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ABSTRACT 

Changes in the environment, unmeasurable disturbances, changes in the system 

parameters, and component failures are some the characteristics of complex dynamic 

systems that necessitate intelligent control techniques. Traditionally plant dynamics are 

first modeled and verified through experiments, and then controllers are designed. 

However, such controllers are limited by the accuracy of the identified model and cannot 

accommodate large variations in parameters. While adaptive control is a natural choice to 

overcome parametric uncertainties, other major issues remain unsolved at this level. 

Although the region of operation is considerably increased compared to classical control 

systems as adaptive controllers tune themselves, they don’t possess long term memory. 

Thus, adaptation must be repeated every time the system is confronted with changing 

operating conditions. To tackle such problems intelligent control techniques have been 

developed, neuro-control being one of those. In this work we use a specialized learning 

architecture with a radial basis neural network to develop an inverse dynamic model for 

a nonlinear permanent magnet stepper motor. This neuro-controller is initially trained 

offline using the bold driver gradient descent algorithm and is later used in feedback as a 

controller. Its performance is then compared with traditional PD controllers tuned for 

various trajectories and external disturbances. The effect of the number of neurons and 

initialization of the neural network weights on the performance of the controller is also 

studied. 
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CHAPTER I 

INTRODUCTION 
 

Real-time control of non-linear plants with unknown dynamics remains a very 

challenging area of research [22]. Traditionally plant dynamics were first modeled and 

verified through experiments, and then controllers were designed. Such controllers are 

limited in performance by the accuracy of the identified model and cannot accommodate 

large variations in plant parameters, even though they guarantee good tracking 

performance and robustness to external disturbances. 

 

1.1 Intelligent Control 

In the last two decades in the areas of robotics, aircraft control, process control and 

estimation there have been successful applications of adaptive control theory boosted by 

the availability of powerful microprocessors. “Adaptive Control” is used to denote a class 

of control techniques where the parameters of the controller are changed (adapted) during 

control, utilizing the observations on the plant to compensate for parameter changes, 

other disturbances and unknown factors of the plant. However, most adaptive controllers 
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are designed for systems that are expressed as linear functions of unknown parameters, 

and their performance degrades considerably due to disturbances in the regression matrix, 

and external disturbances. Also it has to be noted that, as the parameters of the plant vary, 

the adaptive controllers tune themselves but don’t possess any kind of memory. 

 

Use of control methodologies in standard practice has opened the doors to a wide 

spectrum of complex applications. Such complex systems typically characterized by poor 

models, high dimensionalities and high noise levels can be classified into three categories 

[Narendra, 1990]. 

a. Computational complexity 

b. Presence of non-nonlinear systems with many degrees of freedom 

c. Uncertainties 

 

The third category includes modeling uncertainties, parametric uncertainties, disturbances 

and noise. The greater the ability to deal with above mentioned difficulties, the more 

intelligent the control system. “Qualitatively , a system which includes the ability to 

sense its environment, process the information to reduce the uncertainty , plan , generate 

and execute control action constitutes and intelligent control system”. 

  

It can be inferred that if a human in the control loop can properly control a plant, then 

that system would be a good candidate for intelligent control [15]. Unlike conventional 

control techniques, intelligent control has the capability to deal with incomplete plant 

information, its environment and unexpected or unfamiliar disturbances. Thus, 
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“Intelligent adaptive control” may be viewed as a class of control techniques that ensures 

proper operation of a plant, particularly in the presence of parameter changes and 

unknown disturbances [15]. Over the years, computational procedures such as fuzzy 

logic, neural networks and genetic algorithms collectively known as “soft computing” 

techniques, were successfully used either directly or synergistically, for control of various 

complex systems. 

 

1.2 Literature survey 

In recent years learning based control such as neural network and fuzzy logic based 

controllers has emerged as an alternative to adaptive control. Notably Narendra et al. [21] 

emphasize the use of dynamic backpropagation for tuning neural networks. Sadegh [29] 

employs approximate gradients to perform stability analysis, while Polycarpou and 

Ioannou [24], and Chen and Khallil [6] offer rigorous proofs of performance in terms of 

tracking error stability and bounded NN weights. 

 

The rationale for using neural control or any other soft computing methods is related to 

the difficulties faced by control engineers in real-world applications. It is generally 

difficult to represent a complex process by a mathematical model or by a simple 

computer model. Even if the model itself is tractable, control of the process using “hard” 

(non-soft or crisp) control might not provide satisfactory performance. Furthermore, it is 

commonly known that the performance of industrial processes can be considerably 



 4

improved through high-level control actions made by an experienced or skilled operator, 

which cannot (in most cases) be formulated as crisp control algorithms [11]. 

 

Some important properties of neural networks later presented in Chapter II are 

summarized below in the context of neuro-controllers [4]. 

§ Massive parallelism: Neural networks are highly parallel and can be easily 

implemented in parallel hardware. 

§ Inherent nonlinearity: Neural networks have the ability to model any piecewise 

continuous nonlinear mapping to an arbitrary degree of accuracy by properly 

selecting the size and parameters of the networks. 

§ Learning capability: They have the exceptional capability of learning from 

example data sets. 

§ Capability of generalization: They exhibit structural capability for generalization, 

thus will cover many more situations than the examples used to train them. 

Therefore, they have the ability to deal with difficulties arising from uncertainty, 

imprecision, and noise in a wide range of problems. 

§ Guaranteed stability: Theoretical results have been presented to prove that certain 

neural network architectures (radial basis functions) are guaranteed to be stable 

for certain non linear control problems. 

 

As can be seen clearly these characteristics are essential in dealing with increasingly 

complex systems with less precise prior knowledge of a plant and its environment. 

Because of these capabilities of ANNs mentioned above like learning capability, 
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generalization, inherent non-linearity, and robustness to unknown dynamics, it has been 

argued by Werbos [39] that if a control task can be done equally well using a 

conventional method and a neural network, then there are several advantages of using the 

latter.  

 

1.3 Thesis Organization 

The current research work focuses on the development of an “intelligent adaptive 

control” method using a class of artificial neural networks for a non-linear stepper motor 

plant model with unknown disturbance parameters with an upper bound.  

 

Chapter II introduces the fundamental concepts of Artificial Neural Networks, 

comparison with their Biological counter parts, different architectures of ANN’s and their 

training procedures and the wide range of possible applications. 

Chapter III presents an overview of various kinds of stepper motors, their advantages and 

various control techniques.  

Chapter IV establishes the need for intelligent control of stepper motors and possible 

application of radial basis function neural networks for control. It gives an overview of 

training procedures for RBF networks and finally the design of a direct inverse controller. 

Chapter V presents the results for various settings of direct inverse controller and its 

comparison with a typical PD controller. It finally states the various advantages of this 

type of controller and proposes enhancements to this first step towards direct inverse 

control of PM steppers. 
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Chapter II  

Artificial Neural Networks 
 

Digital computers in use today are mostly based on the principle of using a single 

powerful processor through which all computations are channeled. This is termed as the 

von Neumann architecture, named after John von Neumann. The power of such a 

processor can be measured in terms of its speed and complexity. Such computers have 

been traditionally utilized by writing a precise sequence of steps (a computer program or 

an algorithm) to be executed by the computer. This is the algorithmic approach [5]. 

 

On the other hand researchers in artificial intelligence (AI) follow the algorithmic 

approach and try to capture the knowledge of an expert in some specific domain as a set 

of rules to create so called expert systems. This is based on the hypothesis that the 

expert’s thought process can be modeled by using a set of symbols and a set of logical 

rules which manipulate such symbols. This is the symbolic approach [5]. 
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A deep scientific concern has been that it still requires someone to understand the process 

(the expert) and someone to program the computer. The algorithmic and symbolic 

approaches can be very useful for certain problems where it is possible to find a precise 

sequence of mathematical operations or a precise sequence of rules. However, such 

approaches have the weaknesses in the sense that “learning” is difficult and they fail to 

tackle problems with increasing dimensionality (like in regression problems) [7]. If we 

define computational “learning” as the construction or modification of some 

computational representation or model [5], it is difficult to simulate "learning" using the 

algorithmic and symbolic approaches.  

 

Artificial Neural Networks (ANN), also referred to as connectionist models, parallel 

distributed processors and self-organizing systems, provide an alternative approach to be 

applied to problems where the algorithmic and symbolic approaches are not well suited. 

ANNs are computational models of the human brain. The brain is composed of 

approximately 10P

11
P nerve cells termed neurons. Although each of these elements is 

relatively simple in design it is believed the brain’s computational power is derived from 

the interconnection, hierarchical organization, firing characteristics, and the sheer number 

of these elements. The actions and interconnections of biological neurons have given the 

spirit and scope for the fascinating field of artificial neural networks [16]. 
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2.1 Biological Neural Networks 

The human information processing system consists of the ‘central nervous system’ (CNS) 

and the ‘peripheral nervous system’ (PNS). The CNS is composed of the brain and the 

spinal cord. The PNS is composed of the nervous system outside the brain and spinal 

cord [5]. The CNS of the human body consists of three stages: receptors, a neural 

network, and effectors. The nervous system can be seen as a vast electrical switching 

network to which the inputs are provided by sensory receptors. Such receptors act as 

transducers and generate signals from within the body or from sense organs that observe 

the external environment. The information is then conveyed by the PNS to the CNS, 

where it is then analyzed and processed. If necessary, the CNS sends signals to the 

effectors and the related motor organs that will execute the desired actions. From the 

above description we can see that the human nervous systems can be described as a 

closed-loop control system as shown in Fig. 2.1, with feedback from within and from 

outside the body to regulate some bodily functions [42]. 

 

The basic building block of the CNS is the biological neuron, the cell that communicates 

information to and from the various parts of the body [16]. The human brain contains 

approximately 10P

11
P neurons and each of these neurons is connected to around 10P

3
P to 10P

4
P 

other neurons, and therefore the human brain is estimated to have 10P

14
P to 10P

15
P 

connections. 

 

The neuron consists of a cell body called soma, and several spine-like extensions off the 

cell body called dendrites. A single nerve fiber called the axon branches out from the 
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soma and connects many other neurons. The junctions by which these connections 

between neurons occur are called synapses which are either on the cell body or on the 

dendrites, as shown in Fig. 2.2. Nerve impulses originate at the dendrite tree or the cell 

body, propagate through the axon and communicate with the neighboring neurons 

through the synaptic junctions. The inter-neuronal signal at the synapse is usually 

chemical diffusion but sometimes electrical impulses 

 

 
Fig. 2.1 Control system view of human body 

 

The incoming impulse signal from each synapse to the neuron is either excitatory or 

inhibitory, which means helping or hindering firing. The condition of causing firing is 

that the excitatory signal should exceed the inhibitory signal by a certain amount in a 

short period of time, called the period of latent summation [20]. With a weight assigned 

to each incoming impulse signal, the excitatory signal has positive weight and the 

inhibitory signal has negative weight. This way, we can say, “A neuron fires only if the 

total weight of the synapses that receive impulses in the period of latent summation 

exceeds the threshold [1].”   
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              Fig. 2.2 Biological neuron 

 

In essence, all that a neuron does is to sum up the values of various inputs applying a 

weighting factor to each and give an output when this sum of weighted inputs exceeds a 

certain threshold. 

 

2.2 Artificial Neural Networks 

An excellent ANN repository on a Usenet newsgroup [31] says, 

“There is no universally accepted definition of an ANN. But perhaps most people in the 

field would agree that an ANN is a network of many simple processors ("units"), each 

possibly having a small amount of local memory.” 

 

According to the DARPA Neural Network Study [8] , 

“A neural network is a system composed of many simple processing elements operating 

in parallel whose function is determined by network structure, connection strengths, and 

the processing performed at computing elements or nodes.”  
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These “units” are connected by communication channels (“connections”) which usually 

carry encoded numeric (as opposed to symbolic) data. The units operate only on their 

local data and on the inputs they receive via the connections, as shown in Fig. 2.3. The 

restriction to local operations is often relaxed during training.  

 

Of the wide variety of ANN models, some resemble biological neural networks and some 

do not. But historically much of the inspiration for the field of ANNs came from the 

desire to produce artificial systems capable of sophisticated, perhaps “intelligent”, 

computations similar to those that the human brain routinely performs. The fundamental 

element, an artificial neuron, is a model based on known behavior of biological neurons 

that exhibit most of the characteristics of human brains. It is generally believed that 

knowledge about real biological neural networks can help by providing insights about 

how to improve the artificial neural network models and clarifying their limitations and 

weaknesses [20]. A comparison of artificial neural networks with biological neural 

networks is presented in Table 2.1. 

 

                                          
     Fig. 2.3 An ANN ‘processing unit’/ ‘artificial neuron’ 
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Element Brain ANN 

1.Organization 

 

2.Component 

 

 

3.Processing 

4.Architecture 

 

5.Hardware 

6.Switching speed 

7.Technology 

8.Speed 

 

9.Control machines 

Network of neurons. 

 

Dendrites, axons, 

summer, threshold. 

 

Analog 

10-100 billion neurons. 

 

Neurons. 

1 millisecond. 

Biological. 

Slow in processing 

information. 

No central control. 

 

 

Network of processing elements. 

 

Inputs outputs, weights, summation 

and threshold function. 

 

Digital. 

1-1,000,000 processing elements. 

 

Switching devices. 

1-nano second to 1-millisecond. 

Silicon, optical, molecular. 

Fast. 

 

One central unit. 

 Table 2.1 Comparison between ANN and BNN 

 

Most ANNs have some sort of “training” rule whereby the weights of connections are 

adjusted on the basis of data. ANNs “learn” from examples, and if trained carefully, may 

exhibit some capability for generalization beyond the training data. That is they tend to 

produce approximately correct results for new cases that were not used for training. 
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ANNs normally have great potential for parallelism, since the computations of the 

components are largely independent of each other.  

 

It should be noted that massive parallelism and high connectivity cannot be the defining 

characteristics of ANNs, as such requirements rule out various simple models, such as 

simple linear regression, which are usefully regarded as special cases of ANNs [20].  

 

2.3 Types of Artificial Neural Networks 

The artificial neuron, the most fundamental computational unit, is modeled on the basis 

of a biological neuron. Such a neuron basically consists of a number of inputs each 

associated with a memory (weight). However, as the name indicates, the true computing 

power of biological neural networks lies in the fact that the neurons are highly 

interconnected units, giving exceptional parallel processing abilities. Thus, connecting 

multiple neurons is a key aspect of ANN design. In view of this importance, a brief 

overview of neural network topologies is presented in the next section. 

 

U2.3.1 Topology Characteristics 

Organizing artificial neurons into fields (also called slabs or layers) and linking them 

with weighted interconnections forms ANN topologies. The main characteristics of these 

topologies include connection types, connection schemes and field configurations. 
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a) Connection types: There are two primary connection types, excitatory and inhibitory. 

Excitatory connections increase a neuron’s activation and are typically represented by a 

positive signal. On the other hand inhibitory connections decrease a neuron’s activation 

and are represented by a negative signal [16].  

 

b) Interconnection Schemes: The three primary neuron interconnection schemes are intra-

field, inter field and recurrent connections. Intra-field connections or intra-layer 

connections or lateral connections are the connections between neurons in the same layer. 

Inter-field or inter-layer connections are the connections between different layers. 

Recurrent connections are connections that loop and connect back to the same neuron. 

 

As can be understood from above classifications, the inter-field connection signals, 

propagate in one of two ways: 

i. Feed forward 

ii. Feed back.  

 

Feed forward signals only allow information to flow among neurons in one direction. In 

case of the feedback signals, information flow is in either direction and/or recursive. 

 

c) Field Configurations: Field configurations combine fields of neurons, information flow 

and connection schemes into a coherent architecture. Field configurations include lateral 

feedback, field feed forward and field feedback. A field that receives input signals from 

the environment is called an input field and a field that emits signals to the environment 
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is called an output field (output layer). Any field that lies in between the input and output 

fields are called hidden layers and have no direct contact with the environment (i.e. input 

and output neurons). 

 

U2.3.2 The McCulloch-Pitts Model of Neuron  

An early artificial neuron model introduced by Warren McCulloch and Walter Pitts in 

1943 is also known as the threshold logic gate (TLG). McCulloch-Pitts view of neuron 

model depicted in Fig. 2.4 has a set of inputs [IB1B, IB2B, IB3B… IBN B] and one output y. This 

early version of neuron, simply classifies the input vector into two different classes, that 

is to say, the output y is binary [7].  

 

Such a function can be mathematically described as follows:  

         2.1 ∑
=

=
N

i

iiWIsum
1

                                              )(sumfy = 2.2 

 

 

Fig. 2.4 McCulloch-Pitts Model of Neuron  
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[WB1B, WB2B, WB3B,…,WBNB] are weight values normalized in the range of either [0,1] or [-1,1] 

and associated with each input line, sum is the weighted sum, and ‘T’ is a threshold 

constant. The function  f(.) is a linear step function at threshold ‘T’ as shown in Fig. 2.5.  

  

                      
T k       1           
T k      0    f(k)

>∀
≤∀=

      2.3 

 

 
Fig. 2.5 Linear step function (Threshold = T) 

 

The McCulloch-Pitts model of a neuron with a precise mathematical definition has 

proven to have substantial computing potential. However, this model is so simplistic that 

it only generates a binary output, and also the weight and threshold values are fixed.  

 

U2.3.3 The Perceptron  

In early 1960’s Rosenblatt studied single layered networks for classification problems 

[7]. His model of the neuron, the TperceptronT, was a merge between two concepts 

proposed in the 1940s, the McCulloch-Pitts model of an artificial neuron and the Hebbian 

learning rule of adjusting weights [2]. Apart from the variable weight values of the TLG, 

the perceptron model added an extra input θ, which represents Tbias.T In the first stage of 
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processing, a Tlinear combinationT of inputs is calculated where each input is associated 

with its weight value. The summation function often takes an extra input value θ, with a 

weight value of 1 to represent the threshold or TbiasT of a neuron.    

θ 
1

+= ∑
=

N

i
iiWAsum      2.4  

 =   [WB0B = θ = 1, is the bias]  0

1

W+∑
=

N

i

iiWA

 

 
Fig. 2.6 Perceptron 

 

Further, the sum-of-product value is passed into the second stage to perform the 

activation function which generates the output from the neuron. The activation function 

‘squashes’ the amplitude the output in the range of [0, 1] or [-1, 1]. The behavior of the 

activation function will describe the characteristics of an artificial neuron model. As most 

real world signals are continuous in nature, activation functions that are continuous with 

bounded range were also introduced.  

 

  



 18

TOne such convenient function is the Tlogistic sigmoidT function as shown in TFig. 2.7T. Here 

as the input TxT tends to a large positive value, the output value TyT approaches to 1. This 

function can be expressed mathematically as below: T 
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1

x
y

−+
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Fig. 2.7 Sigmoid activation function 

 

U2.3.4 Single Layered Perceptron 

Individual neurons described previously can perform a substantial level of computation. 

However, as mentioned earlier, the true computing power of neural networks comes by 

connecting multiple neurons. A common topology of connecting neurons into a network 

is by forming layers of neurons. The simplest form of layered network is shown in Fig. 

2.8 [20], which is a feed forward topology. Only two layers of neurons are involved, viz., 
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the input layer (shaded nodes on the left) and output layer. Here the input layer neurons 

only pass and distribute the inputs and perform no computation.  

 

                      
Fig. 2.8 Single Layered Network 

 

This perceptron network has only one group of weights and also has no hidden layers   

hence is referred to as a single layer network. This net can be used with both continuous 

valued and binary inputs, in which inputs are given at one layer and the output is obtained 

at another layer. Note that all processing is done at the output layer, and the topology 

doesn’t involve any type of recurrent (intra layer) connections. Each of the inputs [xB1B, xB2B, 

xB3B,…,xBNB] is connected to every artificial neuronin the output layer, through 

corresponding connection weight. Since all output values [YB1B, YB2B, YB3B,…,YBNB] are 

calculated from the same set of input values, each output is dependent on the connection 

weights.  
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The learning or training process of such a network typically involves adjusting the 

weight matrix so as to mimic the response for a known input-output mapping. Although   

Fig. 2.8 showsP

 
Pa Tfully connectedT form of the network, the true neural network may 

sometimes not have all possible connections, meaning a weight value of zero which 

represents ‘no connection’.  

 

U2.3.5 Multi Layered Perceptron (MLP) 

In problems with complicated input-output relationships often a more complex structure 

of neural network is required, to achieve a higher level of computation. The multi-layer 

perceptron is multi-layered feed forward neural network architecture with one input 

layer, one output layer and a number of hidden layers, as shown in Fig. 2.9.  
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    Fig 2.9 Multi Layered Network 
 

A Tmultilayer neural networkT basically distinguishes itself from the single-layer network 

by having one or more Thidden layersT. In such a network, inputs given at the input layer 

are processed at the hidden layers. There may be one or more than one hidden layer, 

where the number of hidden layers is generally a tradeoff between the complexity of the 

problem and computational effort. From a designer’s point of view the multilayer 

networks can also be trained similar to a single layer network; however, the weight 

adjustments have to be propagated back through the layers of the neural network. 

 

U2.3.6 Radial Basis Function (RBF)  

The Radial Basis Function (RBF), a relatively new type of neural network architecture 

introduced in the 1980’s, belongs to the class of feed forward topologies. It stands out 

from the traditional MLP class of architectures by its hidden unit (middle layer) 

activation where the activation of the hidden unit is determined by the Euclidian distance 

between the input vector and the prototype vector. RBF networks have only one hidden 

layer, in which each neuron (radial unit), each modeling a responsive surface (generally a 

gaussian), is defined by its center point (in N dimensional space) and a radius that makes 

a prototype vector. 
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Fig 2.10 Radial Basis Function NN 

 

Consider the network in Fig. 2.10 with m input neurons, c hidden neurons and n output 

layer neurons. Each of the c neurons in the hidden layer applies an activation function 

g(.) which is a function of the Euclidean distance between the input and an m-

dimensional prototype vector [35] . Each hidden neuron with its own prototype vector as 

a parameter gives an output that is then weighted and passed to the output layer. The 

outputs of the network consist of sums of the weighted hidden layer neurons.  
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Since the activation functions are nonlinear, it is not actually necessary to have more than 

one hidden layer to model any shape of function: sufficient radial units will always be 

enough to model any function [7]. It turns out to be quite sufficient to use a linear 
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combination of these outputs (i.e., a weighted sum of the Gaussians) to model any 

nonlinear function. The RBF ANNs training is generally a two stage process.  

(a) assignment of prototype vectors and parameters (getting radial centers and widths)  

(b) adjustment of output layer weights.  

Different training schemes for RBF networks will be discussed in detail in Chapter IV. 

 

U2.3.7 Other forms of ANNs 

Since the advent of neural networks during middle of this last century, various models 

and topologies have been proposed, each with its own significance. A few of them are 

Hopfield networks, Hamming nets, Boltzman machines, Carpenter/Grossberg classifiers, 

Kohonen’s Self-Organizing feature maps, etc. However, it is not in the scope of this 

thesis to introduce or discuss all of them in detail. 

 

2.4 Learning Methods (Training Algorithms) 

Learning is a process in which samples containing a pattern are presented to the network 

several times before the information pattern is captured by the weights (memory) of the 

network. An interesting feature of learning is that the network from the training samples 

slowly acquires the pattern information and the training samples themselves are never 

stored in the network. The learning methods can be broadly classified into three major 

groups. 
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i. Supervised learning. 

ii. Reinforcement learning. 

iii. Unsupervised learning. 

 

In supervised learning it is assumed that the correct target output values (y) are known 

for each pattern. The learning (training) process involves some kind of feedback for 

adjustment of weights of the ANN optimally so as to generate the desired output pattern. 

  

In the extreme case there is only a single bit of feedback information indicating whether 

the output is right or wrong. Learning based on this kind of critic information is called 

reinforcement learning and the feedback information is called the reinforcement signal. 

Reinforcement learning is a form of supervised learning because the network still 

receives some feedback from its environment. But the feedback is only evaluative (critic) 

rather than instructive.  

 

In unsupervised learning there is no teacher to provide any feedback information. There 

is no feedback from the environment to say what the outputs should be or whether they 

are correct. The network must discover for itself patterns features, regularities, 

correlation’s or categories in the input data and code for them in the output while 

discovering these features the network undergoes changes in its parameters; this process 

is called self-organizing. 
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U2.4.1 Basic Learning laws 

UHebb’s law:U This first and the best known unsupervised learning rule was introduced by 

Donald Hebb in 1949. This basic rule is: If a neuron receives an input from another 

neuron, and if both are highly active (mathematically have the same sign), the weight 

between the neurons should be strengthened. This law represents unsupervised learning. 

Consider two neurons in consecutive layers of a NN. The connection strength between iP

th 

PneuronP

 
PaBi B(signal ABiB), and jP

th
P neuron sBj B(signal SBjB) in the next layer is given by WBijB. 

 

Now, Hebb’s lay states that the change in weight vector is given by, 

∆WBijB= η. SBjB . ABiB 

 

Where, η is the learning rate. Here, the weights are strengthened if units connected are 

activated (with same output sign). Weights are normalized to prevent infinite increase. 

   

UDelta learning:U This learning law is valid only for a differentiable output function as it 

depends on the derivative of the output function wherein the change in weights is 

proportional to the mean squared error. This is also viewed as a continuous perceptron 

learning law where the initial weights are taken randomly and are modified by this 

supervised learning rule. 

 

Change in the weight matrix associated jth neuron be given by W 

Let, SBjB = f (WB. BA)        be the output of the jP

th
P neuron, and TBjB be the desired target value. 
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Now according to the delta rule, 

          WBnewB = WBoldB + ∆W  , where ∆W = η.  ∂(T-S)/ ∂W   

           η is called the learning rate. 

 

There have been number of training schemes proposed for different types of neural 

networks that are direct implementations of the learning laws introduced above and their 

derivatives. Back propagation algorithm is one such training scheme that is directly 

based on delta learning. A detailed insight into the learning schemes and their use to train 

RBF neural networks is given in Chapter IV. 

 

U2.4.2 Salient features of learning laws 

1. The learning law should lead to convergence of weights. 

2. The learning or training time for capturing the pattern information from samples   

     should be as small as possible. 

3. An online learning is preferable to an off-line learning. That is, the weights should be   

    adjusted on presentation of each sample containing the pattern information. 

4. Learning should use only local information as far as possible. That is, the change in  

    the weight on a connecting link between two units should depend on the state of these    

    two units only. In such a case, it is possible to implement the learning law in parallel  

    for all the weights, thus speeding up the learning process. 

5. Learning should be able to capture non-linear mappings between input-output  

    pattern pairs as well as between adjacent patterns in a temporal sequence of patterns. 
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6. Learning should be able to capture as many patterns as possible into the network. That  

    is, the pattern information storage capacity should be as large as possible for a given  

    network. 

 

2.5 Comparison between RBFs and MLPs  

RBF networks have a number of advantages over MLPs. First, as previously stated, they 

can model any nonlinear function using a single hidden layer, thus reducing some design 

decisions about numbers of layers. Secondly, the simple linear transformation in the 

output layer can be optimized fully using traditional linear modeling techniques. Hence, 

RBF networks can be trained extremely quickly, orders of magnitude faster than MLPs. 

 

On the other hand, before linear optimization can be applied to the output layer of an 

RBF network, the number of radial units (hidden neurons) must be decided, and then 

their centers and standard deviations must be determined. Although faster than MLP 

training, the algorithms to do this are prone to discover sub-optimal combinations 

[Bishop].  RBFs more eccentric response surface requires a lot more units to adequately 

model most functions. Consequently, an RBF solution will tend to be slower to execute 

and more space consuming than the corresponding MLP [7]. 

  

Also, RBFs are not inclined to extrapolate beyond known data: the response drops off 

rapidly towards zero if data points far from the training data are used. In contrast, an 

MLP is more certain in its response when far-flung data is input. Whether this is an 
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advantage or disadvantage depends largely on the application, but on the whole the MLPs 

uncritical extrapolation far from training data is usually dangerous and unjustified [16]. 

  

2.6 Applications 

The motivation of studies in neural networks lies in the flexibility and power of 

information processing that conventional computing machines do not have. Although 

most computers can process faster and more precisely than human brains, people have 

ability to obtain experience then make more sensible decisions [42]. Similar to the way 

that the human brain generalizes, the neural network system can “learn by examples and 

experience” and perform a variety of nonlinear functions that are difficult to describe 

mathematically [20].  

 

Attractive features of ANNs are their robustness and fault tolerance, flexibility, ability to 

deal with a variety of data situations and collective computation. Thus, ANNs are used by 

a wide variety of people as mentioned below. 

 

§ Computer scientists want to find out about the properties of non-symbolic information 

processing with neural nets and about learning systems in general.  

§ Statisticians use neural nets as flexible, nonlinear regression and classification models.  

§ Engineers of many kinds exploit the capabilities of neural networks in many areas, 

such as signal processing and automatic control.  
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§ Cognitive scientists view neural networks as a possible apparatus to describe models   

of thinking and consciousness (high-level brain function).  

§ Neuro-physiologists use neural networks to describe and explore medium-level brain 

function (e.g. memory, sensory system).  

§ Physicists use neural networks to model phenomena in statistical mechanics.  

§ Biologists use neural networks to interpret nucleotide sequences.  

§ Philosophers and Economists are interested in ANNs for modeling and prediction in 

systems that don’t have well defined mathematical models. 
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Chapter III 

STEPPER MOTORS 
 

3.1 Introduction 

The essential property of a stepper motor is to translate switching excitation changes into 

precisely defined increments of rotor position [23]. Stepping motors can be viewed as 

electric motors without commutators [13]. They are used in a wide variety of 

applications, ranging from simple applications like machine tools, typewriters, and 

watches, to high end space applications such as positioning mechanisms for antennas, 

mirrors, telescopes and complete payloads. Their use has skyrocketed with the popularity 

of embedded systems in printers, disk drives, toys, windshield wipers, vibrating pagers, 

robotic arms, and video cameras [34].   

 

Due to various disadvantages of DC motors (typically involving a potentiometer to 

provide feedback) positioning systems are increasingly being implemented by using 

induction motors and stepper motors [25]. However, when making a choice between 
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steppers and servos, a number of issues that are application specific must be considered. 

From a control engineer’s prospective, the development of open loop or closed loop 

control involves modeling, and simulation of any system (a stepper motor in this case) 

requires a thorough understanding of the system dynamics. Thus, this chapter attempts to 

provide a brief overview of physics and electromechanical behavior of a stepper motor 

and its principles of operation.  

 

                
                  Fig. 3.1 Components of a PM stepper motor: (a) Rotor; (b) stator 

 

3.2 Types of Stepper Motors 

U3.2.1 Permanent Magnet (PM) Stepper Motor  

A PM stepper motor operates on the reaction between a permanent-magnet rotor and an 

electromagnetic field. A basic two-pole PM stepper motor is shown in Fig 3.1. The rotor, 

the freely rotating cylindrical part of the motor, has a permanent magnet mounted with 

one pole at each end as shown in Fig. 3.1(a). The stator, the stationary part of a motor, is 

illustrated in Fig. 3.1(b) has current carrying conductors that are wound around its teeth. 

The wire that is wound around the teeth is called a winding, coil, or phase. The current 
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flowing in the phase induces a magnetic field in the stator poles, given by Ampere's Law 

and the right hand rule (see Fig. 3.2). These winding currents produce magnetic fields 

which add together vectorially to produce an overall stator flux.  

 

The stator flux interacts with the permanent magnet rotor flux to produce a torque in the 

rotor that is free to move about its axis. When the stator and rotor fluxes are aligned with 

each other, the motor is in a stable equilibrium and zero torque is produced. When the 

stator and rotor fluxes are opposite each other, the rotor is in an unstable equilibrium 

position. Any other relative orientation of the stator and rotor fluxes produces torque in 

the rotor [33]. This forms the basic principle for operation of the stepper motor. Generally 

teeth on the rotor surface and the stator pole faces are offset so that there will be only a 

limited number of rotor teeth aligning themselves with an energized stator pole [23]. 

 

As is obvious from intuition, the number of teeth on the rotor and number of stator phases 

determine the step angle. The greater the number of teeth, the smaller will be the step 

angle. For a PM stepper motor holding torque is defined as the amount of torque required 

for moving the rotor one full step, with the stator energized [13]. An important 

characteristic of the PM stepper motor is that it can maintain the holding torque 

indefinitely when the rotor is stopped. That is even if no power is applied to the windings 

a small amount of magnetic force is developed between the permanent magnet and the 

stator. This magnetic force is called a residual or detent torque. The detent torque can be 

noticed by turning a stepper motor by hand and is generally about one-tenth of the 
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holding torque. The PM stepper motor has to overcome the detent torque to line up with 

the stator field when a steady DC signal is applied to the stator winding.  

 

U3.2.2 Principle of Operation of a PM Stepper Motor 

To give an understanding of the working principle of the PM stepper motor, a description 

of one full revolution of a simple two-phase, two-pole PM motor shown in Fig. 3.2 [34], 

in half-step mode, is described below. For other modes of excitation possible refer under 

Section 3.3 of this chapter. As per Ampere's Law and the right hand rule, the current 

flowing in the direction shown in Fig. 3.2(a) in the stator phase induces a magnetic field 

with the north pole of the field pointing upwards.  

 

 
                      Fig. 3.2 One full revolution of two-phase two-pole PMS motor 
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With a current through winding 1 in the direction shown in Fig. 3.2(a), and no current 

through winding 2, the rotor will align itself in the direction shown, with its north pole 

pointing in the north direction of the stator's magnetic field. Suppose current from 

winding 1 is removed and applied to winding 2 in the direction shown in Fig. 3.2(b). The 

stator's magnetic field will point to the left, and the rotor will rotate to the equilibrium 

position where it is aligned with the stator's magnetic field, yielding a zero sum of rotor 

and stator flux. 

 

Similarly, removing current from winding 2 and applying current to winding 1 in 

opposite direction to that of Fig. 3.2(a), as shown in Fig. 3.2(c) will result in the stator 

field pointing down. Exciting only winding 2 in the direction shown in Fig. 3.2(d) will 

result in the stator field pointing to the right. These excitations simultaneously force the 

rotor to positions where the rotor aligns itself with the stator flux. As a final step, 

removing current from winding 2 and apply current to winding 1 in the direction shown 

in Fig. 3.2(a), returns the rotor to its original position.  

 

At this point one full cycle of electrical excitation of the motor windings is said to be 

completed, while the rotor has rotated one complete revolution. In this case, the electrical 

frequency (fBeB) of the motor is equal to the mechanical frequency (fBmB) of the motor. Other 

kinds of PM steppers such as unipolar, bifilar with different constructions of pole 

winding structure and other variations of this basic configuration are also available.  
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U3.2.3 Variable Reluctance Stepper Motors 

The variable-reluctance (VR) stepper motor at its core basically differs from the PM 

stepper in that it has no permanent-magnet rotor and thus no residual torque to hold the 

rotor at one position when turned off. The stator of a variable-reluctance stepper motor 

has a magnetic core constructed with a stack of steel laminations. The rotor is made of 

unmagnetized soft steel with teeth and slots, or any other such magnetically permeable 

substance, unlike PM stepper motors [23]. When the stator coils are energized, the rotor 

teeth will align with the energized stator poles. This type of motor operates on the 

principle of minimizing the reluctance along the path of the applied magnetic field. By 

alternating the windings that are energized in the stator, the stator field changes, and the 

rotor moves to a new position [13]. 

 

                          
Fig.  3.3 Cross section of a VR stepper motor  

 

As a example to understand the working principle consider Fig. 3.3 that shows a basic 

variable-reluctance stepper motor that has six stator teeth. There are fewer rotor teeth 

than those on the stator, which ensures that only one set of stator and rotor teeth will align 

at any given instant. This often proves to be limitation in this kind of motor [23].  
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As long as a single phase (say only phase 1) is energized, the rotor will be held stationary 

(X-X aligned along vertical axis). When phase 1 is switched off and phase 2 is energized, 

the rotor will turn 30° until the remaining two poles of the rotor (Y-Y) are aligned under 

the north and south poles established by phase 2. Similarly another change in excitation 

causes the rotor to move another 30° and X-X will then be aligned under the north and 

south poles created by phase 3. By repeating this pattern, the motor can be rotated in a 

clockwise direction. Reversing the direction of current in each phase can change the 

direction of the motor. 

 

The VR stepper motors mentioned up to this point are all single-stack motors. That is, all 

the phases are arranged in a single stack, or plane. The disadvantage of this design for a 

stepper motor is that the steps are generally quite large (above 15°) [23]. A variation to 

this scheme is the multistack stepper motor that can produce smaller step sizes because 

the motor is divided along its axial length into magnetically isolated sections, or stacks. A 

separate winding, or phase, excites each of these sections. In this type of motor, each 

stack corresponds to a phase, and the stator and rotor have the same tooth pitch. 

 

3.3 Comparison between VR and PM Stepper Motors 

In general Hybrid/PM steppers have great step resolution (typically 1.8P

o
P) which is 

advantageous when high angular position resolution is needed. On the other hand 

variable reluctance steppers are useful in applications where a load is to be moved a 

considerable distance, due to their large step size (typically 15P

o
P), with fewer number of 
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excitations. PM motors produce a small amount of detent torque that help in preserving 

the position even after current excitations in the windings are removed. This also proves 

to be a disadvantage as they have a large mechanical inertia compared to VR motors. In 

summary the choice of the type of step motor is influenced by the application and it is not 

possible to categorically state which type is ‘better’ [23]. 

 

With its wide range of applications and simple understandable physics PM stepper 

motors are of great interest to control engineers. In this work we focus on investigating a 

new control methodology for PM steppers. The next section presents a brief overview of 

the modeling of the nonlinear dynamics of the motor. 

 

3.4 Modes of Excitation 

To enable rotation of the rotor the magnetic field generated by the stator windings have to 

interact and drive the rotor flux, which is achieved by switching the direction of current 

flow through each winding. Basic stepper motor ‘step modes’ include full-step, half-step, 

and micro-step. The type of step mode output of any motor is dependent on the design of 

the driver circuit. 

 

UFull-step:U A full step mode is achieved by energizing both phases (as in case of a two 

phase motor) of the motor, while reversing the current alternately. In this method 

windings are energized producing a ‘north-south’ pole pair in a cyclic fashion. The flux 

vectors are out of phase which attracts the rotor's respective poles and holds the rotor in 

position at each step. The length of each step depends on the number of rotor teeth (Nr). 
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This way the torque produced by the motor is increased but the power supply to the 

motor is also increased.  

 

UHalf-step:U Exciting in a half-step mode essentially doubles the resolution (steps per 

rotation) of the stepper. Even though the switching sequence is similar to that of the full-

step mode, instead of just reversing the flow of current through a phase, one phase is 

completely switched off in between. Thus there is another stage in the electrical 

switching cycle where in only one winding is excited while the other is completely 

switched off. This method allows the rotor to follow and take up even more positions.  

 

Micro-step: The full step length of a stepping motor can be divided in to smaller 

increments of rotor motion, known as “micro-step” by partially exciting several phase 

windings. Micro stepping is a relatively new stepper motor technology that controls the 

current in the motor winding. Micro stepping is typically used in applications that require 

accurate positioning and a fine resolution over a wide range of speeds. The major 

disadvantage of the micro-step drive is the cost of implementation due to the need for 

partial excitation of the motor windings at different current levels. 

 

3.5 Modeling of a Permanent Magnet Stepper (PMS) Motor 

In order to investigate the dynamics of mechanisms driven by stepper motors a model had 

to be created. A number of references are available on the generation of a model [41,25]. 

With a minimum background of basic laws of electromagnetism and motor physics, this 
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section provides a brief derivation of a nonlinear model of the 2-phase PM stepper motor 

shown in Figure 3.3. 

 

                                       
      Fig.  3.4 Single pole, 2 phase - PMS 

 

As explained earlier, when the windings of a phase are energized, a magnetic dipole is 

generated on the stator side. If for example phase 2 is active (phase 1 is switched off), 

winding 3 produces an electrical north pole and winding 4 a south pole. Fig. 3.3 shows 

the rotor in a stable position with phase 2 only powered. Alternatively powering the 

windings of the stator commands the rotor flux so as to follow the stator field.   

 

The number of steps per revolution of the rotor is given by, 

Where, 
Nr   number of rotor pole
P  number of stator phases

*S Nr P

=
=

=

               3.1 

 

And the stepping angle in radian per each step is given by, 
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0
2 2

.S Nr P
π πθ = =         3.2  

 

If a sinusoidal characteristic of the magnetic field in the air gap is assumed, the 

contribution of each phase j on the motor torque TBMjB can be written as, 

m      

        

Where,      k = motor constant
θ(t)  = actual rotor position 

= current in the coil as function of time 
                 φ = locati

I(t)

. sin( ( )). ( )

            
              

j

Mj m j jT k Nr t I tφ θ= +

on of coil j in the stator  

     3.3 

 

However the current IBjB(t) in the coil is a function of the supplied voltage VBjB(t) and the coil 

properties. A general equation between VBjB(t) and IBjB(t) is given by,  

j

 

Where,  emf  = electromotive force induced in the phase j 
             R     = resistance of the coils 
             L     = inductance of the coils 

( )( )  . ( ) . j
j j j

dI tV t emf R I t L
dt

= + +

                              3.4 

 

However, the EMF in each coil can be expressed as,  

Where,  = rotational velocity of the rotor

  . sin( ( )). ( )m jjemf k Nr t t

ω

φ θ ω= +
      3.5 

 

The total torque produced by the stepper is given as, 

 

1
M Mj

P

j
T T

=
=∑           3.6 
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Using Equation 3.6, and considering the equation of motion of a stepper motor,  

 

Where,   J   = inertia of the rotor and the load
              D  = viscous damping constant 
              Tl  = frictional load torque / load torque

  +  + M l
dT J B T
dt
ω ω=

     3.7 

 

The angular velocity is given by, 

 d
dt
θ ω=             3.8 

 

The above three equations (3.6, 3.7, 3.8) form the basis for a general state space 

description model of a PM stepper motor. Hence for a 2 phase PM motor with Nr rotor 

teeth and the two phases ( jφ ) at 0 and (π /2) the following state space equations can be 

derived, 

 d
dt
θ ω=        % ang.vel 

. .(  . sin( ) . cos( ) )   m a m bk I Nr k I Nr B Tld
dt J

θ θ ωω −− += − % load acceleration 

.( . . sin(  a aa mV R I k NrdI
dt L

))ω θ+−=    % current through winding a 

.( . . sin(  b bb mV R I k NrdI
dt L

))ω θ+−=    % current through winding b 

            
                  3.9 
 
Where the emfBjB and VBj B are given by Equations 3.4, 3.5.B B 

Based on these basic equations a simple model of stepper motor can be developed in 

simulation software like Matlab or Simulink for simulation and analysis.  
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3.6 Control in PMS Motors 

Originally stepper motors were designed for operation in open-loop configuration, to 

provide precise position control with an integer number of steps, without any sensors for 

feedback [41]. These are generally adequate for systems that operate at low accelerations 

with static loads, but closed loop control may be essential for high accelerations, 

particularly if they involve variable loads. Unlike servo motors, if a stepper in an open-

loop control system is over torqued or is influenced by external loads and unmodelled 

disturbances all knowledge of rotor position is lost and the system must be reinitialized 

[13].  

 

Furthermore at higher stepping rates the oscillatory nature of the motor adds to the loss of 

synchronism. In particular PM stepper motors have notoriously significant overshoot for 

step response which is often overcome by the use of dampers or operating at lower 

speeds [25]. Due to these problems, one is generally motivated to go ahead and consider 

feedback for stepper motors.  

 

3.6.1 Field-oriented control 

“Step motors, as typically driven in industrial applications, can exhibit undesirable 

behavior such as stepping resonances and skipped steps. However, this is because of the 

drive method that is used and is not due to the motor itself [33]”.  

 

In the case of a PM stepper motor, the current flow in each winding of the stator produces 

a magnetic field vector, which adds up vectorially to produce a net stator magnetic field 
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in arbitrary direction. The torque produced in the rotor is a result of the net stator field 

and the magnetic field of the PM rotor. The basic idea behind field-oriented control is 

that for any position of the rotor, there is an optimal direction of the net stator field which 

maximizes torque and there is also a direction which will produce no torque. If the stator 

field is orthogonal to the field produced by the rotor, then magnetic forces work to turn 

the rotor and torque is maximized. Thus by maintaining the stator magnetic field vector 

90° (electrical) ahead of the magnetic field vector of the rotor, then the motor is field-

oriented, and torque will be maximum (for a given power supply voltage) [33].  

 

If the phase currents are sinusoids phased 90° with respect to each other the resulting 

stator magnetic field vector will rotate at the sinusoidal frequency. The field-orientated 

control method involves having sinusoidal voltage applied to phases such that they meet 

the 90° phase difference requirement of the currents, and position the stator magnetic 

field vector 90° ahead of the rotor flux vector.  

 

This method of control that derives the maximum theoretical performance from the PM 

stepper motor was applied in conjunction with traditional control methods (P, PD) and 

RBF neural networks in this thesis work. The next chapter presents the procedure 

involved. 
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Chapter IV 

RBF-NEURO CONTROLLER FOR 
STEP MOTORS 

 

4.1 Introduction 

Artificial intelligence computational procedures such as fuzzy logic, artificial neural 

networks and genetic algorithms, collectively known as “soft computing” techniques, 

were successfully used in the past decade, either directly or synergistically, for control of 

various complex systems. Learning based control methodologies such as neural networks 

and fuzzy logic based controllers has emerged as an alternative to adaptive control. The 

rationale for using neural controls or any other soft computing methods as such is directly 

related to the difficulties faced by control engineers in real-world applications.  

 

Generally, it is quiet difficult to exactly represent (with minimum discrepancies) a 

complex process by a mathematical model or by a simple computer model. As seen from 

the control theory point of view, if a process (plant) itself is poorly modeled (or if the 
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parameter values are partially known, ambiguous or vague) appropriate estimates have to 

be made for the design of a controller. In such scenarios “crisp control algorithms” based 

on incomplete information may not give satisfactory results. A primary purpose of 

classical feedback is thus to increase the robustness of the system; i.e., to increase the 

performance of the system when there is uncertainty such as modeling errors, unknown 

disturbances and noise [40]. Furthermore, as stated earlier, it is a commonly known fact 

that the performance of industrial processes can be considerably improved through high-

level control actions made by an experienced or skilled operator, which cannot (in most 

cases) be formulated as crisp control algorithms [11]. 

 

Robust and adaptive control (both parametric and nonparametric) techniques have been 

extensively developed for a variety of control problems to cope with uncertainties due to 

large parameter variations and thus achieve required levels of performance. Although the 

region of operability is considerably increased compared to non-robust classical control 

systems, these techniques lack the feature of learning [10]. That is to say, the control 

scheme cannot use the knowledge it has acquired in the past to tackle similar situations in 

the present or the future. As a result the same adaptation operation must be repeated 

every time the system is confronted with similar operating conditions. To tackle such 

problems “intelligent control” techniques have been developed, neuro-control being one 

of those. 

 

The successful operation of an autonomous machine depends on its ability to cope with 

variety if unexpected and possibly unfamiliar events arise in the operating environment, 



 46

perhaps relying on incomplete information [12]. It is evident that such an autonomous 

machine would have to be presented with a goal which it would try to achieve through 

continuous interaction with external ambience and automatic feedback of its response. By 

enabling machines to posses such a level of autonomy, they would be able to learn 

higher-level cognitive tasks that cannot be easily learned by existing machines [9]. This 

in fact is the essential part of learning found in the majority of biological control as 

described in Chapter II. As presented earlier in this work, neural networks have a great 

potential in the realm of nonlinear control problems and they have been successfully used 

for system identification and control. 

 

4.2 Adaptive control using ANNs 

A neuro-controller (neural network based controller) in general performs a specific task 

of adaptive control, with the controller taking the form of a multi-layered neural network 

and the adaptable parameters being defined as adjustable weights [9]. This approach 

defines the problem of control as the mapping of measured signals of system “change” 

into calculated “control actions” as shown in Fig. 4.1 below. 

 

Neural control has existed for many years and there is a large body of empirical evidence 

of its viability in non-linear control applications [40]. Also, theoretical findings have 

guaranteed the stability of neural controllers for problems that can be composed as a 

nonlinear auto regressive moving average model [21]. 



 47

Via learning algorithm 
Learning Measured 

signals; and 
input, output 

and error 
control actions 

Performance feedback 

 
TFig. 4.1 Representation of learning and control actions in an ANN approach.  

Mapping measured signals onto learning and control space [90]. 
 

A number of neural-controllers have been proposed over the years, which can be 

classified in three major categories [17]; supervised control, neural adaptive control and 

direct inverse control. 

 

 
                                    Fig.  4.2 Supervised Control 
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USupervised Control:U In this method, a neural network is trained to perform a control task 

similar to that of a human operator. Thus, training data is collected in advance (on-line) 

from a existing physical system. Fig. 4.2(a) shows a network in the on-line training phase 

while Fig. 4.2(b) shows a neural network in on-line control phase. This type of control 

has been employed in many control applications like aircraft landing control [27] and 

neural net robot controllers. 

 

This type of neural network controller doesn’t require any explicitly stated control 

objective. Typically the objective of the neural network is to just find a mapping which 

will map sensor inputs to desired actions as accurately as possible.  However, the training 

data has to be carefully examined for inconsistencies and contradictions, since such data 

may cause difficulties in training neural nets and may even cause instability and erratic 

behavior (in the case of robots) [40]. 

 

UNeural Adaptive Control:U This is a much more sophisticated on-line control scheme for 

the control of non-linear plants. In this type of neuro-control a neural network is first used 

to identify the system parameters and then the controller is tuned as in a conventional, 

adaptive control structure like model referenced adaptive control (MRAC) or self tuning 

regulator (STR) [22]. This type of control scheme is also called the indirect learning 

architecture. It is more complicated in the sense that it involves not one but two dynamic 

ANNs and thus its training is considerably more difficult.   
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In this type of control scheme one ANN is trained to model the plant dynamics while the 

other ANN performs the controller’s task using a feed-forward neural network, where 

both the ANNs are trained on-line. Figure 4.3 shows the flow diagram of such a neuro-

controller. 

 
Fig. 4.3 Indirect learning architecture 

 

UDirect Inverse Control:U  In this type of control a neural network is trained to learn the 

inverse dynamics of a system. Thus, the inverse dynamics model will provide the input 

that will generate a particular output. This approach has been successfully used in robotic 

manipulators [26], where the manipulators are moved around and system inputs and 

manipulator positions are recorded. A neural network is then trained so that given 

trajectory positions the NN-controller will generate desired inputs for the motor joints. 

Fig. 4.4(a) and 4.4(b) illustrate two inverse function learning architectures. The first one, 

referred to as generalized learning architecture, provides a method for training the neural 

controller that minimizes the overall error. The training procedure is given as below. 
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b) The corresponding output from the plant y(t) is obtained 

c) The ANN is trained to reproduce u(t) when y(t) is given as the input to the 

network. 

 

After training such a neural network, during on-line operation will reproduce input u to 

the plant for a desired response r. However, it has been argued that this architecture by 

itself would be difficult to use in real applications, since it is difficult to know in advance 

the region of interest in which the plant may operate. To overcome this problem a 

specialized learning architecture (Fig. 4.4b) has been used in the literature [37]. This 

architecture uses the difference between the actual and desired outputs to modify the 

weights of the inverse model. Thus, this approach takes into consideration the operating 

regions of the plant.  

 

Successful implementations of direct inverse control schemes have been widely reported 

in the literature. CMAC networks have been used to learn the inverse dynamics of plants 

such as robot manipulators in [18] and the manufacturing of complex thermo plastic 

structures [36]. 
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       Fig. 4.4 Direct Inverse Control 

 

As indicated in [19] learning the inverse model is among the more viable options for 

applications of neural networks in control. It must be noted that when the plant inverse is 

not causal or well-defined as indicated in [30] or if plants exhibit non-linearity and 

variations in parameters due to noise and other environmental factors, much effort is 

needed to apply this approach to real-time plants. 
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4.3 Problem Formulation 

This thesis work considers speed control for permanent magnet stepper motor. A new 

intelligent control scheme based on a kind of direct inverse controller using a radial basis 

function neural network is proposed. 

 

Originally, stepper motors (Chapter III) were designed to provide precise positioning 

control within an integer number of steps without the use of any sensors [25] in open-

loop operation.  The basic equations of a PM stepper, Equations 3.9, derived in Chapter 

III, are restated below. A stepper motor model has been developed in MATLAB® for 

simulation and analysis of standard open loop operation. 

 

For a 2 phase PM motor with Nr rotor teeth and the two phases ( jφ ) at 0 and (π /2) the 

following state space equations can be derived, 

 d
dt
θ ω=        % ang.vel 

. .(  . sin( ) . cos( ) )  m a m bk I Nr k I Nr B Tld
dt J

 θ θ ωω −− += − % load acceleration 

.( . . sin(  a aa mV R I k NrdI
dt L

))ω θ+−=    % current through winding a 

.( . . sin(  b bb mV R I k NrdI
dt L

))ω θ+−=    % current through winding b 

 
             
Where the emfBjB and VBj B are given by the equations 3.4, 3.5.B B 

j

 

Where,  emf  = electromotive force induced in the phase j 
             R     = resistance of the coils 
             L     = inductance of the coils 

( )( )  . ( ) . j
j j j

dI tV t emf R I t L
dt

= + +
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However, the EMF in each coil can be expressed as,  

Where,  = rotational velocity of the rotor

  . sin( ( )). ( )m jjemf k Nr t t

ω

φ θ ω= +
       

 

Now, if x denotes the state vector of the nonlinear system such that,   

A(x(k),u(k)) = x(k+1)  = [xB0B, xB1B,xB2B,xB3B]P

T
P given by Equation 3.9,  

 

If y denotes the output vector so that, 

y(k) =  C(x(k))  

 

and given a desired trajectory rB Bin terms of output vector. The problem is to find a 

suitable control input u(k+1), so that the system tracks the desired trajectory with an 

acceptable bounded error in presences of disturbances while all states and controls remain 

bounded. 

 

The following characteristics of the PM stepper model (given in Table I ) were chosen for 

simulation and maintained constant throughout this work, except for external torque 

disturbances and measurement noise that are simulated and added to the response 

externally. 

 

It is evident from Fig. 4.5 that using stepper motors in open loop configuration results in 

poor performance.  In particular, one can notice that PM stepper motors have a step 

response with significant overshoot and long settling times which is often overcome by 
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the use of dampers or operating at lower speeds [25]. Due to these problems, one is 

generally motivated to go ahead and consider feedback for stepper motors.  

 

  
Motor parameter     symbol  Value      Units  

Rotor load Inertia          J       3.6 * 10^-6    N.m.s^2/rad 
Viscous friction            B       1 * 10^-4      N.M.s^2/rad 
External Load torque        Tl       0 (NONE) 
Self inductance           L        0.001             H     
of windings 
Resistance in       R              8.4             Ohms    
phase windings 
Number of rotor teeth       Nr         50                   
Motor torque constant       Km             0.05           V.s/rad 

TTable I.  PMS Motor simulation specs 
 

With the increasing popularity of PM steppers over direct current drives, feedback 

controls have been proposed for stepper motor positioning systems. One such control 

idea is the exact feedback linearization technique. The basic design idea here is that the 

controller is a function of all plant parameters and external disturbances such as load 

torque [14]. In practice some of these parameters are subjected to variations and it is 

understandable that such a control technique is capable of providing excellent positioning 

results only if complete system dynamics are known. It actually results in no better 

performance than that of a conventional fixed gain controller (PD controller with gain 

scheduling if necessary) due to the fact that it is very hard to obtain a perfect dynamic 

model for the stepper motors in practice [25].   
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Fig.  4.5 Open loop response of a permanent magnet stepper motor. 
                                

 

On the other hand, there has been a strong interest in applying nonlinear control 

methodology to electric motors. The use of dynamic ANNs which allows efficient 

modeling of dynamic systems has been increasing to successfully model PM stepper 

motors [14], and brushless DC motors [38], or to provide robust compensating control as 

suggested by Gang Feng [25], for example. 

 

Our design goal is to develop a discrete time, direct (inverse) adaptive controller for 

permanent magnet stepper motors. The structure of the proposed adaptive controller is 

“direct”; that is, there is no explicit attempt to determine the plant dynamics. The 

controller directly tunes its parameters in response to the measured deviations of the 
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process dynamics from its desired behavior. Thus, the difference between actual and 

desired outputs is used to tune the weights (parameters) of the neuro-controller (or the 

inverse model to be specific).  

 

Before proceeding to the actual controller design a brief overview of radial basis 

functions and supervised learning algorithms is presented in the next section. 

 

4.4 The Radial Basis Function Neural Network 

U4.4.1 Overview of RBFs 

A general overview of neural networks and different architectures has been presented in 

Chapter II. A class of its own, the radial basis function neural networks, have only one 

hidden layer, in which each neuron (radial unit) each modeling a responsive surface 

(generally a Gaussian), defined by its center point and its radius (in m dimensional 

space). The following section describes the usage of a radial basis function in the context 

of interpolation and the development of RBF neural networks. 

 

Consider an m dimensional input space x with a one-dimensional ouput space t. The data 

set contains N input vectors xP

n 
Ptogether with corresponding target vectors tP

n
P. Suppose the 

goal is to find a function h(x) such that,  

h(xP

n
P) = tP

n
P  n = 1,2 ….., N.      4.2 
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In the radial basis function interpolation approach (Powell, 1987) introduces a set of N 

basis functions, one for each data point, which take the form g(||x - xP

n
P||), such that the 

output mapping is a linear combination of the basis functions given as, 

 

h(x) = ∑ wBnB g(||x - xP

n
P||)        4.3 

 

According to Powell’s exact interpolation technique, the interpolation conditions in 

Equation 4.2 can be written in matrix form as, 
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1
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   4.4  

Provided the inverse matrix GP

-1
P exists we can solve (4.4) directly to give, 

1.W G T−=           4.5 

 

Also, it has been shown (Michille, 1986) that, for a large class of functions g(.), the 

matrix G is indeed non-singular provided the data points are distinct. Thus, when the 

weights of the RBFs are set to as those given by Equation (4.5) the function h(x) 

represents a continuous differentiable surface which passes exactly through each data 
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point. Several forms of basis functions g(.) have been considered such as Gaussians, thin-

plate splines, multi-quadratic, cubic etc. However, Gaussians have been most generally 

used due to their localized property; i.e., g(x)  0 as x  ∞, which is given as, 

 

   g(x) = exp (-xP

2
P/ 2σP

2
P)      4.6 

 

Here, σ is the variance parameter for a given dimension of x and controls the smoothness 

properties of the basis function. Since the activation functions are nonlinear, it is not 

actually necessary to have more than one hidden layer; sufficient radial units will always 

be enough to model any function [7]. It turns out to be quite sufficient to use a linear 

combination of these outputs (i.e., a weighted sum of the Gaussians) to model any 

nonlinear function.  

 

Radial basis function mappings discussed above provide an interpolating function which 

passes exactly through every data point. However such an exact interpolation for noisy 

data is highly oscillatory in nature and not desirable. Another serious limitation of the 

exact interpolation technique is that the number of basis functions has to be equal to 

number of patterns in the data set, which becomes highly costly to evaluate in case of 

large data sets [7]. 

 

In seminal papers published by Broomhead and Lowe [3], a number of possible 

modifications to the exact interpolation techniques were suggested, thus giving rise to the 

Radial Basis Function Neural Network model (Fig. 4.6). Unlike the exact interpolation 
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described above, this provides a smooth interpolating function, in which the number of 

basis functions (hidden layer neurons) is determined by the complexity of the mapping to 

be represented rather than by the size of the data set. The modifications required are 

summarized below [7]; 

 

1. The number m of basis functions need not be equal the number N of data points, 

and is typically much less than N. 

2. The centers of the basis functions are no longer constrained to be given by input 

data vectors. Instead, the determination of suitable centers becomes a part of the 

training process. 

3. Instead of having a common width parameter ‘σ’, each of the basis functions is 

given its own width σBjB whose value is also determined during training. 

4. Bias parameters are included in the linear sum. They compensate for the 

difference between the average value over the data set of the basis function 

activations and the corresponding average value of the targets. 
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Fig.  4.6 Radial Basis Function NN 

 
 

Consider the above network (Fig. 4.6) with m input neurons, c hidden neurons and n 

output layer neurons. Each of the c neurons in the hidden layer applies an activation 

function g(.) which is a function of the Euclidean distance between the input and an m-

dimensional prototype vector. Each hidden neuron with its own prototype vector as a 

parameter gives an output that is then weighted and passed to the output layer. The 

outputs of the network consist of sums of the weighted hidden layer neurons given by: 

 

0             
1
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ˆ
c
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The Gaussian radial basis functions can be generalized to allow for on arbitrary 

covariance matrix ∑ such that, 
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g(x) = exp { - 0.5 *  (x- vBjB)P

T
P * ∑BjPB

-1
P  * (x- vBjB)}     

 4.8 

In practice a trade-off is to be considered between using a smaller number of bases with 

adjustable parameters and a larger number of less flexible functions. 

 

U4.4.2 Optimizing the RBF-NN 

A pronounced difference in Radial Basis Function architecture as compared to Multi 

Layered Perceptron (MLP) neural networks is the role of first and second layer weights, 

and leads to a two-stage training procedure of the RBF-NNs. In the first stage, the input 

data alone is used to determine the first layer weights (parameters of the basis functions 

vBjB, σBjB) by unsupervised training. The first layer weights are then kept fixed while the 

second layer weights are then optimized in second phase of training. However, note that 

after the modifications suggested in previous section, since fewer basis functions are used 

than data point it will no longer be possible to find a set of weight values for which the 

mapping function will exactly fit all the data points. 

 

As given by Equation 4.7 the output of RBF-NN with bias values absorbed into main 

weight vector is given as, 

y(x) = W * G          4.8 

 

For a given training data set the target output data is ignored and basis function 

parameters prototypes (centers vBjB) with suitable widths are chosen such that they cover 
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the entire m-dimensional input space covered by the training inputs xP

n
P. This can be 

simply done by closely looking at the range and density of the input patterns. 

 

However it is worth noting here that, if such basis function centers are used to fill out the 

sub-space as stated above, then the number of basis function centers will be an 

exponential function of m [7]. This notorious problem with RBF-NNs, known as ‘the 

curse of dimensionality’ is more pronounced in the case of input nodes that are largely 

uncorrelated. This also increases the computation time and number of training patterns 

required. These compelling reasons often lead to choice of unsupervised algorithms, such 

as ‘K-means clustering’, to choose optimal first layer parameters depending on the 

density of the data points. 

 

For the RBF-NN, given the target mapping values tP

n
P for an input sequence xP

n
P and after 

fixing the first layer weights (prototype vectors with centers vBjB, and basis widths σBjB), a 

suitable error function (cost function)  J(ξ) where, ˆny yξ n= −   can be defined to 

optimize (tune) the second layer weights. The most commonly used cost function is the 

sum-of-squares error given below. 

 

n n
k k

n k

1J(e) =  {y (x ) - t }
2 ∑∑

2   4.9 

 

As is evident one of the principle advantages of the RBF-NN over its counterparts the 

MLP is the possibility to choose suitable parameters for the hidden layer neurons 

(prototype basis functions) and thus avoid the need to perform full non-linear 
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optimization of the network. However, it should be noted that this non-linear 

optimization problem is computationally intensive and can be prone to finding local-

minima. 

It is a well known fact that optimization algorithms which proceed by a steady monotonic 

reduction in the error function can become stuck in local minima. A suitable value of 

initial weights is therefore essential in allowing the training algorithm to produce a good 

set of weights, and in addition may lead to improvement in training speed. Majority of 

the initialization procedures in the current state of art involve setting weights to randomly 

choosen small values [7], to avoid problems that arise due to symmetry in the network 

and  so that the activation functions are not driven into saturation regions. 

 

Once the weights are properly initialized optimization (weight adjustment or training) can 

done iteratively using several algorithms. One of the simplest network training algorithms 

one is gradient descent optimization, also known as steepest descent. In batch version of 

a gradient descent an initial weight vector guess is made and a weight update is made at 

each step ‘i’ iteratively such that a move is made in direction of greatest rate of decrease 

of the error function, 

∆ wBiB = - η (∂J / ∂ wBiB)         4.10 

 

Note that here in the batch version the gradient is reevaluated at each step. However, the 

the sequential version of this algorithm the error function gradient is evaluated for one 

pattern (n inputs) at a time and the weights are updated using,  
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∆ wBiB = - η (∂J P

n
P / ∂ wBiB)        

 4.11 

 

The parameter η is called the learning rate,  and provided this value is sufficiently small, 

as expected the value of J is bound to decrease at each successive step, eventually leading 

to a weight vector at which the condition, gradient (J)  = 0 is satisfied. 

 

In practice a constant value of η is often chosen. However, one serious limitation of this 

procedure is that if η is too large the algorithm may overshoot leading to an increase in J 

and possibly divergent oscillations, which lead to breakdown of the algorithm [7]. 

Conversely, if η is too small the search procedure can proceed extremely slowly leading 

to large computational times. 

 

There have been several modifications made to the standard gradient descent algorithms 

to overcome the above mentioned limitations. One such is adding a momentum term µ to 

the gradient formula given in Equation 4.10 

 

∆ wBiB = - η (∂J / ∂ wBiB) + µ ∆ wBi-1B       4.12 

 

The effect of momentum is to increase the learning rate from η to η/(1- µ). 

 

While notable research has been done in this area of optimization, even with a 

momentum term included gradient descent is not a particularly effective algorithm for 
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error function minimization. Various adhoc modifications have been suggested. In the 

current thesis work a bold driver technique [Vogal et al, 1988] which has an automatic 

procedure to set the learning rate is used. The basic idea behind the algorithm is to check 

if error function has actually decreased after each step of gradient descent. If it has 

increased then an overshoot is recognized, the weight change is undone, and the learning 

rate is decreased. Also, if an error decrease is seen, then the new weight values are 

accepted and the learning rate, probably too small, is increased. The following is update 

law for the learning rate η, 

new  =  k1 .    if  J < 0 
        =  k2 .    if  J > 0

old

old

η η
η

∇
∇   4.13 

The parameters k1 and k2 are chosen such that they are slightly greater and less than 

unity respectively, typically chosen as k1 = 1.1, k2 = 0.5 [7]. The choice of k1 and k2 has 

to be done carefully to avoid changes in the learning rate and at the same time boost the 

speed of convergence. 

 

4.5 Controller Design 

Adaptation in the direct adaptive controllers discussed above involves online or 

sequential adjustment (training/tuning) of the parameters of the neural network in the 

feedback control loop so as to force tracking error (ξ) to tend to zero or at least remain 

bounded. The Radial Basis Function Neural Networks described above have been found 

more suitable than MLPs for online or sequential adaptation as they are insensitive to the 

order of presentation of training data.  
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Let R denote real numbers and RP

n
P denote real n- real vectors. Let S be the compact 

simply connected set of RP

n
P if F(.): S  RP

k
P define a space CP

k
P(S) such that F(.) is 

continuous. By application of multivariable Fourier analysis and Whittaker/Shannon 

sampling theory, it has been shown [7] that Gaussian Radial Basis Functions arranged on 

a regular lattice on SP

n
P are capable of universally approximating a smooth function to a 

chosen degree of tolerance everywhere on a specified subset. It must be noted that RBF–

NN controllers are linear in the sense of tunable weights, which is a far milder 

assumption compared than the adaptive control requirement of linearity in parameters 

(LIP) . While, the latter holds only for a specific function F(x) the former holds good for 

all functions of F(x) ∈C P

m
P(S). In the ANN property, the same set of basis functions 

g(x(k)) suffices for all F(x) ∈C P

m
P(S) while, in the LIP assumption a regression matrix 

must be computed for each F(x). Also, in comparison with other ANN architectures the 

use of Gaussian activation functions, the RBF forms a local representation (unlike multi 

layered perceptrons) where each basis function responds only to the inputs in the 

neighborhood of a reference vector [32].  

 

In this direct controller design the centers of the basis functions were placed on regular 

points of a square mesh covering a relevant region of space where the input space (ξ= r - 

y) of the RBF NN is known to be contained, denoted by a compact set ξBn B  P

n
P. It is 

assumed that desired trajectory vector with its delayed values is valuable for 

measurement. The weights of the network are then initialized randomly and the weights 

∈ S
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are tuned with a supervised learning algorithm such as bold driver gradient descent 

optimization, with a suitable cost function J(ξ ). 

 

 

 
Fig. 4.7 Plant with RBF in feedback loop, representing training/control phases 

 
Such a neuro-controller, once trained, during an on-line operation phase will reproduce 

input u to the plant for a desired response r. Here the tracking error (ξ) becomes the 

driving force as the ANN is placed in series with the plant. This results in increased 

robustness of the system coupled with advantages of conventional feedback, since the 

training is based on “some measure” of closed system error (J(ξ) = J(r – y)). However, 

one has to accept the fact that training is more difficult with such a structure, due to 

feedback action through the ANN. This approach allows the ANN training to take place 

within the operating region of the plant and is hence more accurate than the generalized 

learning method described earlier in Section 4.3.1. Given below is the algorithm for 

implementation of the controller. 

 

1. Decide the number of feedback samples of the measurement m to be used as 

the control input to the RBF and the number of control outputs (n) from the 

y(k)Neural Network 
    Controller 

           Plant ξ(k)r(k) u(k)
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neuro-controller (In this case n = 1, RBF output = M, the magnitude of control 

inputs ua, ub). 

2. Define RBF network with c hidden layer neurons, m input and n output 

neurons. 

3. Simulate the stepper motor system from time 0 to tf, with initial states given 

by xB0B, using a nominal controller (open loop), to get an m dimensional input 

space P

m
P for the RBF controller. S

4. Define the activation functions (Gaussians) with centers vBjB and their widths σBj,B 

both with m dimensions, where j varies from 1 through c. 

5. Initialize the network weights randomly. 

6. Choose a suitable learning rate η. 

7. Now, place the RBF-NN in feedback to deliver control magnitude (M) where 

the out of phase control signals are ua = M cos (Nr.ωBdB); ub = M sin (Nr.ωBdB).   

8. Simulate the system for a small amount of time (0:tf) , acquire the 

measurement vector  y and compute tracking error ξ ( = r – y). 

9. Evaluate a cost function J(ξ) 1. || || 2. || ||ξ ξλ λ+= + .Where, 1λ and 2λ are 

chosen arbitrarily as weighting factors.  

10. If this is not the first iteration, compare current J (ξ) with previous one, and 

perform learning rate update using bold driver technique given in 4.10 as 

follows, where k1,k2 are typically chosen as k1 = 1.1, k2 = 0.5 

 
new =  k1 .    if  J < 0 

        =  k2 .    if  J > 0
old

old

η η
η

∇
∇  

11. If  J < ε∇ ,  weights converged , GoTo END 
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12. For each weight wBiB perturb it by a small amount ∆wBiB, and simulate the system 

for entire time length again to get (ξ).Compute numerical partial differential ˆ
iJ

i

i

J
w
∆
∆

 and thus the weight updates using gradient descent described earlier in 

this chapter given by, . i
inew iold

iold

JW W
W

η= +
∆

∆
. 

13. Go To 8. 

14. END 

  

As, it can be noticed from the algorithm except for the learning rate parameter settings 

and a choice of suitable subspace S P

m
P for deciding the input vectors , which can be easily 

done by using any nominal control there are no other tuning parameters required in this 

procedure. Such a controller once trained can be used in on-line mode with final 

converged weights which exhibits robustness for external disturbances, so long as the 

errors remain bounded with in S P

m
P. Also, the Gaussian nature of the activation functions 

(g(x)  0 as x  ∞) ensures that the RBF control outputs remain bounded even if there 

are large errors. 

 

The next chapter presents results for various settings of the RBF, the effect of choice of 

m, c and various weight initializations. 
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Chapter V 

RESULTS AND CONCLUSIONS 
 

5.1 Introduction 

In this work a direct adaptive controller based on a radial basis function neural network 

has been developed for control of a PMS motor. Such a controller, once trained offline, 

learns the inverse plant dynamics and can be used to control the non-linear plant (PMS), 

better than traditional PD controllers used in the industry. This controller never considers 

any modeling parameters as design criteria, and therefore offers an edge over 

conventional controllers in that it doesn’t require repeated tuning of the controller for 

different tracking trajectories.  

 
Initially in this chapter the performance of the RBF-Neuro controller trained with various 

configuration changes to learn the inverse plant dynamics of the PMS motor is analyzed. 

All configurations are compared with a standard open loop controller. An analysis of the 
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weight and control surface adaptation in all the configurations is also presented. Later, 

the best configuration setting is chosen and the performance is compared with a classic 

PD controller tuned for two different trajectories. Finally, the robustness of the neuro-

controller is demonstrated by adding external disturbances other than those for which the 

controller has been trained. 

 

The following criteria are used as performance index for analysis purpose, 

1. Maximum peak error 

2. Steady state error 

3. RMS error  

 

Additionally, for the comparison of different settings of neuro-controllers the cost 

function J(ξ) 1. || || 2. || ||ξ ξλ λ+=  is used as the performance index. 

 

5.2 Performance Analysis of RBF-Neuro Controllers 

In this section a neuro-controller placed in the feedback loop is trained initially as 

described in Chapter IV. The RBF parameters, such as number of centers, and their 

distribution and weight initializations, are varied and their effect on the response of the 

controller is studied. This study is limited to single dimensional input and hidden layered 

neurons of the RBF. That is, the RBF has only one input neuron providing tracking error 

delayed by one time step ( ( 1)kξ − ).  
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The following simulation parameters are used consistently throughout the study, 

 

Simulation parameter Value Units 

Initial time (t0)   0 Sec 

Final time (tf)    1.9  Sec 

Simulation time step (dt)  0.0001  Sec 

Control time step (dtCntrl)  0.001  Sec 

Integration method used   Rectangular N/A 

T        Table II. Simulation specs 
 

A PMS motor with the following characteristics is used consistently for all simulations 

presented in this chapter. The initial condition is chosen to be xB0B = [-0.183, 5, 0, 0.119] in 

all cases, where x signifies the state vector i.e., the displacement, angular velocity and the 

currents in windings B, A respectively. 

  
Motor parameter     symbol  Value      Units  

Rotor load Inertia          J       3.6 * 10^-6    N.m.s^2/rad 

Viscous friction            B       1 * 10^-4      N.M.s^2/rad 

External Load torque        Tl       5 * 10^-4      V.s/rad 
(Square wave) 
Self inductance           L        0.001             H     
of windings 
Resistance in       R              8.4             Ohms    
phase windings 
Number of rotor teeth       Nr         50                   

Table III. PMS motor simulation specs 
 

As explained in Chapter III, field oriented control derives the maximum theoretical 

performance from the PM stepper motor. The field-oriented control method involves 

having sinusoidal voltage applied to phases such that they meet the 90° phase difference 
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requirement of the currents, and position the stator magnetic field vector 90° ahead of the 

rotor flux vector. Thus, to provide out of phase winding currents to both phases, the 

control inputs are chosen to be sinusoid in nature, where the control input (M) will be 

magnitude of these winding currents. The control inputs are given by Equation 5.1 below. 

 

ua = M * cos (Nr.ωBtB) 

ub = M * sin (Nr.ωBtB)         5.1 

 

U5.2.1 Neuro-Control vs. Open Loop Control 

Originally stepper motors were designed for operation in open-loop configuration, to 

provide precise position control with an integer number of steps, without any sensors for 

feedback [41]. Thus, for a given constant velocity trajectory a simple open loop controller 

can be easily obtained as per Equation 5.1. Fig. 5.1 shows the open loop response of the 

PMS system for a constant velocity trajectory of ωBd B= 5 rad/sec. A square wave external 

load torque with a magnitude of 5*10^−4 was chosen as the external disturbance input 

[refer to Table III] . The control inputs are chosen as follows, 

 

ua = 1 * cos (Nr.ωBdB) 

ub = 1 * sin (Nr.ωBdB)    
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TFig. 5.1(a) Open loop response of PMS plant 
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            Fig. 5.1(b) Open loop response of PMS plant 
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It can be clearly noticed that such an open loop control such a response is not desirable in 

presence of external disturbances. This necessitates the need for a closed loop controller. 

Although it is simple to implement a classic PD controller, to overcome the burden of 

tuning each time an adaptive RBF Neuro Controller that learns the inverse plant 

dynamics is trained. The neuro controller is then trained as described in Chapter IV for 

the same velocity trajectory (ωBd B= 5 rad/sec) with the parameters given in Table IV.  

 

RBF parameters Value 

Input neurons 1 

Output neurons 1 

Hidden neurons 18 

Input space ±2 

Basis centers Distributed equidistantly, overlapping each other 
between -2 to 2 (including both boundaries) 

Basis Radius 0.5*(4/17) ≈  0.1177 

Bias 1 

Table IV. RBF-Neuro Controller – [Config. 16, Table V] 
 

 
As mentioned, in this control method the input to the RBF is the tracking error. So, based 

on open loop control and knowledge of plant dynamics an input space is assumed a priori 

and the RBF-NN activation function centers are distributed uniformly in this space (refer 

to Table IV). The hidden layer neuron prototype vectors are distributed evenly in the 

input space, and weights are initialized with random numbers. Weighting in the cost 

function is chosen as 1λ = 0.2, 2λ  = 0.8 such that ∆ξ has more weight in the error 

function. Also, the perturbation value for computing the partial differential is chosen 

consistently to be 0.1% of the original value. 
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Fig. 5.2 shows the reduction in the cost function after optimization performed by using 

the bold driver gradient descent algorithm. Fig. 5.3 shows the adaptation of weights. It 

can be seen that after a considerable number of iterations the weight values start to 

converge to the best possible solution using the gradient descent algorithm. 
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  Fig. 5.2 Reduction of cost function 
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                    Fig. 5.3 Adaptation in weights 

 

The learning of the controller during the training process can be best judged by looking at 

the change in the RMS value of the tracking error shown in Fig. 5.4. Fig. 5.5 shows the 

response of RBF controller for the input space it has been defined for, both before and 

after trainingT. It is worth noting that for values of tracking error outside the input space 

(±2 in this configuration of the RBF, refer Table IV) the output of the RBF controller is 

M = 1, thus acting as a nominal open loop controller.T 
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                   Fig. 5.5 Adaptation of control surface 

 
 
Finally, as a comparison between the open loop controller and the RBF controller, Fig. 

5.6(a) shows a plot of neuro-controller response, while Fig. 5.6(b) shows the response of 

both open loop [refer to Fig. 5.1(a)] and RBF-neuro control methods. It can be seen that 

steady state, RMS and peak errors are all reduced in case of the later, thus justifying the 

use of the neuro-controller. 
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         Fig. 5.6(a) Neuro Controller response of PMS plant 
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Now, to evaluate the effect of RBF parameters such as weight initializations and the 

number of hidden layer neurons, each of the parameters is varied as shown in Table V 

thus giving rise to a variety of configurations. 

 

RBF Configuration #Hidden neurons Matlab random number seed 

for weight initialization 

1 5 -99 

2 5 777 

3 5 -1 

4 5 0 

5 10 -99 

6 10 777 

7 10 -1 

8 10 0 

9 15 -99 

10 15 777 

11 15 -1 

12 15 0 

13 18 -99 

14 18 777 

15 18 -1 

16 18 0 

Table V. RBF Neuro Controller Configurations 
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                     Fig. 5.7(a) Effect of random initialization on cost (J) of the controller 

 

To notice the effect of different weight initialization on the controller performance, the 

configurations with same number of neurons are grouped together and RMS error and 

Cost functions are shown in Fig. 5.7 (a), Fig. 5.7 (b) for configurations 13 through 16. It 

can be clearly seen that except for difference in the path the controller takes to converge, 

so long as the number of neurons is same the final RMS errors in each of these cases is 

same. Similar analysis can be done with other number of hidden neurons. This shows the 

robustness of the RBF training procedure. In spite of the highly nonlinear error surface, 

the training procedure converges to the same configuration regardless of the initialization 

values. 
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               Fig. 5.7(b) Effect of random initialization on RMS error (J) of the controller 
 

To notice the effect of number of neurons on the controller performance, the 

configurations with the same random initializations (configurations 4, 8, 12, and 16 from 

Table 5.4) are grouped together and cost functions optimizations are shown in Fig. 

5.8(a), Fig. 5.8(b). It can be seen that as the number of neurons increases, the cost 

convergence and hence performance of the controller improved. Also, Fig.5.8(c) shows 

the control surface for all the configurations which shows that a robust control surface as 

the number of neurons increases both within and outside the input boundaries of the 

RBF-NN. Thus, the controller with maximum number of neurons (18) is chosen for 

comparison with a classical PD controller in the next section. 
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                Fig. 5.8(a) Effect of number of neurons on performance of the controller 
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            Fig. 5.8(b) [Fig. 5.8.(a)]  Iterations 50 to 300 
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                     Fig. 5.8(c) RBF NN control surface  

                             [1-d for various number of Hidden layer neurons] 
 

U5.2.2 Neuro-Controller vs. PD-Controller 

Initially the operating conditions are chosen to be xB0B = [-0.183, 5, 0, 0.119] as stated 

earlier for open loop control, where x signifies the state vector i.e., the displacement, 

angular velocity and the currents in windings B, A respectively. All other plant 

parameters as specified in Table 5.1. A neuro-controller with 18 hidden layer neurons is 

trained to learn the inverse plant dynamics in Configuration 16 given by Table 5.4. A PD 

controller is then tuned by trial and error to obtain fixed gains. An additional tuning 

parameter Ks, a constant additive gain, was needed to amplify the gain and drive the 

stepper and required tracking velocity. The tuned fixed gains for a desired tracking 

velocity of  ωBd B= 5 rad/sec are, 

Ks = 0.8, Kp = 0.63, Kd = 1.8*10^−4 
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                            Fig. 5.9(a) PD Control 
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Fig. 5.10 RBF Neuro Controller vs. PD Control with zero mean, white 

measurement noise 
 

Fig. 5.9(a) shows the trajectory tracking of a PD controller, while Fig. 5.9(b) shows a 

comparison of trajectory tracking by both PD and RBF neuro controllers. It can be seen 

that the peak and steady state errors are both reduced considerably in case of the neuro-

controller. Adding white noise to the measurements considerably deteriorates the 

performance of the PD controllers. However, due to its smooth interpolating surface and 

Gaussian activation functions, the RBF neuro controller still tracks the trajectory 

effectively as shown in Fig. 5.10. Fig. 5.11 shows the performance of both the controllers 

for different trajectories other than those they were tuned for.  
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The RBF controller can be seen to track well due to its nonlinear nature, as long as the 

error inputs to the network are within the training bounds. However, PD controller gains 

have to be tuned again to derive optimum performance. Tuned gains used are :  

Ks = 0.5, Kp = 0.58, Kd = 1.8*10^−4. 
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            Fig. 5.11(a) PD Controller ( ωd = 4 rad/sec) 
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 Fig. 5.11(b) Neuro Controller ( ωd = 4 rad/sec) 
 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

RBF Neuro Cntrl : RmsErr = 0.043071; Enorm = 1.8774; IntegralErr = 4.3778

PD Cntrl : RmsErr = 0.046262; Enorm = 2.0165; IntegralErr = 5.8609

Trajectory
RBF Neuro Control
PD Cntrl

 
Fig. 5.11(c) [Fig 5.11(a),(b)] Time scale 0.4 to 0.48 seconds 
 



 90

5.3 Conclusions 

It can be seen that for any given trajectory, the RBF controller tuned within a limited sub-

space learns the nonlinear dynamics of the plant and thus exhibits robustness to external 

disturbances and measurement noise. Given adequate training data the RBF controller 

learns the plant dynamics for the entire subspace and exhibits robustness throughout the 

operation range. They best way of operation for the current version of the controller is to 

use it in conjunction with a nominal controller to drive the plant to this limited error 

subspace where the RBF controller can then act as a compensating controller. The idea 

here has been to propose a new and efficient adaptive control that would reduce the 

burden of the control engineer to retune gain parameters. Listed below are the advantages 

and disadvantages of using the RBF neural network for control of a PMS motor. 

Advantages 

1. Auto tuning capability for a given tracking error subspace 

2. Robustness to external noise disturbances 

3. Provides nominal control for errors outside the input subspace, ensuring safe 

operation of the controller. 

 

Disadvantages 

1. No model information has been used  

2. Complex controller mathematical model. 

3. Requires large training time. 

4. No proof of stability. More complex as the dimensions of the ANN increases. 

5. Current model still offline, even though on-line version is possible. 
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6. Limited to single dimensional prototype vectors due to computational burden.  

 

However, it has to be noted that some disadvantages of the neuro-controller like the proof 

of stability, using prior knowledge of system dynamics are unavoidable like any other 

model free method such as a PD or a PID controller. It has been shown that the RBF-

neuro controller is a robust controller which provides a adequate control even when the 

tracking error is outside the error subspace for which it has been trained, thus ensuring 

safe operation of the system unlike the derivative based methods. 

5.4 Future work 

Much work has already been done to learn nonlinear plant dynamics in feed forward 

mode for system identification and then use the inverse model to control the system. The 

current work is only a preliminary step towards automatic direct adaptive control using 

radial basis function neural networks for PMS motors. However, with a little more effort, 

by making the optimization routines more efficient, this work could be extended to make 

an on-line version of this neuro-controller, thus making it comparable to other adaptive 

control techniques. Also, a detailed stability analysis such as a Lyaponov analysis could 

be done. The other possible extension is to increase the number of delayed feedback 

samples input to the RBF controller (increasing the input dimensions of the RBFNN) and 

thus make it more robust. 
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APPENDIX 

SOFTWARE LISTING 
 
======================================================================= 

   M.file,function,"offLineTraining" 

======================================================================= 

function offLineTraining(nc,randCase,fileName) 

global initTraj 

 

format short e; 

 

% record all command line activites 

cd results 

   diary(fileName) 

cd .. 

 

% Cost fn for optimization 

COSTFN = '.2*norm(errVec) + .8*norm(diff(errVec))'; 

fprintf('\n The costfn for this trial is: \n \t E = %s \n',COSTFN); 

 

% -------------------- Initalize Control parameters ---------------- % 

 

 

% Intialize rbf,centers and parameters 

rbf = rbfInit(randCase,nc); 

 

% Command window info. display ... 
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fprintf('\n This trial is for %d inputs to RBF in feedback : 

\n',rbf.nin);disp(rbf); 

fprintf('\n');disp(rbf.w2); 

 

% ------------------ Initialize system parameters -------------------- 

% 

  sys = specs;                  % get system specs   

  Wd =  5;                      % angular velocity to be tracked 

  tf = 1.9;                     % final time 

  Y0 = [-.0183;Wd(1);0;0.119]; 

  fd = 10^3;                    % control frequncy 

  dtCntrl = 1/fd;               % desired freq. rad/sec             

  trajWd = []; 

  fprintf('Wd = %s \t tf = %2.2f \t fd = %d \n',num2str(Wd),tf,fd); 

 

% ---------------- Construct Profile vector -------------------------- 

% 

velProfile = Wd*ones(size(0:dtCntrl:tf-dtCntrl)); 

Wt = sys.Nr*Wd(1);Wtvec = []; 

 

Evec = []; 

 

% Bold driver grad. descent parameters 

k_up = 1.2;k_down = .5;NumSplits = 1; 

fprintf('eta_k = %f \t k_up = %2.2f \t k_down = %2.2f 

\n',rbf.eta,k_up,k_down); 

fprintf('\n'); 

 

% TRAIN RBF until error converges 
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iter = 1;EEvec = [];allData = [];allWeights = [];CONVG = []; 

 

 

 

while(1)      

    % ------------------------------------------------ % 

    % Start clock for this iteration: 

      T0 = clock;    

       

    % do intial simulation to get standarad error, i.e,oldW 

    % :::: SYSTEM SIMULATION START :::: 

      runNeuroCntrlPlant;  

    % :::: SYSTEM SIMULATION END :::: 

    % above script updates closed loop plant output to errVec 

     

      E = eval(COSTFN); 

      Evec = [Evec;E];                   

 

    % check E for convergence 

    if (iter > 1)  

          % if five consecutive errors match up to 'n'th decimal place, 

          % declare, CONVERGED ... 

          if (length(Evec) > 5) 

             CONVG = round(diff(Evec(end-5:end)).*10^5);  

          else 

             CONVG = 99;                 % dummy value 

          end 

           

          if ((iter > 300) | (CONVG == 0)) 
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            fprintf('\n\tRBF-NN CONVERGED at ITER # : %d !!\n ',iter);   

            diary off; 

            break; 

          end 

         

        Elast = Evec(end-1); 

        % Bold Driver Grad. Descent Algorithm 

        if (Evec(end) > Elast) 

            % increase in error, so restore prev weights  

            rbf.w2 = oldW; 

            E = Elast; 

            Evec = Evec(1:end-1); % remove Maxima 

         

            % decrese step size 

            rbf.eta = rbf.eta * k_down; 

            NumSplits  = NumSplits + 1; 

            fprintf('\n \t This is LOCAL MINIMUM  ...\n '); 

            disp(rbf.w2);             

        else 

            % if in correct direction increase step size 

           rbf.eta = rbf.eta * k_up;  

        end 

    end  

% ------------------ TRANING PHASE --------------------- % 

% copy old weights 

  oldW = rbf.w2; 

  tempW = zeros(size(oldW)); 

  doE = zeros(size(oldW));doW = zeros(size(oldW)); 
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% Adjust weights one after the other        

  for ro = 1:rbf.nhidden 

      for col = 1:rbf.nout     

        % copy weights 

        tempW = oldW; 

 

        % change ith weight  

        tempW(ro,col) = oldW(ro,col)+ (rbf.gradient * oldW(ro,col)); 

         

        % copy new weights 

        rbf.w2 = [];rbf.w2 = tempW; 

         

        % :::: SYSTEM SIMULATION START :::: 

        runNeuroCntrlPlant;  

        % :::: SYSTEM SIMULATION END :::: 

 

        % Error with Weights(ro,col) changed: 

        delE = eval(COSTFN);     

        doE(ro,col) = (delE - E)./(tempW(ro,col) - oldW(ro,col)); 

 end  

   end 

    

% update new weights with GRADIENT DESCENT  

  rbf.w2 = oldW - rbf.eta*(doE);%./doW); 

  T1 = clock;Tlap = etime(T1,T0); 

  allWeights = [allWeights oldW];  

  if iter < 2 

  fprintf('------------------------------------ ... 

           ------------------------------------------\n'); 
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  fprintf('Iter# \t   CstFn       eta_k       ENORM       ... 

           ERMS       EINTEG       iTime  \n'); 

  fprintf('------------------------------------ ... 

           ------------------------------------------\n'); 

  end 

  ENORM = norm(errVec);ERMS = sqrt(mean(errVec.^2));EINTEG = 

trapz(errVec); 

  fprintf('   %-3d. %10.5f  %10.5e  %10.5f  %10.5f  %10.5f  ... 

              %10.5f\n',iter,Evec(end),rbf.eta,ENORM,ERMS,EINTEG,Tlap); 

  allData = [allData;iter,Evec(end),rbf.eta,ENORM,ERMS]; 

  iter = iter + 1;     

end 

disp(rbf.w2); 

  

% If we are here means the rbf converged. So, run final simulation 

runNeuroCntrlPlant; % script 

 

figure; 

subplot(221) 

plot(initTraj);grid; 

subplot(222) 

plot(allData(:,4));grid; 

subplot(223) 

plot([velProfile trajWd errVec]);grid; 

subplot(224) 

plot(Kpvec);grid; 

 

cd results 

myFig = strcat(fileName,'_finalView.fig'); 
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saveas(gcf,myFig); 

save(fileName,'allWeights','allData','rbf','Evec', ... 

     'velProfile','sys','Wd','tf','fd','Y0'); 

cd .. 

===================================================================== 

   M.file,function,"specs" 

===================================================================== 

function sys = specs 

 

%  given motor specs 

sys.Km = 0.05;               %(V.s/rad),motor torque constant 

sys.Nr = 50;                 % number of rotor teeth 

sys.B  = 5 * 10^(-4);        %(N.M.s^2/rad),viscous friction   

sys.J  = 3.6 * 10^(-6);      %(N.m.s^2/rad), Rotor load Inertia 

sys.L  = 0.001 ;             %(H), self inductance in each of the phase 

windings 

sys.R  = 8.4;                %(Ohms),Resistance in each of the phase 

windings 

sys.Tl = 3*10^-4; 

 

% external torque distrubance 

sys.dtdistr = .4; 

sys.tdistr = sys.dtdistr;    % torque disturbance  
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====================================================================== 

   M.file,function,"rbfInit" 

====================================================================== 

function rbf = rbfInit(randCase,nc) 

global initTraj 

 

% ---- Radial Basis Function Neural Net, intializations ---------- % 

rbf.nin      = 1;     % no.of inputs to the RBF neural network 

rbf.nhidden  = nc^rbf.nin;   

                      % no.of hidden layerd neurons 

rbf.nout     = 1;     % no.of outputs from the RBF 

rbf.c        = [];    % the centers of the RBF (hidden neurons)      

                      % (nhidden,nin) 

rbf.wi       = [];    % width (ro), of the Gaussian                  

       % (nin,nhidden) 

rbf.b2       = zeros(1,rbf.nout); 

                      % bias for second layer of the RBF             

                      % (1,nout) 

rbf.w2       = [];     

                      % weight matrix for second layer of the RBF    

       % (nhidden,nout) 

 

rbf.gradient = 0.001; % petrubation introduced in weights to calculate 

                      % the partial diff. 

rbf.eta      = 0.01; 

 99



% ------------------------------------------------------------------ % 

% run nominal control simulation (openloop/PD control) 

runNominalCntrl; 

 

% get initial vector 

initTraj = trajWd; 

errVec = velProfile - trajWd; 

 

if rbf.nin <= 1 

   xMax =  2;     %max(e); 

   xMin = -2;     %min(e); 

   eMax = [eMax xMax];eMin = [eMin xMin];    

else 

   errdlg('This controller works only for 1-d, currently');  

   return; 

end 

 

% put centers sparesely between eMin:eMax 

Centers = [];Radius = []; 

for i = 1:rbf.nin 

    if nc <= 1 

     Centers(:,i) = (eMax(i) + eMin(i))/2; 

     Radius(i,:) = ones(1,rbf.nhidden).*(abs(eMax(i) - eMin(i))/2); 

     continue; 

    end 

     interval = abs(eMax(i) - eMin(i))/(nc-1);      

     dInt = [dInt interval]; 

     Centers(:,i) = (eMin(i):interval:eMax(i))'; 

     Radius(i,:) = ones(1,nc).*(interval/2);        
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 end   

  

if rbf.nin <= 1 

   rbf.c = Centers; 

   rbf.wi = Radius; 

    figure; 

    subplot(211) 

 plot(e,'r.');hold on;grid on; 

    N = length(e); 

 index = [];errBars = []; 

 index = repmat(1:N,rbf.nhidden,1); 

 errBars = repmat(rbf.c,1,N); 

 plot(index',errBars'); 

else 

   errdlg('This controller works only for 1-d, currently');  

   return; 

end 

 

subplot(212) 

plot([velProfile trajWd]);grid; 

switch randCase 

    case 1 

         rand('seed',555);    

     case 2 

         rand('seed',-99); 

     case 3 

         rand('seed',-100); 

     case 4 

         rand('seed',777); 
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     case 5 

         rand('seed',1); 

     case 6 

         rand('seed',-1);          

     otherwise 

         rand('seed',0); 

 end 

 

rbf.b2       = ones(1,rbf.nout); 

rbf.w2       = zeros(rbf.nhidden,rbf.nout);     

nw2          = (rbf.nhidden*rbf.nout); 

random       = randn(1,nw2)*(10^0); 

rbf.w2       = reshape(random,rbf.nhidden,rbf.nout); 

rbf.w2       = rbf.w2./nw2; 

 

return; 
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====================================================================== 

   M.file,function,"rbffwd" 

====================================================================== 

function [a, z, n2] = rbffwd(rbf,inputs) 

% inputs = inputs to the rbf neural net   : (ndata,nin) 

%   a    = output from the rbf         

%   z    = activations from the first layer of rbf               

%   n2    = calculated squared norm matrix : (ndata,nhidden)  

%   rbf.nin      = no.of inputs to the RBF neural network 

%   rbf.nhidden  = no.of hidden layerd neurons 

%   rbf.nout     = no.of outputs from the RBF 

%   rbf.c        = the centers of the RBF (hidden neurons)      

       : (nhidden,nin) 

%   rbf.wi       = width (ro), of the Gaussian                  

       : (nin,nhidden) 

%   rbf.b2       = bias for second layer of the RBF             

       : (1,nout) 

%   rbf.w2       = weight matrix for second layer of the RBF    

       : (nhidden,nout) 

 

[ndata, dime] = size(inputs);  

if dime ~= rbf.nin 

    errdlg('In consistent matrix size'); 

end 
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% --------------- RBF = Only for Gaussian -------------------- % 

  z = zeros(1,rbf.nhidden); 

  for i = 1:rbf.nhidden 

      % for each hidden node 

      di2 = (rbf.c(i,:) - inputs)';      % Distance vector,      

            % (nin x 1)  

      wi2 = diag(rbf.wi(:,i));           % Co-variance Matrix, 

            % (nin x nin) 

      n2 =  di2' * inv(wi2) * di2 ;      % ~x~ function of x     

         % (1 x [nin x nin] x [nin x nin] x 1) 

      z(i) = exp(-0.5 * n2);        % guassian activation  : (1 x 1)    

  end 

% -------------------------------------------------------------- %   

 

% network outputs                        %(ndata, nout)                             

a = z*rbf.w2 + ones(ndata, 1)*rbf.b2; 
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====================================================================== 

   M.file,function,"extrapolate" 

====================================================================== 

 

function [nextY0] = extrapolate(t0,t1,Y0,sys,Va,Vb) 

% $$$$$$$$$  Nonlin sim. $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

dt = 1/10^4;                  % sampling frequency 10kHz 

 

% Y0(1) : Displacement (rad) 

% Y0(2) : Angular Velocity (rad/sec) 

% Y0(3) : Current in winding B (Amps) 

% Y0(4) : Current in winding A (Amps) 

 

for t = t0+dt:dt:t1 

% simplfy calc. 

    s = sin(sys.Nr*Y0(1)); 

    c = cos(sys.Nr*Y0(1)); 

 % non linear system eqns %+ ThetaNoise*randn 

    dy = [Y0(2); 

         (- Y0(4) * s * sys.Km + Y0(3)* c * sys.Km . . . 

         - sys.B*Y0(2) - sys.Tl)/sys.J;         

         (-sys.R*Y0(3) - sys.Km* c * Y0(2) + Vb)/sys.L;                             

         (-sys.R*Y0(4) + sys.Km* s * Y0(2) + Va)/sys.L];              

% use Euler inegration 

    Y0 = Y0 + dy*dt; 
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    Y0(1) = mod(Y0(1),2*pi); 

end 

nextY0 = Y0; 

 

====================================================================== 

   M.file,script,"runNominalCntrl" 

====================================================================== 

% script runs PMS model given by the m-file specs.m 

% select open loop //PD control 

type = 'P';                      % use 'open' alternatively 

% PD with noise (Mag) 

Kp = .63; 

Kd = 1.8*10^-4; 

iProf = 1; 

% ------------------ Initialize system parameters ------------------- % 

Wd = [5];                        % desired angular velocity    

sys = specs;                     % get system specs   

sys.Tl = abs(sys.Tl);            % system Torque intializations  

sys.tdistr = sys.dtdistr;        % torque disturbance            

% system timing paramters and noise 

tf = 1.9;                       % final time 

Y0 = [-.0183;Wd(1);0;0.119];    % sys. initial conditions 

fd = 10^3;                      % control frequncy 

dtCntrl = 1/fd;                 % desired freq. rad/sec             

trajWd = [];Yvec = [];Kpvec =[];Tvec =[]; 

 

% ---------------- Construct Profile vector ------------------------- % 

velProfile = Wd*ones(size(0:dtCntrl:tf-dtCntrl)); 

Wt = sys.Nr*Wd(1);Wtvec = []; 
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% cntrl @ t = t0 

Mag = 1;Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);  

 

 

% misc. intializations 

enew = 0;eold = enew;compen = 0; 

Measurement = 0;MeasNoise = 0.01; 

Controls = []; velMeasure = []; 

rand('seed',0); 

 

for tt = 0:dtCntrl:tf-dtCntrl                       

% ------------  get the Measurement  ------------------- %% 

% calculate the error from Refernce and Measurement 

  Measurement = Y0(2) + (MeasNoise*rand); 

  enew = velProfile(iProf) - Measurement;   

  Kpvec = [Kpvec;compen]; 

 

  Yvec = [Yvec;Y0']; 

  velMeasure = [velMeasure; Y0(2)-Measurement]; 

  Wtvec = [Wtvec;Wt]; 

  Controls = [Controls; Va Vb]; 

  trajWd = [trajWd;Y0(2)];     

 

% for every 'tdist', GENERATE Ext. torque disturbance 

  if tt  >=  sys.tdistr 

     % change 

     sys.tdistr = (round(tt./sys.dtdistr)*sys.dtdistr) + sys.dtdistr;        

     sys.Tl = -sys.Tl; 

  end 
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% ------------- Extrapolate system ---------------------- %%  

% time,current states,control,system parameters : gives interated error 

  [Y0] = extrapolate(tt,tt+dtCntrl,Y0,sys,Va,Vb);       

   

% Get Control for next time step from MEASUREMENTS @ tt 

switch type 

      case 'open' 

           % ----------- openloop ---------------------- % 

           Wt = sys.Nr * Wd(1); 

           Ks = .8; 

           Mag =  Ks; 

       case 'P' 

            % ----------- p control --------------------- %  

            Wt = sys.Nr * velProfile(iProf); 

      Ks = .8; 

            Mag = Kp*enew + (Kd *(enew-eold)/dtCntrl)+ Ks; 

    end % // end case 

 

  % determined controls for next time step   

  Va = Mag*cos(Wt*(tt+dtCntrl)); 

  Vb = Mag*sin(Wt*(tt+dtCntrl)); 

   

  eold = enew; 

  Tvec = [Tvec;tt];  

  iProf = iProf + 1; 

end 

 

errVec = velProfile - trajWd; 
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ENORM = norm(errVec);ERMS = sqrt(mean(errVec.^2));EINTEG = 

trapz(errVec); 

 

% plot trajectory tracking         

figure; 

plot(Tvec,[velProfile trajWd])%,'-r-.'); 

title(['RmsErr = ' num2str(ERMS) '; Enorm = ' num2str(ENORM) '; 

IntegralErr = ' num2str(EINTEG)]); 

grid;legend('velProfile','trajectory',0); 

xlabel('Time (secs)'); 

ylabel('Ang. velocity,w(rad/sec)'); 

 

% plot controls 

figure; 

subplot(211) 

plot(Tvec,Controls(:,1)); 

grid;title('Control input ua'); 

 

subplot(212) 

plot(Tvec,Controls(:,2)); 

grid;title('Control input ub'); 

 

% plot states 

figure; 

subplot(221) 

plot(Tvec,Yvec(:,1));grid; 

title('Displacement (rad)'); 

xlabel('Time (secs)'); 
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subplot(222) 

plot(Tvec,Yvec(:,2));grid; 

title('Ang. Velocity (rad./sec)'); 

xlabel('Time (secs)'); 

 

subplot(223) 

plot(Tvec,Yvec(:,3));grid; 

title('Current windingB (A)'); 

xlabel('Time (secs)'); 

 

subplot(224) 

plot(Tvec,Yvec(:,4));grid; 

title('Current in WindingA (A)'); 

xlabel('Time (secs)'); 

 

% clear variables 

clear enew iProf Wt dWt maxWd deadBand dRPM Wd sys Y0 tt tf fd dtCntrl 

     

===================================================================== 

   M.file,script,"runNeuroCntrlPlant" 

===================================================================== 

% ------------------ Initialize system parameters --------------------  

% system Torque intializations 

  sys.tdistr = sys.dtdistr;      % torque disturbance                

  sys.Tl     = abs(sys.Tl); 

  Y0 = [-.0183;Wd(1);0;0.119];   % intial state vector 

  trajWd = [];Yvec = [];Kpvec =[];Tvec =[];errVec = [];        

  Wt = sys.Nr*Wd(1);Wtvec = []; 
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% cntrl @ t = t0 

Mag = 1;Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);  

 

 

 

% misc. intializations 

enew = 0;eold = enew;compen = 0; 

Measurement = 0;MeasNoise = 0.01; 

Mag = 1;                               % rbf.b2 : just the bias ***** 

 

% cntrl @ t = t0  

Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);  

enew = 0;eold = enew;compen = 0; 

 

% misc. initializations % 

eBuff = zeros(1,rbf.nin+1);   

Measurement = 0;MeasNoise = 0.01; 

rand('seed',0);   

 

iProf = 1; 

 

% RBF control (closed loop), vel tracking 

for tt = 0:dtCntrl:tf-dtCntrl  

% ------------  get the Measurement  ------------------- %% 

  % calculate the error from Refernce and Measurement 

  

  Measurement = Y0(2) + (MeasNoise*rand); 

  enew = velProfile(iProf) - Measurement;   
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  Yvec = [Yvec;Y0']; 

  Wtvec = [Wtvec;Wt]; 

  Magvec = [Magvec;Mag]; 

  trajWd = [trajWd;Y0(2)];   

     

  %  --- FIFO buffer ---% 

  eBuff = [eBuff(2:end) enew]; 

   

  % for every 'tdist', GENERATE Ext. torque disturbance 

  if tt  >=  sys.tdistr 

     % change 

     sys.tdistr = (round(tt./sys.dtdistr)*sys.dtdistr) + sys.dtdistr;        

     sys.Tl = -sys.Tl; 

  end 

  

  % ------------- Extrapolate system ---------------------- %%  

  % time,current states,control,system parameters  

    [Y0] = extrapolate(tt,tt+dtCntrl,Y0,sys,Va,Vb);       

   

  % Get Control for next time step from MEASUREMENTS @ tt 

  % wait 'rbf.nin' control steps until buffer fills  

  if (round(tt/dtCntrl) >= (rbf.nin+1)) 

     a = rbffwd(rbf,eBuff(1:end-1));        

                      % Tracking error is input to the RBF   

     Mag = a;         % RBF output directly used as control magnitude          

  end   

  Wt = sys.Nr*velProfile(iProf);   % standard OpenLoop Velocity 

  Va = Mag*cos(Wt*(tt+dtCntrl)); 

  Vb = Mag*sin(Wt*(tt+dtCntrl)); 
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  eold = enew; 

  Tvec = [Tvec;tt];  

  iProf = iProf + 1; 

end 
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