactions, etc.  

This breadth of this issue emphasizes the immediate application advantages to be 

realized by rapidly moving these strategies into common use.  

One very intriguing idea came to mind during the research in hysteresis models. 

The models most used today are infinite sums and/or integrals of basis functions. It 

would be interesting to determine if a wavelet would provide advantages as a basis 

function for the hysteresis model, particularly if characterization was an issue as 

important as compensation.   
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Code listing for “norm_load_xx…” which contains the piezo first order transition curve 

data used in the hysteresis simulation and inverse simulation. This m-file is run before the 

simulations. 

% Hysteresis simulation parameters:  
% this implementation is based on the "classical" p reisach model for  
% hysteresis found in section 1.4 of "Mathematical Models of Hysteresis  
% and Their Applications" 2ed, by Isaak D. Mayergoy z, Elsevier Science, 
% Amsterdam, 2003  
  
% the implementation is called "norm_preisach_xx... "  
% and calls an interpolation function "norm_intp_xx ..." which is  
% linear in both alpha and beta directions and uses  a set of normalized  
% mesh values "norm_f" for the first order transiti on curves. "norm_f"  
% may be loaded as part of "norm_intp_xx" or loaded  in 
% "norm_load_xx..."  
 
  
% the inverse of the hysteresis is also a preisach operator calculated  
% the same method only using a different set of fir st order reversal  
% curves for the device which are clockwise. the im plementation is  
% called "norm_preisach_inv_xx..." and calls the sa me interpolation  
% routine, but uses the "norm_f_inv" first order tr ansition curve data.  
  
global  u_pre_hys num_alpha_hys num_beta_hys u_dir_be_hys ...  
u_dir_temp_hys  u_dir_cu_hys  
global  alpha_hys beta_hys alpha0_hys beta0_hys slope_hys ... 
new_f_hys new_a_hys new_b_hys  
global  u_pre_hys_inv num_alpha_hys_inv num_beta_hys_inv ...  
u_dir_be_hys_inv u_dir_temp_hys_inv u_dir_cu_hys_in v  
global  alpha_hys_inv beta_hys_inv alpha0_hys_inv beta0_hy s_inv ...  
slope_hys_inv new_f_hys_inv new_a_hys_inv new_b_hys _inv  
  
% alpha0 and beta0 are the upper and lower limits o f the half plane  
% triangle "T" of book section 1.2. they are parame ters for the 
% function.  
alpha0_hys =1; % 2.1; % this is the upper hysteresis limit  
alpha0_hys_out =1; % 2.1; % this is the output at upper limit  
beta0_hys =-1; % 0; % this is the lower hysteresis limit  
beta0_hys_out =-1; % 0; % this is the output at lower limit  
alpha0_hys_inv =1; % 2.1; % this is the upper hysteresis limit  
alpha0_hys_out_inv =1; % 2.1; % this is the output at upper limit  
beta0_hys_inv =-1; % 0; % this is the lower hysteresis limit  
beta0_hys_out_inv =-1; % 0; % this is the output at lower limit  
  
u_pre_hys=0; num_alpha_hys=0; num_beta_hys=0; u_dir _be_hys=0; 
u_dir_temp_hys=0; u_dir_cu_hys=0;  alpha_hys=0; beta_hys=0;  
  
u_pre_hys_inv=0; num_alpha_hys_inv=0; num_beta_hys_ inv=0; 
u_dir_be_hys_inv=0; u_dir_temp_hys_inv=0; u_dir_cu_ hys_inv=0;  
alpha_hys_inv=0; beta_hys_inv=0;  
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%-------------------------------------------------- ------------------  
    % norm_f, norm_a and norm_b are used as global  
    % Based on a linear spline interpolation function, a displacement  
    % value is computed with the information of alpha a nd beta.  
  
norm_a=[1:-1/20:0]; norm_b=[0:1/20:1];  
% norm_a and norm_b are the region of alpha and bet a, respectively.  
% norm_f shows displacement values with respect to alpha and beta axes.  
% this norm_f is from piezo data and does not satur ate at limits 
norm_f = [  
0, 0.074, 0.141, 0.206, 0.268, 0.329, 0.387, 0.444,  0.5, 0.553, ...  
0.605, 0.654, 0.7, 0.747, 0.79, 0.833, 0.873, 0.911 , 0.946, ...  
0.979, 1; ...  
0, 0.073, 0.139, 0.203, 0.264, 0.324, 0.382, 0.438,  0.492, 0.545, ...  
0.595,  0.643, 0.69, 0.735, 0.777, 0.817,  0.855, 0.89, 0.923, ...  
0.947, 0; ...  
0, 0.072, 0.137, 0.199, 0.26, 0.318, 0.375, 0.431, 0.484, 0.534, ...  
0.584,  0.631, 0.676, 0.719, 0.76, 0.798, 0.833, 0.866, 0.8 89, 0, 0; ...  
0, 0.07, 0.134, 0.195, 0.255, 0.313, 0.369, 0.422, 0.473, 0.524, ...  
0.572,  0.617, 0.66, 0.702, 0.74, 0.776, 0.809, 0.832, 0, 0 , 0; ... 
0, 0.069, 0.131, 0.191, 0.249, 0.306, 0.361, 0.414,  0.464, 0.512, ...  
0.558,  0.602, 0.643, 0.683, 0.719, 0.752, 0.775, 0, 0, 0, 0; ... 
0, 0.066, 0.127, 0.187, 0.244, 0.3, 0.353, 0.403, 0 .452, 0.499, ...  
0.544,  0.586, 0.625, 0.662, 0.695, 0.718, 0, 0, 0, 0, 0; ...  
0, 0.065, 0.125, 0.183, 0.239, 0.292, 0.344, 0.394,  0.44, 0.485, ...  
0.528, 0.568, 0.605, 0.639, 0.66, 0, 0, 0, 0, 0, 0; ...  
0, 0.064, 0.122, 0.178, 0.232, 0.284, 0.334, 0.382,  0.427, 0.471, ...  
0.511, 0.548, 0.582, 0.605, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.061, 0.118, 0.174, 0.225, 0.277, 0.325, 0.371,  0.414, 0.455, ...  
0.492, 0.527, 0.549, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.06, 0.114, 0.168, 0.219, 0.268, 0.314, 0.358, 0.399, 0.438, ...  
0.472, 0.495, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.057, 0.111, 0.163, 0.212, 0.259, 0.304, 0.345,  0.383, 0.418, ...  
0.442, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.056, 0.107, 0.157, 0.204, 0.249, 0.29, 0.329, 0.365, 0.389, ...  
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.053, 0.103, 0.151, 0.196, 0.239, 0.277, 0.313,  0.338, 0, 0, ... 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.05, 0.098, 0.145, 0.187, 0.225, 0.263, 0.29, 0 , 0, 0, 0, 0, ...  
0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.049, 0.094, 0.137, 0.176, 0.214, 0.24, 0, 0, 0 , 0, 0, 0, 0, ...  
0, 0, 0, 0, 0, 0, 0; ...  
0, 0.046, 0.089, 0.129, 0.166, 0.194, 0, 0, 0, 0, 0 , 0, 0, 0, 0, ...  
0, 0, 0, 0, 0, 0; ...  
0, 0.042, 0.084, 0.121, 0.149, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, ...  
0, 0, 0, 0; ...  
0, 0.041, 0.078, 0.107, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...  
0, 0, 0; ...  
0, 0.037, 0.068, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, ...  
0, 0; ...  
0, 0.031, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0; ...  
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];  
  
norm_f_inv = [  
0, 0.0754, 0.1348, 0.1952, 0.2516, 0.3058, 0.3595, 0.4128, 0.4632, ...  
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0.5136, 0.5650, 0.6139, 0.6622, 0.7094, 0.7561, 0.8 007, 0.8420, ... 
0.8827, 0.9220, 0.9611, 1; ...  
0, 0.0745, 0.1333, 0.1930, 0.2489, 0.3026, 0.3557, 0.4084, 0.4583, ... 
0.5082, 0.5589, 0.6072, 0.6549, 0.7013, 0.7472, 0.7 910, 0.8313, ...  
0.8708, 0.9086, 0.9265, 0; ...  
0, 0.0729, 0.1308, 0.1895, 0.2444, 0.2972, 0.3494, 0.4011, 0.4502, ... 
0.4992, 0.5488, 0.5961, 0.6425, 0.6878, 0.7323, 0.7 747, 0.8135, ... 
0.8508, 0.8685, 0, 0; ...  
0, 0.0712, 0.1281, 0.1856, 0.2394, 0.2913, 0.3425, 0.3931, 0.4413, ... 
0.4893, 0.5376, 0.5838, 0.6290, 0.6730, 0.7159, 0.7 569, 0.7938, ... 
0.8110, 0, 0, 0; ...  
0, 0.0695, 0.1253, 0.1816, 0.2342, 0.2852, 0.3353, 0.3848, 0.4321, ... 
0.4790, 0.5261, 0.5711, 0.6149, 0.6576, 0.6989, 0.7 384, 0.7564, ... 
0, 0, 0, 0; ...  
0, 0.0677, 0.1224, 0.1775, 0.2290, 0.2790, 0.3280, 0.3764, 0.4227, ... 
0.4685, 0.5143, 0.5582, 0.6007, 0.6419, 0.6816, 0.7 033, 0, 0, 0, 0, ... 
0; ...  
0, 0.0659, 0.1195, 0.1734, 0.2237, 0.2727, 0.3206, 0.3678, 0.4132, ... 
0.4580, 0.5024, 0.5452, 0.5862, 0.6261, 0.6488, 0, 0, 0, 0, 0, 0; ...  
0, 0.0641, 0.1166, 0.1692, 0.2184, 0.2664, 0.3132, 0.3592, 0.4037, ... 
0.4473, 0.4905, 0.5321, 0.5717, 0.5960, 0, 0, 0, 0,  0, 0, 0; ...  
0, 0.0623, 0.1137, 0.1651, 0.2130, 0.2600, 0.3057, 0.3506, 0.3941, ... 
0.4367, 0.4785, 0.5189, 0.5440, 0, 0, 0, 0, 0, 0, 0 , 0; ...  
0, 0.0604, 0.1107, 0.1609, 0.2076, 0.2536, 0.2983, 0.3420, 0.3845, ... 
0.4260, 0.4664, 0.4937, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0586, 0.1078, 0.1567, 0.2023, 0.2472, 0.2908, 0.3333, 0.3748, ... 
0.4153, 0.4433, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0568, 0.1048, 0.1525, 0.1969, 0.2409, 0.2833, 0.3246, 0.3652, ... 
0.3946, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0549, 0.1019, 0.1483, 0.1915, 0.2344, 0.2758, 0.3160, 0.3466, ... 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0531, 0.0989, 0.1441, 0.1861, 0.2280, 0.2682, 0.2991, 0, 0, 0, ... 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0513, 0.0960, 0.1399, 0.1807, 0.2216, 0.2537, 0, 0, 0, 0, 0, ... 
0,  0, 0, 0, 0, 0, 0, 0, 0; ... 
0, 0.0494, 0.0930, 0.1356, 0.1753, 0.2092, 0, 0, 0,  0, 0, 0, 0, 0, ... 
0, 0, 0, 0, 0, 0, 0; ...  
0, 0.0476, 0.0900, 0.1314, 0.1647, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, ... 
0, 0, 0, 0, 0; ...  
0, 0.0457, 0.0871, 0.1232, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 
0,  0, 0, 0; ... 
0, 0.0439, 0.0813, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, ... 
0, 0; ...  
0, 0.0403, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0; ...  
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];  
  
new_a_hys = [alpha0_hys:-(alpha0_hys-beta0_hys)/(si ze(norm_f,2) ... 
-1):beta0_hys]; % this is the new scaled limits for alpha  
new_b_hys = [beta0_hys:(alpha0_hys-beta0_hys)/(size (norm_f,2) ... 
-1):alpha0_hys]; % this is the new scaled limits for beta  
new_f_hys = norm_f*(alpha0_hys-beta0_hys);  
% this is the new scaled input mesh for first order  transition curves 

  
new_a_hys_inv = [alpha0_hys_inv:-(alpha0_hys_inv- ... 
beta0_hys_inv)/(size(norm_f_inv,2)-1):beta0_hys_inv ];  
% this is the new scaled limits for alpha 
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new_b_hys_inv = [beta0_hys_inv:(alpha0_hys_inv- ... 
beta0_hys_inv)/(size(norm_f_inv,2)-1):alpha0_hys_in v];  
% this is the new scaled limits for beta 
new_f_hys_inv = norm_f_inv*(alpha0_hys_inv-beta0_hy s_inv);  
% this is the new scaled input mesh for first order  transition curves 
  
% the slope scales the output of the function separ ately. It is applied  
% to  the output of the hysteresis function as a separate  gain block.  
slope_hys = (alpha0_hys_out - beta0_hys_out)/(alpha 0_hys - beta0_hys); 
slope_hys_inv =(alpha0_hys_out_inv ...  
- beta0_hys_out_inv)/(alpha0_hys_inv  - beta0_hys_inv);  
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Code listing for “norm_preisach_xx…” which contains the code for the Preisach 

hysteresis simulink block 

% this implementation is based on the "classical" p reisach model for 
% hysteresis  
% found in section 1.4 of "Mathematical Models of H ysteresis and Their  
% Applications" 2ed, by Isaak D. Mayergoyz, Elsevie r Science,  
% Amsterdam, 2003  
  
% the implementation is called "norm_preisach_xx... "  
% and calls an interpolation function "norm_intp_xx ..." which is  
% linear in both alpha and beta directions and uses  a set of normalized  
% mesh values "norm_f" for the first order transition curv es. "norm_f"  
% may be  loaded as part of "norm_intp_xx" or loaded in  
% "norm_load_xx..."  
  
function  [sys,x0,str,ts] = norm_preisach_v2g(t,x,u,flag)  
% “Preisach” is the same as the file name.  
  
switch  flag  
case  0  
[sys,x0,str,ts] = mdlInitializeSizes();  
  
case  3  
sys = mdlOutputs(t,x,u);  
  
case  { 1, 2, 4, 9 }  
sys = [];  
  
otherwise  
error([ 'Unhandled flag =' , num2str(flag)]);  
end  
  
function  [sys,x0,str,ts] = mdlInitializeSizes()  
sizes = simsizes;  
sizes.NumContStates = 0;  
sizes.NumDiscStates = 1;  
sizes.NumOutputs    = -1;   % dynamically sized  
sizes.NumInputs     = -1;   % dynamically sized  
sizes.DirFeedthrough    = 1;    % has direct feedthrough  
sizes.NumSampleTimes    = 1;  
  
sys = simsizes(sizes);  
str = [];  
x0 = [0];  
ts = [-1 0];    % inherited sample time  
  
% The above code is given as default when you choos e a M-file  
% S-function template.  
%-------------------------------------------------- --------------------  
  
function  sys = mdlOutputs(t,x,u)  
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       % define global variables  
global  u_pre_hys num_alpha_hys num_beta_hys u_dir_be_hys u_dir_temp_hys 
u_dir_cu_hys  
global  alpha_hys beta_hys alpha0_hys beta0_hys slope_hys new_f_hys 
new_a_hys new_b_hys  
  
       % u_pre_hys: previous input value  
       % num_alpha: The number of alpha in the input signa l  
       % num_beta: The number of beta in the input signal  
       % u_dir_be: previous input direction (positive(1), zero(0), or  
       % negative(-1))  
       % alpha, beta: data set of alpha and beta, respecti vely  
       % u_dir_temp: input direction used temporarily  
       % alpha0, beta0: alpha0 and beta0 are the upper and  lower limits  
       % of the half plane  
       % triangle "T" of book section 1.2. they are parame ters for the  
       % function.  
       % new_f, new_a, new_b: these are the scaled values for the  
       % hysteresis output, the alpha and beta limits resp ectfully  
       % u_dir_cu: current input direction (positive(1), z ero(0), or  
       % negative(-1))  
        
if  t <= 0  
    u_pre_hys=0; num_alpha_hys=0; num_beta_hys=0; u _dir_be_hys=0;  
    alpha_hys=0; beta_hys=0;   
    u_dir_temp_hys=0; u_dir_cu_hys=0;  
    sys = 0;  
  
end  
  
       % Determine an input direction  
if  u - u_pre_hys > 0        % if an input direction is positive,  
       u_dir_cu_hys = 1;    % define a current input direction  
                            % (u_dir_cu_hys) as 1  
    elseif  u - u_pre_hys < 0    % if an input direction is negative,  
           u_dir_cu_hys = -1;   % define a current input direction  
                                % (u_dir_cu_hys) as  -1  
    else    u_dir_cu_hys = 0;    % if u - u_pre_hys = 0, a current input  
                                % direction (u_dir_ cu_hys) = 0  
end  
if  u_dir_be_hys ~= 0 && u - u_pre_hys == 0  
% when a current input is the same as a previous in put,  
       u_dir_temp_hys = u_dir_be_hys;    
% memorize the previous direction  
end  
  
%-------------------------------------------------- --------------------  
% when input is between saturation limits and chang ing  
if  u_dir_cu_hys ~= 0 && u - beta0_hys > 0 && u - alph a0_hys < 0  
  
% Find values of alpha and beta  
% when an input direction changes,  
    if  u_dir_cu_hys * u_dir_be_hys == -1  
% if a current direction is negative,  
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         if  u_dir_cu_hys == -1  
% increase the number of alpha,  
            num_alpha_hys = num_alpha_hys + 1;   
% save the previous input value in the alpha data s et  
            alpha_hys(num_alpha_hys) = u_pre_hys;    
% if a current direction is positive, 
         elseif  u_dir_cu_hys == 1  
% increase the number of beta,  
            num_beta_hys = num_beta_hys + 1;     
% save the previous input value in the beta data se t  
            beta_hys(num_beta_hys) = u_pre_hys;  
         end  
    end  
  
           % Find values of alpha and beta, when two consecuti ve input  
           % values were the same and now changed direction  
    if  u_dir_cu_hys * u_dir_be_hys == 0 && u_dir_cu_hys *  
u_dir_temp_hys == -1  
        if  u_dir_cu_hys == -1  
           num_alpha_hys = num_alpha_hys + 1;  
           alpha_hys(num_alpha_hys) = u_pre_hys;  
        elseif  u_dir_cu_hys == 1  
           num_beta_hys = num_beta_hys +1;  
           beta_hys(num_beta_hys) = u_pre_hys;  
        end  
    end  
  
% if a current input is bigger than the smallest va lue of alpha data  
% set,  
% delete the recent alpha value and beta value  
    while  num_alpha_hys > 0 && u > alpha_hys(num_alpha_hys)  
               alpha_hys(num_alpha_hys) = 0;  
               beta_hys(num_alpha_hys) = 0;  
               num_alpha_hys = num_alpha_hys - 1;  
               num_beta_hys = num_alpha_hys;  
    end  
  
% if a current input is smaller than the biggest va lue of beta data  
% set,  
% delete the recent alpha value and beta value  
    while  num_beta_hys > 0 && u < beta_hys(num_beta_hys)  
               beta_hys(num_beta_hys) = 0;  
               alpha_hys(num_beta_hys + 1) = 0;  
               num_alpha_hys = num_beta_hys;  
               num_beta_hys = num_beta_hys - 1;  
    end  
  
           % calculate the final displacement  
           % when an input is increasing and there is no alpha  value  
    if  num_alpha_hys == 0 && u_dir_cu_hys == 1  
           sys = norm_intp_v2e(u,u,new_f_hys,new_a_ hys,new_b_hys);  
    end  
  
           % when an input is decreasing,  
    if  u_dir_cu_hys == -1  
        if  num_alpha_hys == 0  
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            num_alpha_hys = 1;  
            alpha_hys(num_alpha_hys) = alpha0_hys;  
        end  
        sys = 
norm_intp_v2e(alpha_hys(num_alpha_hys),u,new_f_hys, new_a_hys,new_b_hys)
;  
        if  num_alpha_hys > 1  
            for  j = 1:num_alpha_hys - 1  
                sys = sys + 
norm_intp_v2e(alpha_hys(j),beta_hys(j),new_f_hys,ne w_a_hys,new_b_hys);  
            end  
            for  j = 1:num_alpha_hys - 1  
                sys = sys - 
norm_intp_v2e(alpha_hys(j+1),beta_hys(j),new_f_hys, new_a_hys,new_b_hys)
;  
            end  
        end  
    end  
  
           % when an input is increasing,  
    if  u_dir_cu_hys == 1 && num_alpha_hys ~= 0  
           sys = norm_intp_v2e(u,u,new_f_hys,new_a_ hys,new_b_hys) - 
norm_intp_v2e(u,beta_hys(num_beta_hys),new_f_hys,ne w_a_hys,new_b_hys);  
           for  j = 1:num_alpha_hys  
           sys = sys + 
norm_intp_v2e(alpha_hys(j),beta_hys(j),new_f_hys,ne w_a_hys,new_b_hys);  
           end  
           for  j = 1:num_alpha_hys - 1  
           sys = sys - 
norm_intp_v2e(alpha_hys(j+1),beta_hys(j),new_f_hys, new_a_hys,new_b_hys)
;  
           end  
    end  
 
% Initialize variables when an input is beta0 or al pha0.  
%    if u - beta0_hys == 0  
%           u_pre_hys = beta0_hys;  
%           num_alpha_hys = 0;  
%           num_beta_hys = 0;  
%           u_dir_cu_hys = -1;  
%           alpha_hys = beta0_hys;  
%           beta_hys=beta0_hys;  
%    elseif u - alpha0_hys == 0  
%           u_pre_hys = beta0_hys;  
%           num_alpha_hys = 0;  
%           num_beta_hys = 0;  
%           u_dir_cu_hys = 1;  
%           alpha_hys = alpha0_hys;  
%           beta_hys=alpha0_hys;  
%    end  
     
%    u_pre_hys = u;  
%    u_dir_be_hys = u_dir_cu_hys;  
    sys = beta0_hys + sys;  
     
% when input is between saturation limits and not c hanging  
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elseif  u_dir_cu_hys == 0 && u - beta0_hys > 0 && u - alph a0_hys < 0  
    sys = x;  
% when input is larger than upper hysteresis limit      
elseif  u - alpha0_hys >= 0    
    sys = u; % sys = alpha0_hys;      
% pass through input to output (one can also satura te @ alpha0)  
    num_alpha_hys = 0;      % reset alpha and beta matrices  
    num_beta_hys = 0;  
    alpha_hys = alpha0_hys;  
    beta_hys = alpha0_hys;  
    u_dir_be_hys = 0; u_dir_temp_hys = 0;  
% when input is smaller than lower hysteresis limit   
elseif  u - beta0_hys <= 0     
% pass through input to output (one can also satura te @ beta0) 
    sys = u;  % sys = beta0_hys;      
    num_alpha_hys = 0;      % reset alpha and beta matrices  
    num_beta_hys = 0;  
    alpha_hys = beta0_hys;  
    beta_hys = beta0_hys;  
    u_dir_be_hys = 0; u_dir_temp_hys = 0;  
     
end  
  
    u_pre_hys = u;  
    u_dir_be_hys = u_dir_cu_hys;  
    x = sys;  
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Code listing for “norm_intp_xx…” which contains the code for the Preisach weight 

function interpolation called by the hysteresis and inverse hysteresis functions 

function  y = norm_intp_v2e(alpha,beta,new_f,new_a,new_b)  
  
    % new_f, new_a and new_b are used as global  
    % Based on a linear spline interpolation function, a displacement  
    % value is computed with the information of alpha a nd beta.  
  
%================================================== ====================  
for  i = 1:length(new_a) - 1  
    if  alpha >= new_a(i+1) & alpha <= new_a(i)  % position of alpha  
% alpha1 and alpha2 in a cell having alpha value 
    alpha1 = new_a(i); alpha2 = new_a(i+1);        
  
        % When the position of alpha is known  
    for  j = 1:length(new_b) - 1  
        if  beta >= new_b(j) & beta <= new_b(j+1)    % position of beta  
% beta1 and beta2 in a cell having beta value 
           beta1 = new_b(j); beta2 = new_b(j+1);     
  
            % When the position of beta is known  
% (alpha,beta) is positioned in a triangular cell. 
            if  alpha2 == beta1           
 
% the procedure of the linear spline interpolation in a triangular cell  
                   new_f11 = new_f(i,j); new_f12=ne w_f(i,j+1); 
                   new_f21=new_f(i+1,j);  
                   new_a_t = inv([1 alpha1 beta1; 1  alpha1 beta2; 1 
alpha2 beta1]) * [new_f11 new_f12 new_f21]';  
% y is the output displacement value.  
                   y = new_a_t' * [1 alpha beta]';       
% (alpha,beta) is placed in a square cell.  
            else                                      
 
% the procedure of the linear spline interpolation in a square cell  
                   new_f11 = new_f(i,j); new_f12 = new_f(i,j+1); 
new_f21 =new_f(i+1,j); new_f22=new_f(i+1,j+1);  
                   new_a_s = inv([1 beta1 alpha1 al pha1*beta1; 1 beta2 
alpha1 alpha1*beta2; ...  
                        1 beta1 alpha2 alpha2*beta1 ; 1 beta2 alpha2 
alpha2*beta2]) * [new_f11 new_f12 new_f21 new_f22]' ;  
                   y = new_a_s' * [1 beta alpha alp ha*beta]';  
            end  
  
% the output becomes zero when alpha < beta.  
            if  alpha < beta  
                   y = 0;  
            end  
  
% Once the output is obtained, the FOR loops are te rminated.  
            break     
        end  
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    end ;  
end ;  
end  
 



 

 135 

Code listing for “norm_preisach_inv_xx…” which contains the code for the Preisach 

inverse hysteresis simulink block 

% this implementation is based on the "classical" p reisach model for  
% hysteresis  found in section 1.4 of "Mathematical Models of Hys teresis 
% and Their  Applications" 2ed, by Isaak D. Mayergoyz, Elsevier Science,  
% Amsterdam, 2003  
  
% the implementation is called "norm_preisach_xx... "  
% and calls an interpolation function "norm_intp_xx ..." which is  
% linear in both alpha and beta directions and uses  a set of normalized 
% mesh values "norm_f" for the first order transiti on curves. "norm_f" 
% may be loaded as part of "norm_intp_xx" or loaded  in  
% "norm_load_xx..."  
  
% “Preisach” is the same as the file name. 
function  [sys,x0,str,ts] = norm_preisach_v2g_inv(t,x,u,flag )  
 
  
switch  flag  
case  0  
[sys,x0,str,ts] = mdlInitializeSizes();  
  
case  3  
sys = mdlOutputs(t,x,u);  
  
case  { 1, 2, 4, 9 }  
sys = [];  
  
otherwise  
error([ 'Unhandled flag =' , num2str(flag)]);  
end  
  
function  [sys,x0,str,ts] = mdlInitializeSizes()  
sizes = simsizes;  
sizes.NumContStates = 0;  
sizes.NumDiscStates = 1;  
sizes.NumOutputs    = -1;   % dynamically sized  
sizes.NumInputs     = -1;   % dynamically sized  
sizes.DirFeedthrough    = 1;    % has direct feedthrough  
sizes.NumSampleTimes    = 1;  
  
sys = simsizes(sizes);  
str = [];  
x0 = [0];  
ts = [-1 0];    % inherited sample time  
  
% The above code is given as default when you choos e a M-file  
% S-function template.  
%-------------------------------------------------- --------------------  
  
function  sys = mdlOutputs(t,x,u)  
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       % define global variables  
global  u_pre_hys_inv num_alpha_hys_inv num_beta_hys_inv 
u_dir_be_hys_inv u_dir_temp_hys_inv u_dir_cu_hys_in v  
global  alpha_hys_inv beta_hys_inv alpha0_hys_inv beta0_hy s_inv 
slope_hys_inv new_f_hys_inv new_a_hys_inv new_b_hys _inv  
  
       % u_pre_hys_inv: previous input value  
       % num_alpha_hys_inv: The number of alpha in the inp ut signal  
       % num_beta_hys_inv: The number of beta in the input  signal  
       % u_dir_be_hys_inv: previous input direction (posit ive(1),  
       % zero(0), or negative(-1))  
       % alpha, beta: data set of alpha and beta, respecti vely  
       % u_dir_temp_hys_inv: input direction used temporar ily  
       % alpha0, beta0: alpha0 and beta0 are the upper and  lower limits  
       % of the half plane  triangle "T" of book section 1.2. they are  
       % parameters for the function.  new_f, new_a, new_b: these are  
       % the scaled values for the  hysteresis output, the alpha and  
       % beta limits respectfully  u_dir_cu_hys_inv: current input  
       % direction (positive(1), zero(0), or negati ve(-1))  
        
if  t <= 0  
    u_pre_hys_inv=0; num_alpha_hys_inv=0; num_beta_ hys_inv=0; 
u_dir_be_hys_inv=0;  
    alpha_hys_inv=0; beta_hys_inv=0;   
    u_dir_temp_hys_inv=0; u_dir_cu_hys_inv=0;  
    sys = 0;  
end  
  
% Determine an input direction  
% if an input direction is positive, 
if  u - u_pre_hys_inv > 0         
% define a current input direction (u_dir_cu_hys_in v) as 1 
    u_dir_cu_hys_inv = 1;     
% if an input direction is negative,  
    elseif  u - u_pre_hys_inv < 0     
% define a current input direction (u_dir_cu_hys_in v) as -1  
           u_dir_cu_hys_inv = -1;    
% if u - u_pre_hys_inv = 0, a current input directi on 
% (u_dir_cu_hys_inv) = 0  
    else    u_dir_cu_hys_inv = 0;     
end  
% when a current input is the same as a previous in put,  
if  u_dir_be_hys_inv ~= 0 && u - u_pre_hys_inv == 0  
% memorize the previous direction  
       u_dir_temp_hys_inv = u_dir_be_hys_inv;    
end  
  
%-------------------------------------------------- --------------------  
% when input is between saturation limits and chang ing  
if  u_dir_cu_hys_inv ~= 0 && u - beta0_hys_inv > 0 && u - alpha0_hys_inv 
< 0  
 
% Find values of alpha and beta  
% when an input direction changes,  
    if  u_dir_cu_hys_inv * u_dir_be_hys_inv == -1  
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% if a current direction is negative,  
         if  u_dir_cu_hys_inv == -1  
% increase the number of alpha,  
            num_alpha_hys_inv = num_alpha_hys_inv +  1;   
% save the previous input value in the alpha data s et  
            alpha_hys_inv(num_alpha_hys_inv) = u_pr e_hys_inv;    
% if a current direction is positive,  
         elseif  u_dir_cu_hys_inv == 1  
% increase the number of beta,  
            num_beta_hys_inv = num_beta_hys_inv + 1 ;     
% save the previous input value in the beta data se t  
            beta_hys_inv(num_beta_hys_inv) = u_pre_ hys_inv;  
         end  
    end  
  
% Find values of alpha and beta, when two consecuti ve input  
% values were the same and now changed direction  
    if  u_dir_cu_hys_inv * u_dir_be_hys_inv == 0 && u_dir_ cu_hys_inv * 
u_dir_temp_hys_inv == -1  
        if  u_dir_cu_hys_inv == -1  
           num_alpha_hys_inv = num_alpha_hys_inv + 1;  
           alpha_hys_inv(num_alpha_hys_inv) = u_pre _hys_inv;  
        elseif  u_dir_cu_hys_inv == 1  
           num_beta_hys_inv = num_beta_hys_inv +1;  
           beta_hys_inv(num_beta_hys_inv) = u_pre_h ys_inv;  
        end  
    end  
  
% if a current input is bigger than the smallest va lue of alpha data  
% set,  
% delete the recent alpha value and beta value  
    while  num_alpha_hys_inv > 0 && u > alpha_hys_inv(num_alp ha_hys_inv)  
               alpha_hys_inv(num_alpha_hys_inv) = 0 ;  
               beta_hys_inv(num_alpha_hys_inv) = 0;  
               num_alpha_hys_inv = num_alpha_hys_in v - 1;  
               num_beta_hys_inv = num_alpha_hys_inv ;  
    end  
  
% if a current input is smaller than the biggest va lue of beta data  
% set,  
% delete the recent alpha value and beta value  
    while  num_beta_hys_inv > 0 && u < beta_hys_inv(num_beta_ hys_inv)  
               beta_hys_inv(num_beta_hys_inv) = 0;  
               alpha_hys_inv(num_beta_hys_inv + 1) = 0;  
               num_alpha_hys_inv = num_beta_hys_inv ;  
               num_beta_hys_inv = num_beta_hys_inv - 1;  
    end  
  
% calculate the final displacement  
% when an input is increasing and there is no alpha  value  
    if  num_alpha_hys_inv == 0 && u_dir_cu_hys_inv == 1  
           sys = 
norm_intp_v2e(u,u,new_f_hys_inv,new_a_hys_inv,new_b _hys_inv);  
    end  
  
% when an input is decreasing,  
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    if  u_dir_cu_hys_inv == -1  
        if  num_alpha_hys_inv == 0  
            num_alpha_hys_inv = 1;  
            alpha_hys_inv(num_alpha_hys_inv) = alph a0_hys_inv;  
        end  
        sys = 
norm_intp_v2e(alpha_hys_inv(num_alpha_hys_inv),u,ne w_f_hys_inv,new_a_hy
s_inv,new_b_hys_inv);  
        if  num_alpha_hys_inv > 1  
            for  j = 1:num_alpha_hys_inv - 1  
                sys = sys + 
norm_intp_v2e(alpha_hys_inv(j),beta_hys_inv(j),new_ f_hys_inv,new_a_hys_
inv,new_b_hys_inv);  
            end  
            for  j = 1:num_alpha_hys_inv - 1  
                sys = sys - 
norm_intp_v2e(alpha_hys_inv(j+1),beta_hys_inv(j),ne w_f_hys_inv,new_a_hy
s_inv,new_b_hys_inv);  
            end  
        end  
    end  
  
% when an input is increasing,  
    if  u_dir_cu_hys_inv == 1 && num_alpha_hys_inv ~= 0  
           sys = 
norm_intp_v2e(u,u,new_f_hys_inv,new_a_hys_inv,new_b _hys_inv) - 
norm_intp_v2e(u,beta_hys_inv(num_beta_hys_inv),new_ f_hys_inv,new_a_hys_
inv,new_b_hys_inv);  
           for  j = 1:num_alpha_hys_inv  
           sys = sys + 
norm_intp_v2e(alpha_hys_inv(j),beta_hys_inv(j),new_ f_hys_inv,new_a_hys_
inv,new_b_hys_inv);  
           end  
           for  j = 1:num_alpha_hys_inv - 1  
           sys = sys - 
norm_intp_v2e(alpha_hys_inv(j+1),beta_hys_inv(j),ne w_f_hys_inv,new_a_hy
s_inv,new_b_hys_inv);  
           end  
    end 

 
% Initialize variables when an input is beta0 or al pha0.  
%    if u - beta0_hys_inv == 0  
%           u_pre_hys_inv = beta0_hys_inv;  
%           num_alpha_hys_inv = 0;  
%           num_beta_hys_inv = 0;  
%           u_dir_cu_hys_inv = -1;  
%           alpha_hys_inv = beta0_hys_inv;  
%           beta_hys_inv=beta0_hys_inv;  
%    elseif u - alpha0_hys_inv == 0  
%           u_pre_hys_inv = beta0_hys_inv;  
%           num_alpha_hys_inv = 0;  
%           num_beta_hys_inv = 0;  
%           u_dir_cu_hys_inv = 1;  
%           alpha_hys_inv = alpha0_hys_inv;  
%           beta_hys_inv=alpha0_hys_inv;  
%    end  
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%    u_pre_hys_inv = u;  
%    u_dir_be_hys_inv = u_dir_cu_hys_inv;  
  
    sys = beta0_hys_inv + ((u - beta0_hys_inv) + (( u - beta0_hys_inv) - 
sys));  %    sys = beta0_hys_inv + sys;  
  
     
% when input is between saturation limits and not c hanging  
elseif  u_dir_cu_hys_inv == 0 && u - beta0_hys_inv > 0 && u - 
alpha0_hys_inv < 0  
    sys = x;  
     
% when input is larger than upper hysteresis limit  
elseif  u - alpha0_hys_inv >= 0    
    
% pass through input to output (one can also satura te @ alpha0)  
    sys = u; % sys = alpha0_hys_inv;   
    num_alpha_hys_inv = 0;      % reset alpha and beta matrices  
    num_beta_hys_inv = 0;  
    alpha_hys_inv = alpha0_hys_inv;  
    beta_hys_inv = alpha0_hys_inv;  
    u_dir_be_hys_inv = 0; u_dir_temp_hys_inv = 0;  
% when input is smaller than lower hysteresis limit  
elseif  u - beta0_hys_inv <= 0     
% pass through input to output (one can also satura te @ beta0)  
    sys = u;  % sys = beta0_hys_inv;      
    num_alpha_hys_inv = 0;      % reset alpha and beta matrices  
    num_beta_hys_inv = 0;  
    alpha_hys_inv = beta0_hys_inv;  
    beta_hys_inv = beta0_hys_inv;  
    u_dir_be_hys_inv = 0; u_dir_temp_hys_inv = 0;  
     
end  
  
    u_pre_hys_inv = u;  
    u_dir_be_hys_inv = u_dir_cu_hys_inv;  
    x = sys;  
 
 

 



 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: SIMULATION TUNING ANALYSIS 
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1st order Han1 Function velocity control tuning analysis 

For small error signals where the system does not command saturated control, the 

1st order Han1 Function equations are those of the Isochronic Region alone: 
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The nonlinear action of the control, to drive large error quickly into the Isochronic 

Region, is a heuristic tuning process to achieve some performance parameters, and then 

fine tune to achieve a non-cycling control while in the IR. One can tune the linear 

response within the IR, if one has the benefit of a system model. The transfer function 

from control to velocity is: 
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Figure 59 Han1 Function velocity  

(The electrical subsystem harmonic zero and pole pairs are beyond the mechanical 

complex poles, shown in the Bode plots, and are negligible for the tuning.) One may 

choose a stable closed loop controller 9( ) 7C s e= − with greater than unity gain above 1e9 

rad/sec as a starting point, which gives the Bode plots in Figure 60. The result was the 

_ 
∫ ∫ Han Gelec 
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accuracy was “optimum”, but with almost constant control cycling, with slow control 

magnitude decay until some input change occurred.  
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Figure 60 Han1 Function velocity, open and closed loop Bode tuning plots:  

Increasing the value of the tuning variables h and r in the simulation blocks 

allows one to improve the performance to the point where the state remains in the 

Isochronic Region without cycling the control, any beyond this point may improve 

accuracy and disturbance rejection at the expense of control energy. Small Signal 

11( ) 8C s e= −  The velocity tracking error in this case is <2e-7/8e-5 = 0.25%. We tuned the 

Han1 Function without benefit of a model, using the previous heuristic method, arriving 

at values close to these. 
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1st order Han1 Function velocity plus PI position control tuning analysis 

The equivalent SMALL SIGNAL control is a PID configuration, where the Han1 

Function gain, 1/KhTs, is the overall control gain, the derivative gain, Kd = 1, and the 

values of Kp/2=133k and Ki = Kp/4 are chosen to place the pair of real zeros in the left 

half plane and critically damped at the plant resonant poles. This gives one a stable 

system with no phase lag past 180°. (One should err on the low gain side if tuning 

manually, Kp < 8e5/3) 
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If one chooses, as before, to start designing with a stable system with no phase lag past 

180° and gain > 1 below the resonant frequency, then one has, Kh=4e-9/3, Kr = 1e10, 
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What one discovers from this initial tuning setting is that one is at the boundary 

where the control cycles constantly if the input is at this resonant frequency. If one then 

increases sample time h (Kh) and/or the saturation limit r (Kr) one immediately observes 

the control will begin to enter the Isochronic Region for the Han1 Function, and stop 

cycling for short periods. This is a practical result to be desired, so one can choose Kr = 

1e8, as for the velocity controller only. Doing so still provides a stable system with 

practical performance: 
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( ) 8.3 ( )
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u s e e s
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 + +
 = −
 
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 (B5) 
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Figure 61 Han1 Function velocity with PI position control: Bode tuning plots.  
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1st order Han1 Function velocity plus 2nd order Han2 position control tuning analysis 

( )

2 1

2

2

( ) ( ) ( )

2 1 1
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2 1
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h s h s h s

s

h s s h s

C s Han s Han s

s s
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K T T K T
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  += +   +  

 (B6) 

As a starting point exercise one can place the zero at the resonance and calculate 

the gain values for gain > 1 below the resonant frequency.  

Small Signal 

13 51 4
( )

3 3

e e
C s s

 
≈ − + 

   but there is not enough steady state error 

correction in this tuning choice, even though the performance is acceptable otherwise. 

One would next raise the value of Kr2 = 1.33e15 and test. 
15 51 4
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e e
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Figure 62 Han Function position and velocity control: Bode tuning plots.  
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Linear Active Disturbance Rejection Control(LADRC) tuning analysis 

The LESO presents an equivalent double integrator plant to the controller:  

2 2

25.33
( )p

b
G s

s s

−≈ =  (B7) 

Using these heuristics that observer frequency ωo ≈ 10x the max frequency at which one 

desires to operate, and then use a controller frequency ωc = ωo/3.  the initial PD controller 

is: 

6 6
2 8 2

( ) 2 2
2 9 9

c
c d p c c c

e e
G s K s K s s s

ωω ω ω   = + = + = + = +  
   

 (B8) 

The open loop Bode plot and disturbance response for this design indicates that the 

response will lag the input ~ 1°, which is not acceptable performance, but the system is 

stable with excellent phase margin.  
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Figure 63 LADRC(PD), Bode plot & Disturbance Response 
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 Active Disturbance Rejection Control with Han1 velocity and Proportional position 

control tuning analysis 

The Han1 Function velocity control has the transfer function: 

1
( ) ( ) ( ) ( )

h s

u s s e s C s e s
K T

 
= ⋅ = 
 

 (B9) 

so that the Han1 Function in velocity mode appears as a linear derivative control for small 

signals. 

The small signal transfer function for Han1 Function combined with proportional 

position control is: 

( )1 1
( ) ( ) ( ) ( ) ( )p p h s

h s h s

u s s K e s s K K T e s C s e s
K T K T

    
= + = + =     

    
 (B10) 

One may tune the preferred response with Kh = 1e-7, Kp = 1e7 to give a small 

signal control: ( )
12

64
( ) 7.5

3

e
C s s e−= − +  

What one discovers from this tuning setting is that if one the decreases gain Kh 

and/or reduces Kr one immediately observes the control will begin to leave the Isochronic 

Region for the Han1 Function, and start cycling for short periods, the same results as for 

the Han1 Function alone. 

 



 

 

 

 

 

 

 

 

 

 

APPENDIX C: STABILITY OF HYSTERESIS AND ITS 

DERIVATIVE  
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Any analysis of necessity assumes the physical process is accurately represented 

by the model equation, in this case our assumptions are not only Newtonian mechanics 

but also that the hysteresis model is an accurate representation. Recalling Equations (3.4) 

and (3.5) for the Preisach and Prandtl-Ishlinskii hysteresis in terms of the “relay” basis 

function:  

,0

[ ]( )

( ) ( , ) [ ]( )P s r s r

P u t

w t r s R u t dsdrµ
∞ ∞

− +−∞

=

= ∫ ∫
 (C.1a) 

.0 0

[ ]( )

( )
( ) [ ]( ) ( ) ( )

2PI s r s r

PI u t

r
w t R u t dsdr u t r dr

ρ ρ
∞ ∞ ∞

− +−∞

=

= − +∫ ∫ ∫
 (C.1b) 

it becomes apparent, as Krejci [76,77] demonstrates, the quasilinear equation 

encompasses a Prandtl-Ishlinskii operator inverse, which is itself a Prandtl-Ishlinskii 

operator, where the integral of the weight equals the identity operator, in our case = 1. It 

is the character of the weight function, ( )rρ , more so than the simple integral value, that 

is important for our proof. Specifically, are ( )rρ  and ( )rρɺ  and/or ( , )r sµ  and ( , )r sµɺ  

Lipschitz bounded over the operating range?  

The mathematic models of hysteretic behavior are composed of infinite sums or 

integrals of weighted basis “relay”, “play” or “stop” operators. It is usual to pass from the 

double integral of the weighted basis operator to an area integral of the weight function 

over the “Preisach Plane”, whereby the “memory evolution” curve which bisects the 

plane into positive and negative regions contains all current condition and history to 

calculate the output for any input. This is also the technique most used in practical 

applications.  
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The progression for the analysis in this appendix, which can be attributed to 

Brokate & Sprekels [10], is first to demonstrate the Lipschitz continuity and boundedness 

of the constituent basis operators, and then extend that Lipschitz condition to the memory 

curve, and finally to the full hysteresis function itself. Similar proofs to this are available 

in Krejci [76,77] and Visintin [127]. Once Lipschitz boundedness is established for the 

hysteresis transformation it is straightforward to show the BIBO stability of the LESO 

observer and the closed loop LADRC feedback control itself, as we claimed in Chapter 6.  

C.1 Lipschitz Properties of the “play” and “stop” basis operators 

One primary condition for the Lipschitz property of the hysteresis function is the 

assumption of continuous piecewise monotonic input functions. This is not a constraint in 

practical applications, control signal power amplifiers have rise time and saturation 

limits. Most applications have smooth input profile designs.  The strategy of the proof are 

consideration of a continuous input as a sequence of piecewise monotonic functions and 

then extended to the limit. Before proceeding to provide the main result in this section we 

introduce the sets of appropriate inputs. 

[0, ] [0, ],

[0, ] [0, ] [0, ]

[0, ].

pm

pm pm

M T the set of all piecewisemonotone functions on T

C T M T C T

the set of all continuous piecewisemonotone functions on T

= ∩  (C.2) 
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Figure 64 “Stop” and “Play” Operators 

Recalling the definitions of Equation (3.3) 

{ }{ }

0

1

[ , ]( ) ( ),

(0) ( (0),0),

( ) ( ( ), ( )), , 0 1,
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r i i i

r

F u t w t

w f u

w t f u t w t for t t t i N
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 (C.3a) 
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 (C.3b) 

r r dF E I+ =   such that  [ ]( ) [ ]( ) ( ),r rF u t E u t u t+ =  (C.3c) 

it follows that 

[ ]( ) ( ) [ ]( ) ( ),

[ ] ( ) [ ] ( ) ( ),

[ ] ( ) ( ) [ ] ( ) ( ).

r r

r r
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F u t u t and E u t u t

F u t E u t u t

and F u t u t and E u t u t
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′ ′+ =

′ ′≤ ≤
ɺ

ɺ ɺ

 (C.3d) 

From the definition (C.3a) 
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 (C.3e) 

one obtains (straightforward proof omitted): 
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 (C.3f) 

Lemma C.1 (Continuity of the “play” operator’s  update function fr) 

Function :rf × →ℝ ℝ ℝ  defined by 

{ }{ }( , ) max ,min , , 0rf u w u r u r w r= − + ≥  (C.4a) 

satisfies the inequality  

{ }1 1 1 2 2 2 1 2 1 2 1 2( , ) ( , ) max ,r rf u w f u w u u r r w w− ≤ − + − −  (C.4b)  

for any 0, , , 1,2.j j jr u w j≥ ∈ =ℝ  

Proof: For any , , ,a b c d∈ℝ , one has  

{ } { } { }max , max , max , .a b c d a c b d− ≤ − −  (C.4c) 

The same holds for “min” function on left side. Therefore 

( ) ( ) ( ) ( ){ }
1 1 1 2 2 2

1 1 2 2 1 1 2 2 1 2

( , ) ( , )

max , ,

r rf u w f u w

u r u r u r u r w w

−

≤ − − − + − + −
 (C.4d) 
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which implies Equation (C.4a). ■ 

From Lemma C.1 (Continuity of the “play” operator’s  update function fr) one can 

conclude  

{ }
1 1 0,1 2 2 0,2

1 2 1 2 0,1 0,2
0

1 2

[ , ]( ) [ , ]( )

max sup ( ) ( ) , ,

, [0, ] [0, ]

r r

t

pm

F u w t F u w t

r r u u w w

for all u u M T and any t T
τ

τ τ
≤ ≤

−

≤ − + − −

∈ ∈

 (C.5) 

by induction. 

One then may continue from the boundedness of the “play” operator update 

function to that for the basis operator itself. 

Lemma C.2 (Lipschitz continuity of “play” operator Fr[u](t) on C[0,T]) 

For any 0r ≥ and the “play” operator : [0, ] [0, ]rF C T C T× →ℝ  we have 

{ }1 0,1 2 0,2 1 2 0,1 0,2[ ; ] [ ; ] max , ,r rF u w F u w u u w w
∞∞

− ≤ − −  (C.6a) 

0 0[ ; ]( ) [ ; ]( ) sup ( ) ( ) ,r r
t t

F u w t F u w t u u t
τ

τ
′≤ ≤

′ ′− ≤ −  (C.6b) 

0 0 0[ ; ] [ ] ,r rF u w F u w w= − +  (C.6c) 

1 0,1 2 0,2 1 2 0,1 0,2[ ; ] [ ; ], ,r rF u w F u w if u u and w w≤ ≤ ≤  (C.6d) 

0 0 0 0 0[ [ ; ]; ] [ ; ], .r s r sF F u y w F u w if y w r+= − ≤  (C.6e) 

for all 1 2, , [0, ]u u u C T∈  and for any 0s≥ , where 0 0,1 0,2 0, , ,w w w y ∈ℝ  and 0 t t T′≤ ≤ ≤ . 

Proof: For 1 2, , [0, ]pmu u u M T∈  Equation (C.6c), (C.6d) and (C.6e) follow from Equation 

(C.3f). Equation (C.6a) follows directly from Equation (C.5). If one sets 
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1 2, tu u and u u′= =  then (C.6b) follows from (C.6a) and one can extend Fr continuously 

on the dense subset [0, ] [0, ]pmC T C T× ⊂ ×ℝ ℝ  onto [0, ]C T ×ℝ  itself. ■ 

Similarly, one may also follow the same process for the “stop” operator as for the 

“play” operator to show the Lipschitz boundedness.  

Lemma C.3 (Lipschitz continuity of “stop” operator Er[u](t) on C[0,T]) 

Define :re →ℝ ℝ  as a Lipschitz continuous operator as in Equation (C.3b)  

{ }{ }
0[ , ]( ) ( ( ) ( ) ( )),

( ) min ,max , , 0.

r r i i

r

E u t e u t u t w t

e u r r u r

λ = − +

= − ≥
 (C.7a) 

Then for any initial value 0w ∈ℝ , : [0, ] [0, ]rE C T C T× →ℝ  holds for all 

1 2, , [0, ]u u u C T∈ and for any 0s≥ , where  0 0,1 0,2, ,w w w ∈ℝ ,and 0 t t T′≤ ≤ ≤ , we have 

1 2 1 2[ ] [ ] 2 ,r rE u E u u u
∞ ∞

− ≤ −  (C.7b) 

[ ]( ) [ ]( ) 2 sup ( ) ( ) ,r r
t t

E u t E u t u u t
τ

τ
′≤ ≤

′ ′− ≤ −  (C.7c) 

,
[ ]( ) [ ]( ) 2 sup ( ) ( ) ,r r

t t
E u t E u t u u

τ τ
τ τ

′ ′≤ ≤
′ ′− ≤ −  (C.7d) 

0 0[ ; ] [ ; ] ,r rE u w F u w u+ =  (C.7e) 

0 0[ ; ] [ ],r rE u w E u w= −  (C.7f) 

1 0,1 2 0,2 1 2 0,1 0,2[ ; ] [ ; ], ,r rE u w E u w if u u and w w≤ ≤ ≤  (C.7g) 

0 0 0 0 0[ [ ; ]; ] [ ; ], .r s r sE E u y w E u w if y w r+= − ≤  (C.7h) 
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Proof: Equation (C.7e) follows from (C.3c) and the proof of (C.7g) is elementary from 

(C.3b). Equations (C.7b), (C.7c), (C.7f) and (C.7h) follow from comparable equations of 

Lemma C.2. Equation (C.7d) may be proved by setting 

[0, ], [0, ], [ ]pm ru C T and t t T and w E u′∈ < ∈ = . Consider the case 

( ) ( ) ( ) ( ).w t u t w t u t′ ′− < −  (C.7i) 

From Figure 65 it is clear that ( ( ) ( ), )P u t r w t r= + −  must be passed at some time 

[ , ]t tτ ′∈  so that: 

( ) , ( ) ( ) ( )w r u u t r w tτ τ= − = −  (C.7j) 

Since r is an upper bound for both w(t′) and w(t) one obtains from (C.7i) and (C.7j)  

{ }
{ }

( ) ( ) max ( ), ( )

max ( ) ( ), ( ) ( )

w t w t r w t r w t

u u t u u tτ τ

′ ′− ≤ − −

′≤ − −
 (C.7k) 

which proves the assertion. ■ 

 

Figure 65 The case ( ) ( ) ( ) ( )w t u t w t u t′ ′− < −  
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C.2 Lipschitz Properties of the “play” and “stop” basis operator derivatives 

As important as the boundedness of the basis operators themselves for the 

stability property of the ADRC is the boundedness of their derivatives. Let us define a 

new subset of continuous functions: { }[0, ] [0, ]plC T u C T u is piecewise linear= ∈  

Lemma C.4 (Lipschitz properties of Fr[u](t)and Er[u](t) derivatives) 

Let 0r ≥  and 1 2, [0, ]plu u C T∈ . Then  

1 2 1 2 1 2[ ] ( ) [ ] ( ) [ ] [ ] ( ) ( ) ( )r r r rF u t F u t E u E u t u t u t′′ ′− + − ≤ −ɺ ɺ  (C.8a) 

for all [0, ]t T∈  except for at most a finite number of points. 

Proof: Let  

( )1 2( ) [ ]( ) [ ]( ) .r rt sign E u t E u tσ = −  (C.8b) 

Choose an open interval (ti,ti+1) where the derivatives in (C.8a) exist and σ is identically 

zero or nowhere zero. If σ = 0 then (C.7e) implies (C.8a) is an equality. Otherwise 

( )1 2 1 2[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) ( ).r r r rF u t F u t F u t F u t tσ′ ′ ′ ′− = −  (C.8c) 

Since  

( )1 2 1 2[ ] [ ] ( ) [ ] ( ) [ ] ( ) ( ),r r r rE u E u t E u t E u t tσ′ ′ ′− ≡ −  (C.8d) 

one may add (C.8c) and (C.8d) and apply (C.7e) to prove the assertion. ■ 
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Lemma C.5 (Lipschitz continuity of Fr and Er on W1,1(0,T)) 

The operators Fr and Er are Lipschitz continuous on W1,1(0,T) and  

1 2 1 2 1 20
[ ] [ ] ( ) ( ) 2 (0) (0) ,

T

r r BV
F u F u u t u t dt u u− ≤ − + −∫ ɺ ɺ  (C.9a) 

1 2 1 2[ ] [ ] 2 ,r r BV BV
E u E u u u− ≤ −  (C.9b) 

for all 1,1
1 2, (0, )u u W T∈ . 

Proof: Let 1 2, [0, ]plu u C T∈  One infers from Equation (C.8a) that 

1 2 1 20

1 2 1 20

1 2 1 20

[ ] ( ) [ ] ( ) [ ]( ) [ ]( )

( ) ( ) [ ](0) [ ](0)

( ) ( ) (0) (0) .

T

r r r r

T

r r

T

F u t F u t dt E u T E u T

u t u t dt E u E u

u t u t dt u u

′ ′− + −

≤ − + −

≤ − + −

∫

∫

∫

ɺ ɺ

ɺ ɺ

 (C.9c) 

Adding 1 2[ ](0) [ ](0)r rF u F u−  to both sides one concludes from (C.9a) from (C.6a) that  

1 20

1 2 1 20 0

[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( ) ( ) ( ) .

T

r r

T T

r r

E u t E u t dt

F u t F u t dt u t u t dt

′ ′−

′ ′≤ − + −

∫

∫ ∫ ɺ ɺ

 (C.9d) 

Thus (C.9b) follows from (C.9c). Since [0, ]plC T  is dense in 1,1(0, )W T  both (C.9a) and 

(C.9b) extend to 1,1(0, )W T . ■ 
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C.3 Lipschitz Properties of the Memory function 

Referring again to Section 3.2 Hysteresis Transforms: An Infinite Series of Basis 

Functions one may easily comprehend that the memory evolution curves 0( ) : [ ; ]rr F uλ λ=  

define the boundary between the positive and negative regions of the “Preisach Plane” 

and contain equivalent information of the state of the basis operator for all points in the 

plane. Thus the use of the memory evolution function in the integral evaluated along the 

single dimension r is equivalent to integration of the basis function along both 

dimensions r and s at any instant, and for all its history. This memory evolution function, 

integrated along r and a σ-finite Borel measure onν +ℝ , enables one to alternatively 

evaluate the Preisach and Prandtl-Ishlinskii hysteresis functions. 

We introduce the following definitions from Brokate & Sprekels [10]:  

• Continuous memory evolution: ( )0 0[ ; ]( ) ( ) : [ ; ( )]( ).rF u t r F u r tλ λ=  

• Hysteresis operator of Preisach type: ( )[ ]( ) ( )W u t Q tλ=  where Q is the “output 

mapping”. 

• Memory evolution: ( ) ( ) ( )0 0
0( ) ( ) [ ; ]( ) , ( ) , ,r r rt r F u t f u r f u wλ λ λ= = =  which implies 

( )tλ  is the memory evolution curve 0( ) : [ ; ]( )t F u tλ λ=  at time t for all r. 

Lemma C.6 (Regularity Properties of the Memory Evolution) 

Suppose that 1 2, [0, ]u u C T∈  and the initial memory curves 0,1 0,2,λ λ ∈ Λ  are given, and 

let 0,: [ ; ], 1,2.i
i iF u iλ λ= =  Then  
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{ }0,1 0,2
1 2 1 2

0
( ) ( ) max sup ( ) ( ) ,

t
t t u u

τ
λ λ τ τ λ λ

∞ ∞≤ ≤
− ≤ − −  (C.10a) 

holds. Moreover, for any [0, ]u C T∈  and 0λ ∈ Λ , the memory evolution 0: [ ; ]F uλ λ=  

satisfies 

( ) ( ) sup ( ) ( ) , 0 .
t t

t t u u t t t T
τ

λ λ τ
∞ ′≤ ≤

′ ′ ′− ≤ − ≤ ≤ ≤  (C.10b) 

Finally, if 1,1(0, )u W T∈ , then the distributional time derivative tλ∂  belongs to 

1((0, ) ; )L T λ ν+× ⊗ℝ  for every σ-finite Borel measure ν  and satisfies 

0( , ) [ ; ( )] ( ), ( , ) ( )rt r F u r t t r u t
t t

λ λλ∂ ∂′= ≤
∂ ∂

ɺ  (C.10c) 

a.e. in (0, )T +×ℝ  as well as a.e. in (0,T) for every fixed r. 

Proof: The estimates (C.10a) and (C.10b) are direct consequence of Lemma C.2. 

Equation (C.10c) holds a.e. in t for every 0r ≥  from Equation (C.3d) and Lemma C.5. ■ 

The following definitions then formalize our narrative regarding the properties of 

the memory evolution and transition to integration of the memory function along 

,r ν +∈ℝ .  

Definitions C.7: 

The σ-finite Borel measure onν +ℝ , where 1( )Lρ +∈ ℝ  is any density function and γ is a 

one dimensional Lebesque measure on +ℝ : 

00
( ) .p dpν ρ δ ργ

∞
= ⋅ −∫  (C.11a) 

The output mapping for the Prandtl-Ishlinskii function is defined by 
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0
( ) ( ) ( ).Q r dv rλ λ

∞
= ∫  (C.11b) 

The output mapping for the Preisach function is defined by 

000

1
000

( ) ( , ( )) ( ) ,

( , ) 2 ( , ) , , ( ; ).
s

Q q r r dv r w

where q r s r d w L

λ λ

µ σ σ µ ν γ

∞

+

= +

= ∈ ∈ × ⊗

∫

∫ ℝ ℝ ℝ

 (C.11c) 

The modulus of continuity of output mappings is defined by  

0,

( ; ) sup ( ) ( )Q Q Q
ϕ ψ λ

ϕ ψ δ

η δ ϕ ψ

∞

∈
− ≤

= −  (C.11d) 

C.4 Lipschitz Properties of the Preisach and Prandtl type operators and derivatives 

We state the following Proposition C.7 and C.8 needed in Chapter 6. In all cases 

it is assumed that the input to the hysteresis operator, [0, ]pmu C T∈ , is piecewise 

continuous monotonic. Proposition C.7 establishes properties of operators of Preisach 

type, a set including Prandtl-Ishlinskii operators, when the modulus of continuity of the 

memory function output mapping is bounded. Proposition C.8 quantifies the bound of the 

Preisach and the Prandtl-Ishlinskii functions, and their derivatives, based on the bounds 

for the corresponding “relay” basis operator weight function ( , )r sµ , and its derivative. 

The condition for the boundedness of the weight functions is thus established, additional 

to the previous bounded condition on the input.  

 



 

 161 

Proposition C.7: (Regularity properties of Preisach-type Operators) 

Let W denote a hysteresis operator of Preisach type associated with the output 

mapping :Q Λ →ℝ . Then the following statements (i), (ii) and (iii) hold: 

(i) If  

0
lim ( ; ) 0Q
δ

η δ
↓

=  (C.12a) 

then W is uniformly continuous on [0, ]C T × Λ  and thus maps bounded subsets of  

[0, ]C T × Λ  onto bounded subsets of [0, ]C T . 

(ii) If   

( ; )Q C αη δ δ≤  (C.12b) 

for some constants C>0 and (0,1],α ∈  then W is α-Holder continuous on [0, ]C T × Λ . 

That is, whenever 0( , ) [0, ] , 1,2i
iu C T iλ ∈ × Λ = , then 

{ }( )0,1 0,2 0,1 0,2
1 2 1 2[ , ] [ , ] max , ,W u W u C u u

α
λ λ λ λ

∞∞ ∞
− ≤ − −  (C.12c) 

and W maps bounded subsets of  0, [0, ]C Tβ × Λ  onto bounded subsets of 0, [0, ]C Tαβ × Λ  

for any (0,1]β ∈ . 

(iii) If (C.12b) holds for α=1, then W is Lipschitz continuous on [0, ]C T × Λ  and maps 

bounded subsets of X × Λ  onto bounded subsets of X, where X equals either [0, ]BV T  or 

1, (0, )pW T  with 1 p≤ ≤ ∞ , endowed with their standard norms. And  

[ ] ( ) ( )W u t C u t′ ≤ ɺ  (C.12d) 



 

 162 

at every [0, ]t T∈  where both derivatives exist.  

Proof: To apply Lemma C.6, we let 0,[0, ], ,i
iu C T λ∈ ∈ Λ  and  0,: [ ; ], 1,2i

i iF u iλ λ= =  be 

given. Then for every [0, ]t T∈  Equation (C.10a) yields 

( )
{ }( )

0,1 0,2
1 2 1 2

0,1 0,2
1 2

[ ; ]( ) [ ; ]( ) ( ) ( ) ;

max , ; .

W u t W u t t t Q

u u Q

λ λ η λ λ

η λ λ

∞

∞ ∞

− ≤ −

≤ − −
 (C.12e) 

Now if any 0( , ) [0, ]u C Tλ ∈ × Λ  is given, setting 0: [ ; ]F uλ λ=  (and omitting the assumed 

reference to 0λ  in remainder of proof) one infers from Equation (C.10b) that 

( )[ ]( ) [ ]( ) ( ) ( ) ; sup ( ) ( ) ;
t t

W u t W u t t t Q u u t Q
τ

η λ λ η τ
∞

′≤ ≤

 ′ ′ ′− ≤ − ≤ − 
 

 (C.12f) 

for any , [0, ]t t T′∈ . In particular, [ ] [0, ]W u C T∈  if (C.12a) holds. All the other 

assertions of (i) follow from (C.12e). 

Next, suppose Equation (C.12b) holds, then one obtains from (C.12f) that  

sup ( ) ( )[ ]( ) [ ]( )
t t

u u tW u t W u t
C

t t t t

α

τ
αβ β

τ
′≤ ≤

′ −′−  ≤
 ′ ′− −
 

 (C.12g) 

for any , [0, ]t t T′∈  with (0,1]β ∈ . Thus W maps bounded subsets of 0, [0, ]C Tβ × Λ  into 

bounded subsets of 0, [0, ]C Tαβ . If Equation (C.12b) is satisfied with 1α =  then (C.12f) 

implies 

[ ]( ) [ ]( ) sup ( ) ( ) , , [0, ].
t t

W u t W u t C u u t t t T
τ

τ
′≤ ≤

′ ′ ′− ≤ − ∀ ∈  (C.12h) 

Consequently, for any partition { }
0

[0, ]i i N
t of T

≤ ≤
∆ = , we obtain 
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1

1 1
1 1

[ ]( ) [ ]( ) sup ( ) ( ) [ ].
i i

N N

i i i
t ti i

W u t W u t C u u t CVar u
τ

τ
−

− −
≤ ≤= −

− ≤ + ≤∑ ∑  (C.12i) 

Hence it follows that the operator W maps bounded subsets of [0, ]BV T × Λ  into bounded 

subsets of [0, ]BV T . Now assume that 1,1(0, )u W T∈  and let 0ε > . Since u is absolutely 

continuous there exists some 0δ >  such that  

( ) ( )i i ii
i I i I

t t u t u tδ ε
∈ ∈ <

′ ′− < ⇒ − <∑ ∑  (C.12j) 

for any finite collection [ ]( ),i i i I
t t

∈
′  of disjoint subintervals of [0,T]. Choosing [ ],i i it tτ ′∈  

suitably one finds from Equation (C.12h) that  

[ ]( ) [ ]( ) ( ) ( ) .i i
i I i I

W u t W u t C u u t Cτ ε
∈ ∈

′ ′− ≤ − ≤∑ ∑  (C.12k) 

Hence W is absolutely continuous. Dividing (C.12h) by t t′−  and passing to the limit as 

t t′ →  one obtains Equation (C.12d). Since (C.12d) holds a.e. if 1,1(0, )u W T∈  the 

assertions concerning 1, (0, )pW T  follow. ■ 

 

Proposition C.8: (Regularity Properties of the Preisach and Prandtl functions) 

Let P be the Preisach operator having the initial state 0λ ∈ Λ . Then the following 

statements (i) and (ii) hold: 

(i) If  

1 0
: sup ( , ) ( )

s
C r s d v rµ

∞

∈
= < ∞∫

ℝ

 (C.13a) 

then  
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1( ; ) 2Q Cη δ δ≤  (C.13b) 

and [ ]( )P u t  is Lipschitz continuous on [0, ]C T . [ ]( )P u t  also maps bounded subsets of X 

onto bounded subsets of X, where X equals 0, [0, ]C Tα  with (0,1]α ∈ , or 1, (0, )pW T  with 

1 p≤ ≤ ∞ , or [0, ]BV T . Moreover, for a.e. [0, ]t T∈ , 

0 0[ ] ( ) 2 ( , [ , ( )]( )) [ , ( )] ( ) ( ).r rP u t r F u r t F u r t d rµ λ λ ν′ ′= ⋅  (C.13c) 

In particular, 

1[ ] ( ) 2 ( )P u t C u t′ ≤ ɺ  (C.13d) 

at all points [0, ]t T∈  where both derivatives exist. 

(ii) If 
( , )r s

s

µ∂
∂

 is measurable and if, in addition to (C.13a), 

2 0

( , )
: sup ( )

s

r s
C d v r

s

µ∞

∈

∂= < ∞
∂∫

ℝ

 (C.13e) 

then  

( )1 11 2 2 1 1 1 2[ ] [ ] 2 .
L L BV

P u P u C u C u u′ ′− ≤ + −ɺ  (C.13f) 

Therefore, [ ]( )P u t  is a Lipschitz continuous mapping on bounded subsets of 1,1(0, )W T  

and 1, 1,: (0, ) (0, )p pP W T W T→  is continuous for 1 p≤ ≤ ∞ . For the Prandtl function the 

above conditions hold if the measure ν  is finite.  

Proof: By the definition of [ ]( )P u t  one has: 

( )

000 0
( ) 2 ( , ) ( )

r
Q r s dsd r w

λ
λ µ ν

∞
= +∫ ∫  (C.13g) 
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so that 

1 2 1 2

1 1 2

( ) ( ) ( ) ( ) 2sup ( , ) ( )

2 .
s

Q Q r r r s d r

C

λ λ λ λ µ ν

λ λ
∈

∞

− ≤ −

≤ −
ℝ  (C.13h) 

Except Equation (C.13c) all assertions in (i) follow from Proposition C.7. To prove 

(C.13c) set 0: [ , ]F uλ λ=  and observe that 

( , )

0 (0, )

0 0

0 0

[ ]( ) [ ](0) 2 ( , ) ( )

2 ( , ( , )) ( , ) ( )

2 ( , ( , )) ( , ) ( ) .

t r

r

t

t

P u t P u r s dsd r

r r r d d r
t

r r r d r d
t

λ

λ
µ ν

λµ λ τ τ τ ν

λµ λ τ τ ν τ

∞

∞

∞

− =

∂=
∂
∂=
∂

∫ ∫

∫ ∫

∫ ∫

 (C.13i) 

Now we are ready to prove Equation (C.13f). Let 0: [ ; ], 1,2.i iF u iλ λ= =  From Equation 

(C.3d), Lemma C.2 and Lemma C.5 one finds: 

1

1

1 2

1 2
1 20 0

1
1 20 0

1 2

1 2 1 2 1 1 2

[ ] [ ]

2 ( , ( , )) ( , ) ( , ( , )) ( , ) ( )

2 ( , ) sup ( , ) ( , ) ( , )

sup ( , ) ( , ) ( , ) ( )

2 2

L

T

T

s

s

L BV

P u P u

r t r t r r t r t r d r dt
t t

t r r s t r t r
t s

r s t r t r dtd r
t t

u C u u C u u

λ λµ λ µ λ ν

λ µ λ λ

λ λµ ν

∞

∞

∈

∈

∞

′ ′−

∂ ∂≤ −
∂ ∂

 ∂ ∂≤ − ∂ ∂

∂ ∂+ − ∂ ∂ 

′≤ − + −

∫ ∫

∫ ∫
ℝ

ℝ

 (C.13j) 

from which Equation (C.13f) follows.  

Next suppose that 1, (0, )p
nu u in W T→  for some fixed (1, )p∈ ∞ . From the proof of 

(C.13f) one infers that 

1[ ] [ ] (0, ).nP u P u in L T′ ′→  (C.13k) 
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Since 

1[ ] ( ) 2 ( ) , . . (0, )n nP u t C u t a e in T′ ≤ ɺ  (C.13l) 

and since (0, )p
nu u in L T→ɺ ɺ  Lebesque’s theorem yields 

[ ] [ ] (0, ).p
nP u P u in L T′ ′→  (C.13m) 

Hence [ ]( )P u t  is continuous on 1, (0, )pW T . Finally, in the case of the Prandtl function 

one has 
1

2
µ =  and 00 0w = , thus Equation (C.13a) and (C.13e) are satisfied if ν  is 

finite. This concludes the proof. ■ 

Conclusion 

The proofs in this Appendix C then establish the bounded behavior of the 

Preisach and Prandtl-Ishlinskii hysteresis functions and their derivatives. This bounded 

behavior, and the conditions which lead to this bounded behavior, support the BIBO 

stability proof for the LADRC control of the hysteretic system in Chapter 6. 

 




