

A RADIAL BASIS FUNCION NEURO CONTROLLER FOR

PERMENENT MAGNET STEPPER MOTOR

SAIKIRAN GUMMA

Bachelor of Engineering in Electronics and Telecommunication Engineering

J.N.T.University, India

July, 2001

Submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

AUGUST, 2004

ACKNOWLEDGEMENT

I would like to express my sincere indebt ness and gratitude to my thesis advisor Dr.

Dan Simon, for the ingenious commitment, encouragement and highly valuable advice he

provided me over the entire course of this thesis.

 I would also like to thank Dr. Xiong Gao and Dr. Yongjian Fu for their constant

support and advice throughout the work.

 I wish thank my lab mates at the Embedded Controls and research systems

laboratory for their encouragement and intellectual input during the entire course of this

thesis without which this work wouldn’t have been possible.

 Finally, I wish to thank my roommates and my brother Dr. Sasidhar Gumma has

always been my role model, and has been a constant source of inspiration to me.

TABLE OF CONTENTS

CHAPTER I ...ERROR! BOOKMARK NOT DEFINED.

INTRODUCTIONERROR! BOOKMARK NOT DEFINED.

1.1 INTELLIGENT CONTROL...................................... ERROR! BOOKMARK NOT DEFINED.

1.2 LITERATURE SURVEY ... ERROR! BOOKMARK NOT DEFINED.

1.3 THESIS ORGANIZATION ERROR! BOOKMARK NOT DEFINED.

CHAPTER II..ERROR! BOOKMARK NOT DEFINED.

ARTIFICIAL NEURAL NETWORKS......ERROR! BOOKMARK NOT DEFINED.

2.1 BIOLOGICAL NEURAL NETWORKS...................... ERROR! BOOKMARK NOT DEFINED.

2.2 ARTIFICIAL NEURAL NETWORKS ERROR! BOOKMARK NOT DEFINED.

2.3 TYPES OF ARTIFICIAL NEURAL NETWORKS ERROR! BOOKMARK NOT DEFINED.

2.3.1 Topology Characteristics....................................Error! Bookmark not defined.

2.3.2 The McCulloch-Pitts Model of Neuron...............Error! Bookmark not defined.

2.3.3 The Perceptron..Error! Bookmark not defined.

2.3.4 Single Layered PerceptronError! Bookmark not defined.

2.3.5 Multi Layered Perceptron (MLP)Error! Bookmark not defined.

2.3.6 Radial Basis Function (RBF)..............................Error! Bookmark not defined.

2.3.7 Other forms of ANNs...Error! Bookmark not defined.

2.4 LEARNING METHODS (TRAINING ALGORITHMS) ERROR! BOOKMARK NOT DEFINED.

2.4.1 Basic Learning laws..Error! Bookmark not defined.

 i

2.4.2 Salient features of learning laws.........................Error! Bookmark not defined.

2.5 COMPARISON BETWEEN RBFS AND MLPS......... ERROR! BOOKMARK NOT DEFINED.

2.6 APPLICATIONS.. ERROR! BOOKMARK NOT DEFINED.

TUCHAPTER IIIUT ...ERROR! BOOKMARK NOT DEFINED.

TUSTEPPER MOTORSUTERROR! BOOKMARK NOT DEFINED.

TU3.1 INTRODUCTIONUT.. ERROR! BOOKMARK NOT DEFINED.

TU3.2 TYPES OF STEPPER MOTORSUT.............................. ERROR! BOOKMARK NOT DEFINED.

TU3.2.1 Permanent Magnet (PM) Stepper MotorUTError! Bookmark not defined.

TU3.2.2 Principle of Operation of a PM Stepper MotorUT .Error! Bookmark not defined.

TU3.2.3 Variable Reluctance Stepper MotorsUTError! Bookmark not defined.

TU3.3 COMPARISON BETWEEN VR AND PM STEPPER MOTORSUTERROR! BOOKMARK NOT

DEFINED.

TU3.4 MODES OF EXCITATIONUT..................................... ERROR! BOOKMARK NOT DEFINED.

TU3.5 MODELING OF A PERMANENT MAGNET STEPPER (PMS) MOTORUT................... ERROR!

BOOKMARK NOT DEFINED.

TU3.6 CONTROL IN PMS MOTORSUT............................... ERROR! BOOKMARK NOT DEFINED.

TU3.6.1 Field-oriented controlUT ..Error! Bookmark not defined.

CHAPTER IV..ERROR! BOOKMARK NOT DEFINED.

RBF-NEURO CONTROLLER FOR STEP MOTORSERROR! BOOKMARK NOT

DEFINED.

 ii

4.1 INTRODUCTION... ERROR! BOOKMARK NOT DEFINED.

4.2 ADAPTIVE CONTROL USING ANNS..................... ERROR! BOOKMARK NOT DEFINED.

4.3 PROBLEM FORMULATION ERROR! BOOKMARK NOT DEFINED.

4.4 THE RADIAL BASIS FUNCTION NEURAL NETWORK.............ERROR! BOOKMARK NOT

DEFINED.

4.4.1 Overview of RBFs ...Error! Bookmark not defined.

4.4.2 Optimizing the RBF-NNError! Bookmark not defined.

4.5 CONTROLLER DESIGN .. ERROR! BOOKMARK NOT DEFINED.

CHAPTER V..ERROR! BOOKMARK NOT DEFINED.

RESULTS AND CONCLUSIONSERROR! BOOKMARK NOT DEFINED.

5.1 INTRODUCTION... ERROR! BOOKMARK NOT DEFINED.

5.2 PERFORMANCE ANALYSIS OF RBF-NEURO CONTROLLERS.ERROR! BOOKMARK NOT

DEFINED.

5.2.1 Neuro-Control vs. Open Loop ControlError! Bookmark not defined.

5.3 CONCLUSIONS .. ERROR! BOOKMARK NOT DEFINED.

5.4 FUTURE WORK ... ERROR! BOOKMARK NOT DEFINED.

APPENDIX ... 92

 iii

LIST OF FIGURES

Figure .. Page

2.1 Control system view of human bodyError! Bookmark not defined.

2.2 Biological neuron...Error! Bookmark not defined.

2.3 An ANN ‘processing unit’/ ‘artificial neuron’.............Error! Bookmark not defined.

2.4 McCulloch-Pitts Model of NeuronError! Bookmark not defined.

2.5 Linear step function (Threshold = T)...........................Error! Bookmark not defined.

2.6 Perceptron ..Error! Bookmark not defined.

2.7 Sigmoid activation function...Error! Bookmark not defined.

2.8 Single Layered Network ..Error! Bookmark not defined.

2.9 Multi Layered Network...Error! Bookmark not defined.

2.10 Radial Basis Function NN ...Error! Bookmark not defined.

T3.1 Components of a PM stepper motor: (a) Rotor; (b) statorT......... Error! Bookmark not

defined.

T3.2 One full revolution of two-phase two-pole PMS motorT Error! Bookmark not

defined.

T3.3 Cross section of a VR stepper motorTError! Bookmark not defined.

T3.4 Single pole, 2 phase - PMST..Error! Bookmark not defined.

 iv

4.1 Representation of learning and control actions in an ANN approach.Error!

Bookmark not defined.

4.2 Supervised Control...Error! Bookmark not defined.

4.3 Indirect learning architectureError! Bookmark not defined.

4.4 Direct Inverse Control..Error! Bookmark not defined.

4.5 Open loop response of a permanent magnet stepper motor....... Error! Bookmark not

defined.

4.6 Radial Basis Function NN ...Error! Bookmark not defined.

4.7 Plant with RBF in feedback loop, representing training/control phases..............Error!

Bookmark not defined.

5.1(a) Open loop response of PMS plantError! Bookmark not defined.

5.1(b) Open loop response of PMS plant...........................Error! Bookmark not defined.

5.2 Reduction of cost function ...Error! Bookmark not defined.

5.3 Adaptation in weights ..Error! Bookmark not defined.

5.4(a) Change in RMS error (% of max. error)..................Error! Bookmark not defined.

5.4(b) Change in RMS error, [Fig. 5.4(a)]50 to 100 iterations....... Error! Bookmark not

defined.

5.5 Adaptation of control surface.......................................Error! Bookmark not defined.

5.6(a) Neuro Controller response of PMS plantError! Bookmark not defined.

5.6(b) Open loop vs. RBF Neuro Control.........................Error! Bookmark not defined.

5.7(a) Effect of random initialization on cost (J) of the controller .. Error! Bookmark not

defined.

 v

5.7(b) Effect of random initialization on RMS error (J) of the controllerError!

Bookmark not defined.

5.8(a) Effect of number of neurons on performance of the controller....Error! Bookmark

not defined.

5.8(b) [Fig. 5.8.(a)] Iterations 50 to 300Error! Bookmark not defined.

5.8(c) RBF NN control surface..Error! Bookmark not defined.

5.9(a) PD Control...Error! Bookmark not defined.

5.9(b) Open loop vs. RBF Neuro Control..........................Error! Bookmark not defined.

Fig. 5.10 RBF Neuro Controller vs. PD Control with zero mean,

 white measurement noise...................................Error! Bookmark not defined.

5.11(a) PD Controller (ωd = 4 rad/sec).............................Error! Bookmark not defined.

5.11(b) Neuro Controller (ωd = 4 rad/sec)........................Error! Bookmark not defined.

5.11(c) [Fig 5.11(a),(b)] Time scale 0.4 to 0.48 seconds...Error! Bookmark not defined.

LIST OF TABLES

 I. PMS Motor simulation specs ………... 54

 II. Simulation specs ...……………………………….............…...……………............ 72

III. PMS motor simulation specs ... 72

IV. RBF-Neuro Controller Parameters... 75

 V. RBF-Neuro Controller Configurations .. 81

 vi

ABSTRACT

Changes in the environment, unmeasurable disturbances, changes in the system

parameters, and component failures are some the characteristics of complex dynamic

systems that necessitate intelligent control techniques. Traditionally plant dynamics are

first modeled and verified through experiments, and then controllers are designed.

However, such controllers are limited by the accuracy of the identified model and cannot

accommodate large variations in parameters. While adaptive control is a natural choice to

overcome parametric uncertainties, other major issues remain unsolved at this level.

Although the region of operation is considerably increased compared to classical control

systems as adaptive controllers tune themselves, they don’t possess long term memory.

Thus, adaptation must be repeated every time the system is confronted with changing

operating conditions. To tackle such problems intelligent control techniques have been

developed, neuro-control being one of those. In this work we use a specialized learning

architecture with a radial basis neural network to develop an inverse dynamic model for

a nonlinear permanent magnet stepper motor. This neuro-controller is initially trained

offline using the bold driver gradient descent algorithm and is later used in feedback as a

controller. Its performance is then compared with traditional PD controllers tuned for

various trajectories and external disturbances. The effect of the number of neurons and

initialization of the neural network weights on the performance of the controller is also

studied.

CHAPTER I .. 1

INTRODUCTION... 1

1.1 INTELLIGENT CONTROL.. 1
1.2 LITERATURE SURVEY ... 3
1.3 THESIS ORGANIZATION .. 5

1

 1

CHAPTER I

INTRODUCTION

Real-time control of non-linear plants with unknown dynamics remains a very

challenging area of research [22]. Traditionally plant dynamics were first modeled and

verified through experiments, and then controllers were designed. Such controllers are

limited in performance by the accuracy of the identified model and cannot accommodate

large variations in plant parameters, even though they guarantee good tracking

performance and robustness to external disturbances.

1.1 Intelligent Control

In the last two decades in the areas of robotics, aircraft control, process control and

estimation there have been successful applications of adaptive control theory boosted by

the availability of powerful microprocessors. “Adaptive Control” is used to denote a class

of control techniques where the parameters of the controller are changed (adapted) during

control, utilizing the observations on the plant to compensate for parameter changes,

other disturbances and unknown factors of the plant. However, most adaptive controllers

 2

are designed for systems that are expressed as linear functions of unknown parameters,

and their performance degrades considerably due to disturbances in the regression matrix,

and external disturbances. Also it has to be noted that, as the parameters of the plant vary,

the adaptive controllers tune themselves but don’t possess any kind of memory.

Use of control methodologies in standard practice has opened the doors to a wide

spectrum of complex applications. Such complex systems typically characterized by poor

models, high dimensionalities and high noise levels can be classified into three categories

[Narendra, 1990].

a. Computational complexity

b. Presence of non-nonlinear systems with many degrees of freedom

c. Uncertainties

The third category includes modeling uncertainties, parametric uncertainties, disturbances

and noise. The greater the ability to deal with above mentioned difficulties, the more

intelligent the control system. “Qualitatively , a system which includes the ability to

sense its environment, process the information to reduce the uncertainty , plan , generate

and execute control action constitutes and intelligent control system”.

It can be inferred that if a human in the control loop can properly control a plant, then

that system would be a good candidate for intelligent control [15]. Unlike conventional

control techniques, intelligent control has the capability to deal with incomplete plant

information, its environment and unexpected or unfamiliar disturbances. Thus,

 3

“Intelligent adaptive control” may be viewed as a class of control techniques that ensures

proper operation of a plant, particularly in the presence of parameter changes and

unknown disturbances [15]. Over the years, computational procedures such as fuzzy

logic, neural networks and genetic algorithms collectively known as “soft computing”

techniques, were successfully used either directly or synergistically, for control of various

complex systems.

1.2 Literature survey

In recent years learning based control such as neural network and fuzzy logic based

controllers has emerged as an alternative to adaptive control. Notably Narendra et al. [21]

emphasize the use of dynamic backpropagation for tuning neural networks. Sadegh [29]

employs approximate gradients to perform stability analysis, while Polycarpou and

Ioannou [24], and Chen and Khallil [6] offer rigorous proofs of performance in terms of

tracking error stability and bounded NN weights.

The rationale for using neural control or any other soft computing methods is related to

the difficulties faced by control engineers in real-world applications. It is generally

difficult to represent a complex process by a mathematical model or by a simple

computer model. Even if the model itself is tractable, control of the process using “hard”

(non-soft or crisp) control might not provide satisfactory performance. Furthermore, it is

commonly known that the performance of industrial processes can be considerably

 4

improved through high-level control actions made by an experienced or skilled operator,

which cannot (in most cases) be formulated as crisp control algorithms [11].

Some important properties of neural networks later presented in Chapter II are

summarized below in the context of neuro-controllers [4].

§ Massive parallelism: Neural networks are highly parallel and can be easily

implemented in parallel hardware.

§ Inherent nonlinearity: Neural networks have the ability to model any piecewise

continuous nonlinear mapping to an arbitrary degree of accuracy by properly

selecting the size and parameters of the networks.

§ Learning capability: They have the exceptional capability of learning from

example data sets.

§ Capability of generalization: They exhibit structural capability for generalization,

thus will cover many more situations than the examples used to train them.

Therefore, they have the ability to deal with difficulties arising from uncertainty,

imprecision, and noise in a wide range of problems.

§ Guaranteed stability: Theoretical results have been presented to prove that certain

neural network architectures (radial basis functions) are guaranteed to be stable

for certain non linear control problems.

As can be seen clearly these characteristics are essential in dealing with increasingly

complex systems with less precise prior knowledge of a plant and its environment.

Because of these capabilities of ANNs mentioned above like learning capability,

 5

generalization, inherent non-linearity, and robustness to unknown dynamics, it has been

argued by Werbos [39] that if a control task can be done equally well using a

conventional method and a neural network, then there are several advantages of using the

latter.

1.3 Thesis Organization

The current research work focuses on the development of an “intelligent adaptive

control” method using a class of artificial neural networks for a non-linear stepper motor

plant model with unknown disturbance parameters with an upper bound.

Chapter II introduces the fundamental concepts of Artificial Neural Networks,

comparison with their Biological counter parts, different architectures of ANN’s and their

training procedures and the wide range of possible applications.

Chapter III presents an overview of various kinds of stepper motors, their advantages and

various control techniques.

Chapter IV establishes the need for intelligent control of stepper motors and possible

application of radial basis function neural networks for control. It gives an overview of

training procedures for RBF networks and finally the design of a direct inverse controller.

Chapter V presents the results for various settings of direct inverse controller and its

comparison with a typical PD controller. It finally states the various advantages of this

type of controller and proposes enhancements to this first step towards direct inverse

control of PM steppers.

CHAPTER II... 6

ARTIFICIAL NEURAL NETWORKS .. 6
2.1 BIOLOGICAL NEURAL NETWORKS.. 8
2.2 ARTIFICIAL NEURAL NETWORKS ... 10
2.3 TYPES OF ARTIFICIAL NEURAL NETWORKS ... 13

2.3.1 Topology Characteristics... 13
2.3.2 The McCulloch-Pitts Model of Neuron.. 15
2.3.3 The Perceptron... 16
2.3.4 Single Layered Perceptron .. 18
2.3.5 Multi Layered Perceptron (MLP) .. 20
2.3.6 Radial Basis Function (RBF)... 21
2.3.7 Other forms of ANNs.. 23

2.4 LEARNING METHODS (TRAINING ALGORITHMS).. 23
2.4.1 Basic Learning laws... 25
2.4.2 Salient features of learning laws.. 26

2.5 COMPARISON BETWEEN RBFS AND MLPS... 27
2.6 APPLICATIONS.. 28

Fig. 2.1 Control system view of human body... 9
Fig. 2.2 Biological neuron .. 10
Fig. 2.3 An ANN ‘processing unit’/ ‘artificial neuron’ .. 11
Fig. 2.4 McCulloch-Pitts Model of Neuron .. 15
Fig. 2.5 Linear step function (Threshold = T) .. 16
Fig. 2.6 Perceptron.. 17
Fig. 2.7 Sigmoid activation function... 18
Fig. 2.8 Single Layered Network.. 19
Fig 2.9 Multi Layered Network ... 21
Fig 2.10 Radial Basis Function NN .. 22

0

 6

Chapter II

Artificial Neural Networks

Digital computers in use today are mostly based on the principle of using a single

powerful processor through which all computations are channeled. This is termed as the

von Neumann architecture, named after John von Neumann. The power of such a

processor can be measured in terms of its speed and complexity. Such computers have

been traditionally utilized by writing a precise sequence of steps (a computer program or

an algorithm) to be executed by the computer. This is the algorithmic approach [5].

On the other hand researchers in artificial intelligence (AI) follow the algorithmic

approach and try to capture the knowledge of an expert in some specific domain as a set

of rules to create so called expert systems. This is based on the hypothesis that the

expert’s thought process can be modeled by using a set of symbols and a set of logical

rules which manipulate such symbols. This is the symbolic approach [5].

 7

A deep scientific concern has been that it still requires someone to understand the process

(the expert) and someone to program the computer. The algorithmic and symbolic

approaches can be very useful for certain problems where it is possible to find a precise

sequence of mathematical operations or a precise sequence of rules. However, such

approaches have the weaknesses in the sense that “learning” is difficult and they fail to

tackle problems with increasing dimensionality (like in regression problems) [7]. If we

define computational “learning” as the construction or modification of some

computational representation or model [5], it is difficult to simulate "learning" using the

algorithmic and symbolic approaches.

Artificial Neural Networks (ANN), also referred to as connectionist models, parallel

distributed processors and self-organizing systems, provide an alternative approach to be

applied to problems where the algorithmic and symbolic approaches are not well suited.

ANNs are computational models of the human brain. The brain is composed of

approximately 10P

11
P nerve cells termed neurons. Although each of these elements is

relatively simple in design it is believed the brain’s computational power is derived from

the interconnection, hierarchical organization, firing characteristics, and the sheer number

of these elements. The actions and interconnections of biological neurons have given the

spirit and scope for the fascinating field of artificial neural networks [16].

 8

2.1 Biological Neural Networks

The human information processing system consists of the ‘central nervous system’ (CNS)

and the ‘peripheral nervous system’ (PNS). The CNS is composed of the brain and the

spinal cord. The PNS is composed of the nervous system outside the brain and spinal

cord [5]. The CNS of the human body consists of three stages: receptors, a neural

network, and effectors. The nervous system can be seen as a vast electrical switching

network to which the inputs are provided by sensory receptors. Such receptors act as

transducers and generate signals from within the body or from sense organs that observe

the external environment. The information is then conveyed by the PNS to the CNS,

where it is then analyzed and processed. If necessary, the CNS sends signals to the

effectors and the related motor organs that will execute the desired actions. From the

above description we can see that the human nervous systems can be described as a

closed-loop control system as shown in Fig. 2.1, with feedback from within and from

outside the body to regulate some bodily functions [42].

The basic building block of the CNS is the biological neuron, the cell that communicates

information to and from the various parts of the body [16]. The human brain contains

approximately 10P

11
P neurons and each of these neurons is connected to around 10P

3
P to 10P

4
P

other neurons, and therefore the human brain is estimated to have 10P

14
P to 10P

15
P

connections.

The neuron consists of a cell body called soma, and several spine-like extensions off the

cell body called dendrites. A single nerve fiber called the axon branches out from the

 9

soma and connects many other neurons. The junctions by which these connections

between neurons occur are called synapses which are either on the cell body or on the

dendrites, as shown in Fig. 2.2. Nerve impulses originate at the dendrite tree or the cell

body, propagate through the axon and communicate with the neighboring neurons

through the synaptic junctions. The inter-neuronal signal at the synapse is usually

chemical diffusion but sometimes electrical impulses

Fig. 2.1 Control system view of human body

The incoming impulse signal from each synapse to the neuron is either excitatory or

inhibitory, which means helping or hindering firing. The condition of causing firing is

that the excitatory signal should exceed the inhibitory signal by a certain amount in a

short period of time, called the period of latent summation [20]. With a weight assigned

to each incoming impulse signal, the excitatory signal has positive weight and the

inhibitory signal has negative weight. This way, we can say, “A neuron fires only if the

total weight of the synapses that receive impulses in the period of latent summation

exceeds the threshold [1].”

 10

 Fig. 2.2 Biological neuron

In essence, all that a neuron does is to sum up the values of various inputs applying a

weighting factor to each and give an output when this sum of weighted inputs exceeds a

certain threshold.

2.2 Artificial Neural Networks

An excellent ANN repository on a Usenet newsgroup [31] says,

“There is no universally accepted definition of an ANN. But perhaps most people in the

field would agree that an ANN is a network of many simple processors ("units"), each

possibly having a small amount of local memory.”

According to the DARPA Neural Network Study [8] ,

“A neural network is a system composed of many simple processing elements operating

in parallel whose function is determined by network structure, connection strengths, and

the processing performed at computing elements or nodes.”

 11

These “units” are connected by communication channels (“connections”) which usually

carry encoded numeric (as opposed to symbolic) data. The units operate only on their

local data and on the inputs they receive via the connections, as shown in Fig. 2.3. The

restriction to local operations is often relaxed during training.

Of the wide variety of ANN models, some resemble biological neural networks and some

do not. But historically much of the inspiration for the field of ANNs came from the

desire to produce artificial systems capable of sophisticated, perhaps “intelligent”,

computations similar to those that the human brain routinely performs. The fundamental

element, an artificial neuron, is a model based on known behavior of biological neurons

that exhibit most of the characteristics of human brains. It is generally believed that

knowledge about real biological neural networks can help by providing insights about

how to improve the artificial neural network models and clarifying their limitations and

weaknesses [20]. A comparison of artificial neural networks with biological neural

networks is presented in Table 2.1.

 Fig. 2.3 An ANN ‘processing unit’/ ‘artificial neuron’

 12

Element Brain ANN

1.Organization

2.Component

3.Processing

4.Architecture

5.Hardware

6.Switching speed

7.Technology

8.Speed

9.Control machines

Network of neurons.

Dendrites, axons,

summer, threshold.

Analog

10-100 billion neurons.

Neurons.

1 millisecond.

Biological.

Slow in processing

information.

No central control.

Network of processing elements.

Inputs outputs, weights, summation

and threshold function.

Digital.

1-1,000,000 processing elements.

Switching devices.

1-nano second to 1-millisecond.

Silicon, optical, molecular.

Fast.

One central unit.

 Table 2.1 Comparison between ANN and BNN

Most ANNs have some sort of “training” rule whereby the weights of connections are

adjusted on the basis of data. ANNs “learn” from examples, and if trained carefully, may

exhibit some capability for generalization beyond the training data. That is they tend to

produce approximately correct results for new cases that were not used for training.

 13

ANNs normally have great potential for parallelism, since the computations of the

components are largely independent of each other.

It should be noted that massive parallelism and high connectivity cannot be the defining

characteristics of ANNs, as such requirements rule out various simple models, such as

simple linear regression, which are usefully regarded as special cases of ANNs [20].

2.3 Types of Artificial Neural Networks

The artificial neuron, the most fundamental computational unit, is modeled on the basis

of a biological neuron. Such a neuron basically consists of a number of inputs each

associated with a memory (weight). However, as the name indicates, the true computing

power of biological neural networks lies in the fact that the neurons are highly

interconnected units, giving exceptional parallel processing abilities. Thus, connecting

multiple neurons is a key aspect of ANN design. In view of this importance, a brief

overview of neural network topologies is presented in the next section.

U2.3.1 Topology Characteristics

Organizing artificial neurons into fields (also called slabs or layers) and linking them

with weighted interconnections forms ANN topologies. The main characteristics of these

topologies include connection types, connection schemes and field configurations.

 14

a) Connection types: There are two primary connection types, excitatory and inhibitory.

Excitatory connections increase a neuron’s activation and are typically represented by a

positive signal. On the other hand inhibitory connections decrease a neuron’s activation

and are represented by a negative signal [16].

b) Interconnection Schemes: The three primary neuron interconnection schemes are intra-

field, inter field and recurrent connections. Intra-field connections or intra-layer

connections or lateral connections are the connections between neurons in the same layer.

Inter-field or inter-layer connections are the connections between different layers.

Recurrent connections are connections that loop and connect back to the same neuron.

As can be understood from above classifications, the inter-field connection signals,

propagate in one of two ways:

i. Feed forward

ii. Feed back.

Feed forward signals only allow information to flow among neurons in one direction. In

case of the feedback signals, information flow is in either direction and/or recursive.

c) Field Configurations: Field configurations combine fields of neurons, information flow

and connection schemes into a coherent architecture. Field configurations include lateral

feedback, field feed forward and field feedback. A field that receives input signals from

the environment is called an input field and a field that emits signals to the environment

 15

is called an output field (output layer). Any field that lies in between the input and output

fields are called hidden layers and have no direct contact with the environment (i.e. input

and output neurons).

U2.3.2 The McCulloch-Pitts Model of Neuron

An early artificial neuron model introduced by Warren McCulloch and Walter Pitts in

1943 is also known as the threshold logic gate (TLG). McCulloch-Pitts view of neuron

model depicted in Fig. 2.4 has a set of inputs [IB1B, IB2B, IB3B… IBN B] and one output y. This

early version of neuron, simply classifies the input vector into two different classes, that

is to say, the output y is binary [7].

Such a function can be mathematically described as follows:

 2.1 ∑
=

=
N

i

iiWIsum
1

)(sumfy = 2.2

Fig. 2.4 McCulloch-Pitts Model of Neuron

 16

[WB1B, WB2B, WB3B,…,WBNB] are weight values normalized in the range of either [0,1] or [-1,1]

and associated with each input line, sum is the weighted sum, and ‘T’ is a threshold

constant. The function f(.) is a linear step function at threshold ‘T’ as shown in Fig. 2.5.

T k 1
T k 0 f(k)

>∀
≤∀=

 2.3

Fig. 2.5 Linear step function (Threshold = T)

The McCulloch-Pitts model of a neuron with a precise mathematical definition has

proven to have substantial computing potential. However, this model is so simplistic that

it only generates a binary output, and also the weight and threshold values are fixed.

U2.3.3 The Perceptron

In early 1960’s Rosenblatt studied single layered networks for classification problems

[7]. His model of the neuron, the TperceptronT, was a merge between two concepts

proposed in the 1940s, the McCulloch-Pitts model of an artificial neuron and the Hebbian

learning rule of adjusting weights [2]. Apart from the variable weight values of the TLG,

the perceptron model added an extra input θ, which represents Tbias.T In the first stage of

 17

processing, a Tlinear combinationT of inputs is calculated where each input is associated

with its weight value. The summation function often takes an extra input value θ, with a

weight value of 1 to represent the threshold or TbiasT of a neuron.

θ
1

+= ∑
=

N

i
iiWAsum 2.4

 = [WB0B = θ = 1, is the bias] 0

1

W+∑
=

N

i

iiWA

Fig. 2.6 Perceptron

Further, the sum-of-product value is passed into the second stage to perform the

activation function which generates the output from the neuron. The activation function

‘squashes’ the amplitude the output in the range of [0, 1] or [-1, 1]. The behavior of the

activation function will describe the characteristics of an artificial neuron model. As most

real world signals are continuous in nature, activation functions that are continuous with

bounded range were also introduced.

 18

TOne such convenient function is the Tlogistic sigmoidT function as shown in TFig. 2.7T. Here

as the input TxT tends to a large positive value, the output value TyT approaches to 1. This

function can be expressed mathematically as below: T

T T

)exp(1
1

x
y

−+
= T 2.5

Fig. 2.7 Sigmoid activation function

U2.3.4 Single Layered Perceptron

Individual neurons described previously can perform a substantial level of computation.

However, as mentioned earlier, the true computing power of neural networks comes by

connecting multiple neurons. A common topology of connecting neurons into a network

is by forming layers of neurons. The simplest form of layered network is shown in Fig.

2.8 [20], which is a feed forward topology. Only two layers of neurons are involved, viz.,

 19

the input layer (shaded nodes on the left) and output layer. Here the input layer neurons

only pass and distribute the inputs and perform no computation.

Fig. 2.8 Single Layered Network

This perceptron network has only one group of weights and also has no hidden layers

hence is referred to as a single layer network. This net can be used with both continuous

valued and binary inputs, in which inputs are given at one layer and the output is obtained

at another layer. Note that all processing is done at the output layer, and the topology

doesn’t involve any type of recurrent (intra layer) connections. Each of the inputs [xB1B, xB2B,

xB3B,…,xBNB] is connected to every artificial neuronin the output layer, through

corresponding connection weight. Since all output values [YB1B, YB2B, YB3B,…,YBNB] are

calculated from the same set of input values, each output is dependent on the connection

weights.

()

0
1

ji

N

j
jij

jj

WXWsum

sumfY

+=

=

∑
=

 2.6

 20

The learning or training process of such a network typically involves adjusting the

weight matrix so as to mimic the response for a known input-output mapping. Although

Fig. 2.8 showsP

Pa Tfully connectedT form of the network, the true neural network may

sometimes not have all possible connections, meaning a weight value of zero which

represents ‘no connection’.

U2.3.5 Multi Layered Perceptron (MLP)

In problems with complicated input-output relationships often a more complex structure

of neural network is required, to achieve a higher level of computation. The multi-layer

perceptron is multi-layered feed forward neural network architecture with one input

layer, one output layer and a number of hidden layers, as shown in Fig. 2.9.

()
 N)(1, i

M)(1, j

0

1

1

0

1

∈∀==

∈∀⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

−−

sumsum

sumsumsum
M

ii

N

i

M

j

M

i

M

j

YiXi

f
 2.7

 21

 Fig 2.9 Multi Layered Network

A Tmultilayer neural networkT basically distinguishes itself from the single-layer network

by having one or more Thidden layersT. In such a network, inputs given at the input layer

are processed at the hidden layers. There may be one or more than one hidden layer,

where the number of hidden layers is generally a tradeoff between the complexity of the

problem and computational effort. From a designer’s point of view the multilayer

networks can also be trained similar to a single layer network; however, the weight

adjustments have to be propagated back through the layers of the neural network.

U2.3.6 Radial Basis Function (RBF)

The Radial Basis Function (RBF), a relatively new type of neural network architecture

introduced in the 1980’s, belongs to the class of feed forward topologies. It stands out

from the traditional MLP class of architectures by its hidden unit (middle layer)

activation where the activation of the hidden unit is determined by the Euclidian distance

between the input vector and the prototype vector. RBF networks have only one hidden

layer, in which each neuron (radial unit), each modeling a responsive surface (generally a

gaussian), is defined by its center point (in N dimensional space) and a radius that makes

a prototype vector.

 22

Fig 2.10 Radial Basis Function NN

Consider the network in Fig. 2.10 with m input neurons, c hidden neurons and n output

layer neurons. Each of the c neurons in the hidden layer applies an activation function

g(.) which is a function of the Euclidean distance between the input and an m-

dimensional prototype vector [35] . Each hidden neuron with its own prototype vector as

a parameter gives an output that is then weighted and passed to the output layer. The

outputs of the network consist of sums of the weighted hidden layer neurons.

||)(|| ,

 0
1

ˆ
xvgCwhere

WCW

jj

jj

n

i
ji

iy
−

=

=

+= ∑
 2.8

Since the activation functions are nonlinear, it is not actually necessary to have more than

one hidden layer to model any shape of function: sufficient radial units will always be

enough to model any function [7]. It turns out to be quite sufficient to use a linear

 23

combination of these outputs (i.e., a weighted sum of the Gaussians) to model any

nonlinear function. The RBF ANNs training is generally a two stage process.

(a) assignment of prototype vectors and parameters (getting radial centers and widths)

(b) adjustment of output layer weights.

Different training schemes for RBF networks will be discussed in detail in Chapter IV.

U2.3.7 Other forms of ANNs

Since the advent of neural networks during middle of this last century, various models

and topologies have been proposed, each with its own significance. A few of them are

Hopfield networks, Hamming nets, Boltzman machines, Carpenter/Grossberg classifiers,

Kohonen’s Self-Organizing feature maps, etc. However, it is not in the scope of this

thesis to introduce or discuss all of them in detail.

2.4 Learning Methods (Training Algorithms)

Learning is a process in which samples containing a pattern are presented to the network

several times before the information pattern is captured by the weights (memory) of the

network. An interesting feature of learning is that the network from the training samples

slowly acquires the pattern information and the training samples themselves are never

stored in the network. The learning methods can be broadly classified into three major

groups.

 24

i. Supervised learning.

ii. Reinforcement learning.

iii. Unsupervised learning.

In supervised learning it is assumed that the correct target output values (y) are known

for each pattern. The learning (training) process involves some kind of feedback for

adjustment of weights of the ANN optimally so as to generate the desired output pattern.

In the extreme case there is only a single bit of feedback information indicating whether

the output is right or wrong. Learning based on this kind of critic information is called

reinforcement learning and the feedback information is called the reinforcement signal.

Reinforcement learning is a form of supervised learning because the network still

receives some feedback from its environment. But the feedback is only evaluative (critic)

rather than instructive.

In unsupervised learning there is no teacher to provide any feedback information. There

is no feedback from the environment to say what the outputs should be or whether they

are correct. The network must discover for itself patterns features, regularities,

correlation’s or categories in the input data and code for them in the output while

discovering these features the network undergoes changes in its parameters; this process

is called self-organizing.

 25

U2.4.1 Basic Learning laws

UHebb’s law:U This first and the best known unsupervised learning rule was introduced by

Donald Hebb in 1949. This basic rule is: If a neuron receives an input from another

neuron, and if both are highly active (mathematically have the same sign), the weight

between the neurons should be strengthened. This law represents unsupervised learning.

Consider two neurons in consecutive layers of a NN. The connection strength between iP

th

PneuronP

PaBi B(signal ABiB), and jP

th
P neuron sBj B(signal SBjB) in the next layer is given by WBijB.

Now, Hebb’s lay states that the change in weight vector is given by,

∆WBijB= η. SBjB . ABiB

Where, η is the learning rate. Here, the weights are strengthened if units connected are

activated (with same output sign). Weights are normalized to prevent infinite increase.

UDelta learning:U This learning law is valid only for a differentiable output function as it

depends on the derivative of the output function wherein the change in weights is

proportional to the mean squared error. This is also viewed as a continuous perceptron

learning law where the initial weights are taken randomly and are modified by this

supervised learning rule.

Change in the weight matrix associated jth neuron be given by W

Let, SBjB = f (WB. BA) be the output of the jP

th
P neuron, and TBjB be the desired target value.

 26

Now according to the delta rule,

 WBnewB = WBoldB + ∆W , where ∆W = η. ∂(T-S)/ ∂W

 η is called the learning rate.

There have been number of training schemes proposed for different types of neural

networks that are direct implementations of the learning laws introduced above and their

derivatives. Back propagation algorithm is one such training scheme that is directly

based on delta learning. A detailed insight into the learning schemes and their use to train

RBF neural networks is given in Chapter IV.

U2.4.2 Salient features of learning laws

1. The learning law should lead to convergence of weights.

2. The learning or training time for capturing the pattern information from samples

 should be as small as possible.

3. An online learning is preferable to an off-line learning. That is, the weights should be

 adjusted on presentation of each sample containing the pattern information.

4. Learning should use only local information as far as possible. That is, the change in

 the weight on a connecting link between two units should depend on the state of these

 two units only. In such a case, it is possible to implement the learning law in parallel

 for all the weights, thus speeding up the learning process.

5. Learning should be able to capture non-linear mappings between input-output

 pattern pairs as well as between adjacent patterns in a temporal sequence of patterns.

 27

6. Learning should be able to capture as many patterns as possible into the network. That

 is, the pattern information storage capacity should be as large as possible for a given

 network.

2.5 Comparison between RBFs and MLPs

RBF networks have a number of advantages over MLPs. First, as previously stated, they

can model any nonlinear function using a single hidden layer, thus reducing some design

decisions about numbers of layers. Secondly, the simple linear transformation in the

output layer can be optimized fully using traditional linear modeling techniques. Hence,

RBF networks can be trained extremely quickly, orders of magnitude faster than MLPs.

On the other hand, before linear optimization can be applied to the output layer of an

RBF network, the number of radial units (hidden neurons) must be decided, and then

their centers and standard deviations must be determined. Although faster than MLP

training, the algorithms to do this are prone to discover sub-optimal combinations

[Bishop]. RBFs more eccentric response surface requires a lot more units to adequately

model most functions. Consequently, an RBF solution will tend to be slower to execute

and more space consuming than the corresponding MLP [7].

Also, RBFs are not inclined to extrapolate beyond known data: the response drops off

rapidly towards zero if data points far from the training data are used. In contrast, an

MLP is more certain in its response when far-flung data is input. Whether this is an

 28

advantage or disadvantage depends largely on the application, but on the whole the MLPs

uncritical extrapolation far from training data is usually dangerous and unjustified [16].

2.6 Applications

The motivation of studies in neural networks lies in the flexibility and power of

information processing that conventional computing machines do not have. Although

most computers can process faster and more precisely than human brains, people have

ability to obtain experience then make more sensible decisions [42]. Similar to the way

that the human brain generalizes, the neural network system can “learn by examples and

experience” and perform a variety of nonlinear functions that are difficult to describe

mathematically [20].

Attractive features of ANNs are their robustness and fault tolerance, flexibility, ability to

deal with a variety of data situations and collective computation. Thus, ANNs are used by

a wide variety of people as mentioned below.

§ Computer scientists want to find out about the properties of non-symbolic information

processing with neural nets and about learning systems in general.

§ Statisticians use neural nets as flexible, nonlinear regression and classification models.

§ Engineers of many kinds exploit the capabilities of neural networks in many areas,

such as signal processing and automatic control.

 29

§ Cognitive scientists view neural networks as a possible apparatus to describe models

of thinking and consciousness (high-level brain function).

§ Neuro-physiologists use neural networks to describe and explore medium-level brain

function (e.g. memory, sensory system).

§ Physicists use neural networks to model phenomena in statistical mechanics.

§ Biologists use neural networks to interpret nucleotide sequences.

§ Philosophers and Economists are interested in ANNs for modeling and prediction in

systems that don’t have well defined mathematical models.

TUCHAPTER IIIUT .. 30

TUSTEPPER MOTORSUT ... 30
TU3.1 INTRODUCTIONUT.. 30
TU3.2 TYPES OF STEPPER MOTORSUT.. 31

TU3.2.1 Permanent Magnet (PM) Stepper MotorUT .. 31
TU3.2.2 Principle of Operation of a PM Stepper MotorUT .. 33
TU3.2.3 Variable Reluctance Stepper MotorsUT .. 35

TU3.3 COMPARISON BETWEEN VR AND PM STEPPER MOTORSUT ... 36
TU3.4 MODES OF EXCITATIONUT... 37
TU3.5 MODELING OF A PERMANENT MAGNET STEPPER (PMS) MOTORUT............................ 38
TU3.6 CONTROL IN PMS MOTORSUT... 42

TU3.6.1 Field-oriented controlUT ... 42

TUFig. 3.1 Components of a PM stepper motor: (a) Rotor; (b) statorUT 31
TUFig. 3.2 One full revolution of two-phase two-pole PMS motorUT 33
TUFig. 3.3 Cross section of a VR stepper motorUT .. 35
TUFig. 3.4 Single pole, 2 phase - PMSUT... 39

0

 30

Chapter III

STEPPER MOTORS

3.1 Introduction

The essential property of a stepper motor is to translate switching excitation changes into

precisely defined increments of rotor position [23]. Stepping motors can be viewed as

electric motors without commutators [13]. They are used in a wide variety of

applications, ranging from simple applications like machine tools, typewriters, and

watches, to high end space applications such as positioning mechanisms for antennas,

mirrors, telescopes and complete payloads. Their use has skyrocketed with the popularity

of embedded systems in printers, disk drives, toys, windshield wipers, vibrating pagers,

robotic arms, and video cameras [34].

Due to various disadvantages of DC motors (typically involving a potentiometer to

provide feedback) positioning systems are increasingly being implemented by using

induction motors and stepper motors [25]. However, when making a choice between

 31

steppers and servos, a number of issues that are application specific must be considered.

From a control engineer’s prospective, the development of open loop or closed loop

control involves modeling, and simulation of any system (a stepper motor in this case)

requires a thorough understanding of the system dynamics. Thus, this chapter attempts to

provide a brief overview of physics and electromechanical behavior of a stepper motor

and its principles of operation.

 Fig. 3.1 Components of a PM stepper motor: (a) Rotor; (b) stator

3.2 Types of Stepper Motors

U3.2.1 Permanent Magnet (PM) Stepper Motor

A PM stepper motor operates on the reaction between a permanent-magnet rotor and an

electromagnetic field. A basic two-pole PM stepper motor is shown in Fig 3.1. The rotor,

the freely rotating cylindrical part of the motor, has a permanent magnet mounted with

one pole at each end as shown in Fig. 3.1(a). The stator, the stationary part of a motor, is

illustrated in Fig. 3.1(b) has current carrying conductors that are wound around its teeth.

The wire that is wound around the teeth is called a winding, coil, or phase. The current

 32

flowing in the phase induces a magnetic field in the stator poles, given by Ampere's Law

and the right hand rule (see Fig. 3.2). These winding currents produce magnetic fields

which add together vectorially to produce an overall stator flux.

The stator flux interacts with the permanent magnet rotor flux to produce a torque in the

rotor that is free to move about its axis. When the stator and rotor fluxes are aligned with

each other, the motor is in a stable equilibrium and zero torque is produced. When the

stator and rotor fluxes are opposite each other, the rotor is in an unstable equilibrium

position. Any other relative orientation of the stator and rotor fluxes produces torque in

the rotor [33]. This forms the basic principle for operation of the stepper motor. Generally

teeth on the rotor surface and the stator pole faces are offset so that there will be only a

limited number of rotor teeth aligning themselves with an energized stator pole [23].

As is obvious from intuition, the number of teeth on the rotor and number of stator phases

determine the step angle. The greater the number of teeth, the smaller will be the step

angle. For a PM stepper motor holding torque is defined as the amount of torque required

for moving the rotor one full step, with the stator energized [13]. An important

characteristic of the PM stepper motor is that it can maintain the holding torque

indefinitely when the rotor is stopped. That is even if no power is applied to the windings

a small amount of magnetic force is developed between the permanent magnet and the

stator. This magnetic force is called a residual or detent torque. The detent torque can be

noticed by turning a stepper motor by hand and is generally about one-tenth of the

 33

holding torque. The PM stepper motor has to overcome the detent torque to line up with

the stator field when a steady DC signal is applied to the stator winding.

U3.2.2 Principle of Operation of a PM Stepper Motor

To give an understanding of the working principle of the PM stepper motor, a description

of one full revolution of a simple two-phase, two-pole PM motor shown in Fig. 3.2 [34],

in half-step mode, is described below. For other modes of excitation possible refer under

Section 3.3 of this chapter. As per Ampere's Law and the right hand rule, the current

flowing in the direction shown in Fig. 3.2(a) in the stator phase induces a magnetic field

with the north pole of the field pointing upwards.

 Fig. 3.2 One full revolution of two-phase two-pole PMS motor

 34

With a current through winding 1 in the direction shown in Fig. 3.2(a), and no current

through winding 2, the rotor will align itself in the direction shown, with its north pole

pointing in the north direction of the stator's magnetic field. Suppose current from

winding 1 is removed and applied to winding 2 in the direction shown in Fig. 3.2(b). The

stator's magnetic field will point to the left, and the rotor will rotate to the equilibrium

position where it is aligned with the stator's magnetic field, yielding a zero sum of rotor

and stator flux.

Similarly, removing current from winding 2 and applying current to winding 1 in

opposite direction to that of Fig. 3.2(a), as shown in Fig. 3.2(c) will result in the stator

field pointing down. Exciting only winding 2 in the direction shown in Fig. 3.2(d) will

result in the stator field pointing to the right. These excitations simultaneously force the

rotor to positions where the rotor aligns itself with the stator flux. As a final step,

removing current from winding 2 and apply current to winding 1 in the direction shown

in Fig. 3.2(a), returns the rotor to its original position.

At this point one full cycle of electrical excitation of the motor windings is said to be

completed, while the rotor has rotated one complete revolution. In this case, the electrical

frequency (fBeB) of the motor is equal to the mechanical frequency (fBmB) of the motor. Other

kinds of PM steppers such as unipolar, bifilar with different constructions of pole

winding structure and other variations of this basic configuration are also available.

 35

U3.2.3 Variable Reluctance Stepper Motors

The variable-reluctance (VR) stepper motor at its core basically differs from the PM

stepper in that it has no permanent-magnet rotor and thus no residual torque to hold the

rotor at one position when turned off. The stator of a variable-reluctance stepper motor

has a magnetic core constructed with a stack of steel laminations. The rotor is made of

unmagnetized soft steel with teeth and slots, or any other such magnetically permeable

substance, unlike PM stepper motors [23]. When the stator coils are energized, the rotor

teeth will align with the energized stator poles. This type of motor operates on the

principle of minimizing the reluctance along the path of the applied magnetic field. By

alternating the windings that are energized in the stator, the stator field changes, and the

rotor moves to a new position [13].

Fig. 3.3 Cross section of a VR stepper motor

As a example to understand the working principle consider Fig. 3.3 that shows a basic

variable-reluctance stepper motor that has six stator teeth. There are fewer rotor teeth

than those on the stator, which ensures that only one set of stator and rotor teeth will align

at any given instant. This often proves to be limitation in this kind of motor [23].

 36

As long as a single phase (say only phase 1) is energized, the rotor will be held stationary

(X-X aligned along vertical axis). When phase 1 is switched off and phase 2 is energized,

the rotor will turn 30° until the remaining two poles of the rotor (Y-Y) are aligned under

the north and south poles established by phase 2. Similarly another change in excitation

causes the rotor to move another 30° and X-X will then be aligned under the north and

south poles created by phase 3. By repeating this pattern, the motor can be rotated in a

clockwise direction. Reversing the direction of current in each phase can change the

direction of the motor.

The VR stepper motors mentioned up to this point are all single-stack motors. That is, all

the phases are arranged in a single stack, or plane. The disadvantage of this design for a

stepper motor is that the steps are generally quite large (above 15°) [23]. A variation to

this scheme is the multistack stepper motor that can produce smaller step sizes because

the motor is divided along its axial length into magnetically isolated sections, or stacks. A

separate winding, or phase, excites each of these sections. In this type of motor, each

stack corresponds to a phase, and the stator and rotor have the same tooth pitch.

3.3 Comparison between VR and PM Stepper Motors

In general Hybrid/PM steppers have great step resolution (typically 1.8P

o
P) which is

advantageous when high angular position resolution is needed. On the other hand

variable reluctance steppers are useful in applications where a load is to be moved a

considerable distance, due to their large step size (typically 15P

o
P), with fewer number of

 37

excitations. PM motors produce a small amount of detent torque that help in preserving

the position even after current excitations in the windings are removed. This also proves

to be a disadvantage as they have a large mechanical inertia compared to VR motors. In

summary the choice of the type of step motor is influenced by the application and it is not

possible to categorically state which type is ‘better’ [23].

With its wide range of applications and simple understandable physics PM stepper

motors are of great interest to control engineers. In this work we focus on investigating a

new control methodology for PM steppers. The next section presents a brief overview of

the modeling of the nonlinear dynamics of the motor.

3.4 Modes of Excitation

To enable rotation of the rotor the magnetic field generated by the stator windings have to

interact and drive the rotor flux, which is achieved by switching the direction of current

flow through each winding. Basic stepper motor ‘step modes’ include full-step, half-step,

and micro-step. The type of step mode output of any motor is dependent on the design of

the driver circuit.

UFull-step:U A full step mode is achieved by energizing both phases (as in case of a two

phase motor) of the motor, while reversing the current alternately. In this method

windings are energized producing a ‘north-south’ pole pair in a cyclic fashion. The flux

vectors are out of phase which attracts the rotor's respective poles and holds the rotor in

position at each step. The length of each step depends on the number of rotor teeth (Nr).

 38

This way the torque produced by the motor is increased but the power supply to the

motor is also increased.

UHalf-step:U Exciting in a half-step mode essentially doubles the resolution (steps per

rotation) of the stepper. Even though the switching sequence is similar to that of the full-

step mode, instead of just reversing the flow of current through a phase, one phase is

completely switched off in between. Thus there is another stage in the electrical

switching cycle where in only one winding is excited while the other is completely

switched off. This method allows the rotor to follow and take up even more positions.

Micro-step: The full step length of a stepping motor can be divided in to smaller

increments of rotor motion, known as “micro-step” by partially exciting several phase

windings. Micro stepping is a relatively new stepper motor technology that controls the

current in the motor winding. Micro stepping is typically used in applications that require

accurate positioning and a fine resolution over a wide range of speeds. The major

disadvantage of the micro-step drive is the cost of implementation due to the need for

partial excitation of the motor windings at different current levels.

3.5 Modeling of a Permanent Magnet Stepper (PMS) Motor

In order to investigate the dynamics of mechanisms driven by stepper motors a model had

to be created. A number of references are available on the generation of a model [41,25].

With a minimum background of basic laws of electromagnetism and motor physics, this

 39

section provides a brief derivation of a nonlinear model of the 2-phase PM stepper motor

shown in Figure 3.3.

 Fig. 3.4 Single pole, 2 phase - PMS

As explained earlier, when the windings of a phase are energized, a magnetic dipole is

generated on the stator side. If for example phase 2 is active (phase 1 is switched off),

winding 3 produces an electrical north pole and winding 4 a south pole. Fig. 3.3 shows

the rotor in a stable position with phase 2 only powered. Alternatively powering the

windings of the stator commands the rotor flux so as to follow the stator field.

The number of steps per revolution of the rotor is given by,

Where,
Nr number of rotor pole
P number of stator phases

*S Nr P

=
=

=

 3.1

And the stepping angle in radian per each step is given by,

 40

0
2 2

.S Nr P
π πθ = = 3.2

If a sinusoidal characteristic of the magnetic field in the air gap is assumed, the

contribution of each phase j on the motor torque TBMjB can be written as,

m

Where, k = motor constant
θ(t) = actual rotor position

= current in the coil as function of time
 φ = locati

I(t)

. sin(()). ()

j

Mj m j jT k Nr t I tφ θ= +

on of coil j in the stator

 3.3

However the current IBjB(t) in the coil is a function of the supplied voltage VBjB(t) and the coil

properties. A general equation between VBjB(t) and IBjB(t) is given by,

j

Where, emf = electromotive force induced in the phase j
 R = resistance of the coils
 L = inductance of the coils

()() . () . j
j j j

dI tV t emf R I t L
dt

= + +

 3.4

However, the EMF in each coil can be expressed as,

Where, = rotational velocity of the rotor

 . sin(()). ()m jjemf k Nr t t

ω

φ θ ω= +
 3.5

The total torque produced by the stepper is given as,

1
M Mj

P

j
T T

=
=∑ 3.6

 41

Using Equation 3.6, and considering the equation of motion of a stepper motor,

Where, J = inertia of the rotor and the load
 D = viscous damping constant
 Tl = frictional load torque / load torque

 + + M l
dT J B T
dt
ω ω=

 3.7

The angular velocity is given by,

 d
dt
θ ω= 3.8

The above three equations (3.6, 3.7, 3.8) form the basis for a general state space

description model of a PM stepper motor. Hence for a 2 phase PM motor with Nr rotor

teeth and the two phases (jφ) at 0 and (π /2) the following state space equations can be

derived,

 d
dt
θ ω= % ang.vel

. .(. sin() . cos()) m a m bk I Nr k I Nr B Tld
dt J

θ θ ωω −− += − % load acceleration

.(. . sin(a aa mV R I k NrdI
dt L

))ω θ+−= % current through winding a

.(. . sin(b bb mV R I k NrdI
dt L

))ω θ+−= % current through winding b

 3.9

Where the emfBjB and VBj B are given by Equations 3.4, 3.5.B B

Based on these basic equations a simple model of stepper motor can be developed in

simulation software like Matlab or Simulink for simulation and analysis.

 42

3.6 Control in PMS Motors

Originally stepper motors were designed for operation in open-loop configuration, to

provide precise position control with an integer number of steps, without any sensors for

feedback [41]. These are generally adequate for systems that operate at low accelerations

with static loads, but closed loop control may be essential for high accelerations,

particularly if they involve variable loads. Unlike servo motors, if a stepper in an open-

loop control system is over torqued or is influenced by external loads and unmodelled

disturbances all knowledge of rotor position is lost and the system must be reinitialized

[13].

Furthermore at higher stepping rates the oscillatory nature of the motor adds to the loss of

synchronism. In particular PM stepper motors have notoriously significant overshoot for

step response which is often overcome by the use of dampers or operating at lower

speeds [25]. Due to these problems, one is generally motivated to go ahead and consider

feedback for stepper motors.

3.6.1 Field-oriented control

“Step motors, as typically driven in industrial applications, can exhibit undesirable

behavior such as stepping resonances and skipped steps. However, this is because of the

drive method that is used and is not due to the motor itself [33]”.

In the case of a PM stepper motor, the current flow in each winding of the stator produces

a magnetic field vector, which adds up vectorially to produce a net stator magnetic field

 43

in arbitrary direction. The torque produced in the rotor is a result of the net stator field

and the magnetic field of the PM rotor. The basic idea behind field-oriented control is

that for any position of the rotor, there is an optimal direction of the net stator field which

maximizes torque and there is also a direction which will produce no torque. If the stator

field is orthogonal to the field produced by the rotor, then magnetic forces work to turn

the rotor and torque is maximized. Thus by maintaining the stator magnetic field vector

90° (electrical) ahead of the magnetic field vector of the rotor, then the motor is field-

oriented, and torque will be maximum (for a given power supply voltage) [33].

If the phase currents are sinusoids phased 90° with respect to each other the resulting

stator magnetic field vector will rotate at the sinusoidal frequency. The field-orientated

control method involves having sinusoidal voltage applied to phases such that they meet

the 90° phase difference requirement of the currents, and position the stator magnetic

field vector 90° ahead of the rotor flux vector.

This method of control that derives the maximum theoretical performance from the PM

stepper motor was applied in conjunction with traditional control methods (P, PD) and

RBF neural networks in this thesis work. The next chapter presents the procedure

involved.

 43

CHAPTER IV ... 44

RBF-NEURO CONTROLLER FOR STEP MOTORS... 44

4.1 INTRODUCTION... 44
4.2 ADAPTIVE CONTROL USING ANNS... 46
4.3 PROBLEM FORMULATION ... 52
4.4 THE RADIAL BASIS FUNCTION NEURAL NETWORK.. 56

4.4.1 Overview of RBFs .. 56
4.4.2 Optimizing the RBF-NN... 61

4.5 CONTROLLER DESIGN .. 65

Fig. 4.1 Representation of learning and control actions in an ANN approach. 47
Fig. 4.2 Supervised Control .. 47
Fig. 4.3 Indirect learning architecture... 49
Fig. 4.4 Direct Inverse Control ... 51
Fig. 4.5 Open loop response of a permanent magnet stepper motor................................. 55
Fig. 4.6 Radial Basis Function NN ... 60
Fig. 4.7 Plant with RBF in feedback loop, representing training/control phases 67

 44

Chapter IV

RBF-NEURO CONTROLLER FOR
STEP MOTORS

4.1 Introduction

Artificial intelligence computational procedures such as fuzzy logic, artificial neural

networks and genetic algorithms, collectively known as “soft computing” techniques,

were successfully used in the past decade, either directly or synergistically, for control of

various complex systems. Learning based control methodologies such as neural networks

and fuzzy logic based controllers has emerged as an alternative to adaptive control. The

rationale for using neural controls or any other soft computing methods as such is directly

related to the difficulties faced by control engineers in real-world applications.

Generally, it is quiet difficult to exactly represent (with minimum discrepancies) a

complex process by a mathematical model or by a simple computer model. As seen from

the control theory point of view, if a process (plant) itself is poorly modeled (or if the

 45

parameter values are partially known, ambiguous or vague) appropriate estimates have to

be made for the design of a controller. In such scenarios “crisp control algorithms” based

on incomplete information may not give satisfactory results. A primary purpose of

classical feedback is thus to increase the robustness of the system; i.e., to increase the

performance of the system when there is uncertainty such as modeling errors, unknown

disturbances and noise [40]. Furthermore, as stated earlier, it is a commonly known fact

that the performance of industrial processes can be considerably improved through high-

level control actions made by an experienced or skilled operator, which cannot (in most

cases) be formulated as crisp control algorithms [11].

Robust and adaptive control (both parametric and nonparametric) techniques have been

extensively developed for a variety of control problems to cope with uncertainties due to

large parameter variations and thus achieve required levels of performance. Although the

region of operability is considerably increased compared to non-robust classical control

systems, these techniques lack the feature of learning [10]. That is to say, the control

scheme cannot use the knowledge it has acquired in the past to tackle similar situations in

the present or the future. As a result the same adaptation operation must be repeated

every time the system is confronted with similar operating conditions. To tackle such

problems “intelligent control” techniques have been developed, neuro-control being one

of those.

The successful operation of an autonomous machine depends on its ability to cope with

variety if unexpected and possibly unfamiliar events arise in the operating environment,

 46

perhaps relying on incomplete information [12]. It is evident that such an autonomous

machine would have to be presented with a goal which it would try to achieve through

continuous interaction with external ambience and automatic feedback of its response. By

enabling machines to posses such a level of autonomy, they would be able to learn

higher-level cognitive tasks that cannot be easily learned by existing machines [9]. This

in fact is the essential part of learning found in the majority of biological control as

described in Chapter II. As presented earlier in this work, neural networks have a great

potential in the realm of nonlinear control problems and they have been successfully used

for system identification and control.

4.2 Adaptive control using ANNs

A neuro-controller (neural network based controller) in general performs a specific task

of adaptive control, with the controller taking the form of a multi-layered neural network

and the adaptable parameters being defined as adjustable weights [9]. This approach

defines the problem of control as the mapping of measured signals of system “change”

into calculated “control actions” as shown in Fig. 4.1 below.

Neural control has existed for many years and there is a large body of empirical evidence

of its viability in non-linear control applications [40]. Also, theoretical findings have

guaranteed the stability of neural controllers for problems that can be composed as a

nonlinear auto regressive moving average model [21].

 47

Via learning algorithm
Learning Measured

signals; and
input, output

and error
control actions

Performance feedback

TFig. 4.1 Representation of learning and control actions in an ANN approach.

Mapping measured signals onto learning and control space [90].

A number of neural-controllers have been proposed over the years, which can be

classified in three major categories [17]; supervised control, neural adaptive control and

direct inverse control.

 Fig. 4.2 Supervised Control

Human Operator/
Existing Controller

 Plant

Neural Network

r(t) e(t) y(t) u(t)

T (a) Network training phase

T (b) On-line control phase

y(t) Trained Neural
Network

 Plant r(t) e(t) u(t)

 48

USupervised Control:U In this method, a neural network is trained to perform a control task

similar to that of a human operator. Thus, training data is collected in advance (on-line)

from a existing physical system. Fig. 4.2(a) shows a network in the on-line training phase

while Fig. 4.2(b) shows a neural network in on-line control phase. This type of control

has been employed in many control applications like aircraft landing control [27] and

neural net robot controllers.

This type of neural network controller doesn’t require any explicitly stated control

objective. Typically the objective of the neural network is to just find a mapping which

will map sensor inputs to desired actions as accurately as possible. However, the training

data has to be carefully examined for inconsistencies and contradictions, since such data

may cause difficulties in training neural nets and may even cause instability and erratic

behavior (in the case of robots) [40].

UNeural Adaptive Control:U This is a much more sophisticated on-line control scheme for

the control of non-linear plants. In this type of neuro-control a neural network is first used

to identify the system parameters and then the controller is tuned as in a conventional,

adaptive control structure like model referenced adaptive control (MRAC) or self tuning

regulator (STR) [22]. This type of control scheme is also called the indirect learning

architecture. It is more complicated in the sense that it involves not one but two dynamic

ANNs and thus its training is considerably more difficult.

 49

In this type of control scheme one ANN is trained to model the plant dynamics while the

other ANN performs the controller’s task using a feed-forward neural network, where

both the ANNs are trained on-line. Figure 4.3 shows the flow diagram of such a neuro-

controller.

Fig. 4.3 Indirect learning architecture

UDirect Inverse Control:U In this type of control a neural network is trained to learn the

inverse dynamics of a system. Thus, the inverse dynamics model will provide the input

that will generate a particular output. This approach has been successfully used in robotic

manipulators [26], where the manipulators are moved around and system inputs and

manipulator positions are recorded. A neural network is then trained so that given

trajectory positions the NN-controller will generate desired inputs for the motor joints.

Fig. 4.4(a) and 4.4(b) illustrate two inverse function learning architectures. The first one,

referred to as generalized learning architecture, provides a method for training the neural

controller that minimizes the overall error. The training procedure is given as below.

a) A plant input u(t) is selected and applied to the plant

y
ANN – II

Adaptive Controller
 Plant r

e

u

ANN - I
Plant Model

y*

e*

 50

b) The corresponding output from the plant y(t) is obtained

c) The ANN is trained to reproduce u(t) when y(t) is given as the input to the

network.

After training such a neural network, during on-line operation will reproduce input u to

the plant for a desired response r. However, it has been argued that this architecture by

itself would be difficult to use in real applications, since it is difficult to know in advance

the region of interest in which the plant may operate. To overcome this problem a

specialized learning architecture (Fig. 4.4b) has been used in the literature [37]. This

architecture uses the difference between the actual and desired outputs to modify the

weights of the inverse model. Thus, this approach takes into consideration the operating

regions of the plant.

Successful implementations of direct inverse control schemes have been widely reported

in the literature. CMAC networks have been used to learn the inverse dynamics of plants

such as robot manipulators in [18] and the manufacturing of complex thermo plastic

structures [36].

 51

 Fig. 4.4 Direct Inverse Control

As indicated in [19] learning the inverse model is among the more viable options for

applications of neural networks in control. It must be noted that when the plant inverse is

not causal or well-defined as indicated in [30] or if plants exhibit non-linearity and

variations in parameters due to noise and other environmental factors, much effort is

needed to apply this approach to real-time plants.

T(a) Generalized learning architecture

T(b) Specialized learning architecture

y(t)Neural Network
 Controller

 Plant r(t) e(t) u(t)

y(t)Neural Network
 Controller

 Plant r(t)

e

u(t)

 52

4.3 Problem Formulation

This thesis work considers speed control for permanent magnet stepper motor. A new

intelligent control scheme based on a kind of direct inverse controller using a radial basis

function neural network is proposed.

Originally, stepper motors (Chapter III) were designed to provide precise positioning

control within an integer number of steps without the use of any sensors [25] in open-

loop operation. The basic equations of a PM stepper, Equations 3.9, derived in Chapter

III, are restated below. A stepper motor model has been developed in MATLAB® for

simulation and analysis of standard open loop operation.

For a 2 phase PM motor with Nr rotor teeth and the two phases (jφ) at 0 and (π /2) the

following state space equations can be derived,

 d
dt
θ ω= % ang.vel

. .(. sin() . cos()) m a m bk I Nr k I Nr B Tld
dt J

 θ θ ωω −− += − % load acceleration

.(. . sin(a aa mV R I k NrdI
dt L

))ω θ+−= % current through winding a

.(. . sin(b bb mV R I k NrdI
dt L

))ω θ+−= % current through winding b

Where the emfBjB and VBj B are given by the equations 3.4, 3.5.B B

j

Where, emf = electromotive force induced in the phase j
 R = resistance of the coils
 L = inductance of the coils

()() . () . j
j j j

dI tV t emf R I t L
dt

= + +

 53

However, the EMF in each coil can be expressed as,

Where, = rotational velocity of the rotor

 . sin(()). ()m jjemf k Nr t t

ω

φ θ ω= +

Now, if x denotes the state vector of the nonlinear system such that,

A(x(k),u(k)) = x(k+1) = [xB0B, xB1B,xB2B,xB3B]P

T
P given by Equation 3.9,

If y denotes the output vector so that,

y(k) = C(x(k))

and given a desired trajectory rB Bin terms of output vector. The problem is to find a

suitable control input u(k+1), so that the system tracks the desired trajectory with an

acceptable bounded error in presences of disturbances while all states and controls remain

bounded.

The following characteristics of the PM stepper model (given in Table I) were chosen for

simulation and maintained constant throughout this work, except for external torque

disturbances and measurement noise that are simulated and added to the response

externally.

It is evident from Fig. 4.5 that using stepper motors in open loop configuration results in

poor performance. In particular, one can notice that PM stepper motors have a step

response with significant overshoot and long settling times which is often overcome by

 54

the use of dampers or operating at lower speeds [25]. Due to these problems, one is

generally motivated to go ahead and consider feedback for stepper motors.

Motor parameter symbol Value Units

Rotor load Inertia J 3.6 * 10^-6 N.m.s^2/rad
Viscous friction B 1 * 10^-4 N.M.s^2/rad
External Load torque Tl 0 (NONE)
Self inductance L 0.001 H
of windings
Resistance in R 8.4 Ohms
phase windings
Number of rotor teeth Nr 50
Motor torque constant Km 0.05 V.s/rad

TTable I. PMS Motor simulation specs

With the increasing popularity of PM steppers over direct current drives, feedback

controls have been proposed for stepper motor positioning systems. One such control

idea is the exact feedback linearization technique. The basic design idea here is that the

controller is a function of all plant parameters and external disturbances such as load

torque [14]. In practice some of these parameters are subjected to variations and it is

understandable that such a control technique is capable of providing excellent positioning

results only if complete system dynamics are known. It actually results in no better

performance than that of a conventional fixed gain controller (PD controller with gain

scheduling if necessary) due to the fact that it is very hard to obtain a perfect dynamic

model for the stepper motors in practice [25].

 55

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5
Displacement (rad)

Time (secs)
0 0.1 0.2 0.3 0.4

0

2

4

6

8

10
Ang. Velocity (rad /sec)

Time (secs)

0 0.1 0.2 0.3 0.4

-0.2

0

0.2

0.4

Current windingB (Amp)

Time (secs)
0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0.6
Current in WindingA (Amp)

Time (secs)

Fig. 4.5 Open loop response of a permanent magnet stepper motor.

On the other hand, there has been a strong interest in applying nonlinear control

methodology to electric motors. The use of dynamic ANNs which allows efficient

modeling of dynamic systems has been increasing to successfully model PM stepper

motors [14], and brushless DC motors [38], or to provide robust compensating control as

suggested by Gang Feng [25], for example.

Our design goal is to develop a discrete time, direct (inverse) adaptive controller for

permanent magnet stepper motors. The structure of the proposed adaptive controller is

“direct”; that is, there is no explicit attempt to determine the plant dynamics. The

controller directly tunes its parameters in response to the measured deviations of the

 56

process dynamics from its desired behavior. Thus, the difference between actual and

desired outputs is used to tune the weights (parameters) of the neuro-controller (or the

inverse model to be specific).

Before proceeding to the actual controller design a brief overview of radial basis

functions and supervised learning algorithms is presented in the next section.

4.4 The Radial Basis Function Neural Network

U4.4.1 Overview of RBFs

A general overview of neural networks and different architectures has been presented in

Chapter II. A class of its own, the radial basis function neural networks, have only one

hidden layer, in which each neuron (radial unit) each modeling a responsive surface

(generally a Gaussian), defined by its center point and its radius (in m dimensional

space). The following section describes the usage of a radial basis function in the context

of interpolation and the development of RBF neural networks.

Consider an m dimensional input space x with a one-dimensional ouput space t. The data

set contains N input vectors xP

n
Ptogether with corresponding target vectors tP

n
P. Suppose the

goal is to find a function h(x) such that,

h(xP

n
P) = tP

n
P n = 1,2 ….., N. 4.2

 57

In the radial basis function interpolation approach (Powell, 1987) introduces a set of N

basis functions, one for each data point, which take the form g(||x - xP

n
P||), such that the

output mapping is a linear combination of the basis functions given as,

h(x) = ∑ wBnB g(||x - xP

n
P||) 4.3

According to Powell’s exact interpolation technique, the interpolation conditions in

Equation 4.2 can be written in matrix form as,

1 1
1

' '
1

1 1

'

|| || || ||

|| || || ||

;

Here, n = n' = N and n' is the number of basis centers

'.

n

n n
n

n n

x x x x
G

x x x x

w t
W T

w t

G W T

⎛ ⎞− −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

…
%

"

#

 4.4

Provided the inverse matrix GP

-1
P exists we can solve (4.4) directly to give,

1.W G T−= 4.5

Also, it has been shown (Michille, 1986) that, for a large class of functions g(.), the

matrix G is indeed non-singular provided the data points are distinct. Thus, when the

weights of the RBFs are set to as those given by Equation (4.5) the function h(x)

represents a continuous differentiable surface which passes exactly through each data

 58

point. Several forms of basis functions g(.) have been considered such as Gaussians, thin-

plate splines, multi-quadratic, cubic etc. However, Gaussians have been most generally

used due to their localized property; i.e., g(x) 0 as x ∞, which is given as,

 g(x) = exp (-xP

2
P/ 2σP

2
P) 4.6

Here, σ is the variance parameter for a given dimension of x and controls the smoothness

properties of the basis function. Since the activation functions are nonlinear, it is not

actually necessary to have more than one hidden layer; sufficient radial units will always

be enough to model any function [7]. It turns out to be quite sufficient to use a linear

combination of these outputs (i.e., a weighted sum of the Gaussians) to model any

nonlinear function.

Radial basis function mappings discussed above provide an interpolating function which

passes exactly through every data point. However such an exact interpolation for noisy

data is highly oscillatory in nature and not desirable. Another serious limitation of the

exact interpolation technique is that the number of basis functions has to be equal to

number of patterns in the data set, which becomes highly costly to evaluate in case of

large data sets [7].

In seminal papers published by Broomhead and Lowe [3], a number of possible

modifications to the exact interpolation techniques were suggested, thus giving rise to the

Radial Basis Function Neural Network model (Fig. 4.6). Unlike the exact interpolation

 59

described above, this provides a smooth interpolating function, in which the number of

basis functions (hidden layer neurons) is determined by the complexity of the mapping to

be represented rather than by the size of the data set. The modifications required are

summarized below [7];

1. The number m of basis functions need not be equal the number N of data points,

and is typically much less than N.

2. The centers of the basis functions are no longer constrained to be given by input

data vectors. Instead, the determination of suitable centers becomes a part of the

training process.

3. Instead of having a common width parameter ‘σ’, each of the basis functions is

given its own width σBjB whose value is also determined during training.

4. Bias parameters are included in the linear sum. They compensate for the

difference between the average value over the data set of the basis function

activations and the corresponding average value of the targets.

 60

Fig. 4.6 Radial Basis Function NN

Consider the above network (Fig. 4.6) with m input neurons, c hidden neurons and n

output layer neurons. Each of the c neurons in the hidden layer applies an activation

function g(.) which is a function of the Euclidean distance between the input and an m-

dimensional prototype vector. Each hidden neuron with its own prototype vector as a

parameter gives an output that is then weighted and passed to the output layer. The

outputs of the network consist of sums of the weighted hidden layer neurons given by:

0
1

, (|| | |)

ˆ
c

ji j j
i

j

j j

W C W

w h e re C g v x

y
=

−

= +

=

∑ 4.7

The Gaussian radial basis functions can be generalized to allow for on arbitrary

covariance matrix ∑ such that,

 61

g(x) = exp { - 0.5 * (x- vBjB)P

T
P * ∑BjPB

-1
P * (x- vBjB)}

 4.8

In practice a trade-off is to be considered between using a smaller number of bases with

adjustable parameters and a larger number of less flexible functions.

U4.4.2 Optimizing the RBF-NN

A pronounced difference in Radial Basis Function architecture as compared to Multi

Layered Perceptron (MLP) neural networks is the role of first and second layer weights,

and leads to a two-stage training procedure of the RBF-NNs. In the first stage, the input

data alone is used to determine the first layer weights (parameters of the basis functions

vBjB, σBjB) by unsupervised training. The first layer weights are then kept fixed while the

second layer weights are then optimized in second phase of training. However, note that

after the modifications suggested in previous section, since fewer basis functions are used

than data point it will no longer be possible to find a set of weight values for which the

mapping function will exactly fit all the data points.

As given by Equation 4.7 the output of RBF-NN with bias values absorbed into main

weight vector is given as,

y(x) = W * G 4.8

For a given training data set the target output data is ignored and basis function

parameters prototypes (centers vBjB) with suitable widths are chosen such that they cover

 62

the entire m-dimensional input space covered by the training inputs xP

n
P. This can be

simply done by closely looking at the range and density of the input patterns.

However it is worth noting here that, if such basis function centers are used to fill out the

sub-space as stated above, then the number of basis function centers will be an

exponential function of m [7]. This notorious problem with RBF-NNs, known as ‘the

curse of dimensionality’ is more pronounced in the case of input nodes that are largely

uncorrelated. This also increases the computation time and number of training patterns

required. These compelling reasons often lead to choice of unsupervised algorithms, such

as ‘K-means clustering’, to choose optimal first layer parameters depending on the

density of the data points.

For the RBF-NN, given the target mapping values tP

n
P for an input sequence xP

n
P and after

fixing the first layer weights (prototype vectors with centers vBjB, and basis widths σBjB), a

suitable error function (cost function) J(ξ) where, ˆny yξ n= − can be defined to

optimize (tune) the second layer weights. The most commonly used cost function is the

sum-of-squares error given below.

n n
k k

n k

1J(e) = {y (x) - t }
2 ∑∑

2 4.9

As is evident one of the principle advantages of the RBF-NN over its counterparts the

MLP is the possibility to choose suitable parameters for the hidden layer neurons

(prototype basis functions) and thus avoid the need to perform full non-linear

 63

optimization of the network. However, it should be noted that this non-linear

optimization problem is computationally intensive and can be prone to finding local-

minima.

It is a well known fact that optimization algorithms which proceed by a steady monotonic

reduction in the error function can become stuck in local minima. A suitable value of

initial weights is therefore essential in allowing the training algorithm to produce a good

set of weights, and in addition may lead to improvement in training speed. Majority of

the initialization procedures in the current state of art involve setting weights to randomly

choosen small values [7], to avoid problems that arise due to symmetry in the network

and so that the activation functions are not driven into saturation regions.

Once the weights are properly initialized optimization (weight adjustment or training) can

done iteratively using several algorithms. One of the simplest network training algorithms

one is gradient descent optimization, also known as steepest descent. In batch version of

a gradient descent an initial weight vector guess is made and a weight update is made at

each step ‘i’ iteratively such that a move is made in direction of greatest rate of decrease

of the error function,

∆ wBiB = - η (∂J / ∂ wBiB) 4.10

Note that here in the batch version the gradient is reevaluated at each step. However, the

the sequential version of this algorithm the error function gradient is evaluated for one

pattern (n inputs) at a time and the weights are updated using,

 64

∆ wBiB = - η (∂J P

n
P / ∂ wBiB)

 4.11

The parameter η is called the learning rate, and provided this value is sufficiently small,

as expected the value of J is bound to decrease at each successive step, eventually leading

to a weight vector at which the condition, gradient (J) = 0 is satisfied.

In practice a constant value of η is often chosen. However, one serious limitation of this

procedure is that if η is too large the algorithm may overshoot leading to an increase in J

and possibly divergent oscillations, which lead to breakdown of the algorithm [7].

Conversely, if η is too small the search procedure can proceed extremely slowly leading

to large computational times.

There have been several modifications made to the standard gradient descent algorithms

to overcome the above mentioned limitations. One such is adding a momentum term µ to

the gradient formula given in Equation 4.10

∆ wBiB = - η (∂J / ∂ wBiB) + µ ∆ wBi-1B 4.12

The effect of momentum is to increase the learning rate from η to η/(1- µ).

While notable research has been done in this area of optimization, even with a

momentum term included gradient descent is not a particularly effective algorithm for

 65

error function minimization. Various adhoc modifications have been suggested. In the

current thesis work a bold driver technique [Vogal et al, 1988] which has an automatic

procedure to set the learning rate is used. The basic idea behind the algorithm is to check

if error function has actually decreased after each step of gradient descent. If it has

increased then an overshoot is recognized, the weight change is undone, and the learning

rate is decreased. Also, if an error decrease is seen, then the new weight values are

accepted and the learning rate, probably too small, is increased. The following is update

law for the learning rate η,

new = k1 . if J < 0
 = k2 . if J > 0

old

old

η η
η

∇
∇ 4.13

The parameters k1 and k2 are chosen such that they are slightly greater and less than

unity respectively, typically chosen as k1 = 1.1, k2 = 0.5 [7]. The choice of k1 and k2 has

to be done carefully to avoid changes in the learning rate and at the same time boost the

speed of convergence.

4.5 Controller Design

Adaptation in the direct adaptive controllers discussed above involves online or

sequential adjustment (training/tuning) of the parameters of the neural network in the

feedback control loop so as to force tracking error (ξ) to tend to zero or at least remain

bounded. The Radial Basis Function Neural Networks described above have been found

more suitable than MLPs for online or sequential adaptation as they are insensitive to the

order of presentation of training data.

 66

Let R denote real numbers and RP

n
P denote real n- real vectors. Let S be the compact

simply connected set of RP

n
P if F(.): S RP

k
P define a space CP

k
P(S) such that F(.) is

continuous. By application of multivariable Fourier analysis and Whittaker/Shannon

sampling theory, it has been shown [7] that Gaussian Radial Basis Functions arranged on

a regular lattice on SP

n
P are capable of universally approximating a smooth function to a

chosen degree of tolerance everywhere on a specified subset. It must be noted that RBF–

NN controllers are linear in the sense of tunable weights, which is a far milder

assumption compared than the adaptive control requirement of linearity in parameters

(LIP) . While, the latter holds only for a specific function F(x) the former holds good for

all functions of F(x) ∈C P

m
P(S). In the ANN property, the same set of basis functions

g(x(k)) suffices for all F(x) ∈C P

m
P(S) while, in the LIP assumption a regression matrix

must be computed for each F(x). Also, in comparison with other ANN architectures the

use of Gaussian activation functions, the RBF forms a local representation (unlike multi

layered perceptrons) where each basis function responds only to the inputs in the

neighborhood of a reference vector [32].

In this direct controller design the centers of the basis functions were placed on regular

points of a square mesh covering a relevant region of space where the input space (ξ= r -

y) of the RBF NN is known to be contained, denoted by a compact set ξBn B P

n
P. It is

assumed that desired trajectory vector with its delayed values is valuable for

measurement. The weights of the network are then initialized randomly and the weights

∈ S

 67

are tuned with a supervised learning algorithm such as bold driver gradient descent

optimization, with a suitable cost function J(ξ).

Fig. 4.7 Plant with RBF in feedback loop, representing training/control phases

Such a neuro-controller, once trained, during an on-line operation phase will reproduce

input u to the plant for a desired response r. Here the tracking error (ξ) becomes the

driving force as the ANN is placed in series with the plant. This results in increased

robustness of the system coupled with advantages of conventional feedback, since the

training is based on “some measure” of closed system error (J(ξ) = J(r – y)). However,

one has to accept the fact that training is more difficult with such a structure, due to

feedback action through the ANN. This approach allows the ANN training to take place

within the operating region of the plant and is hence more accurate than the generalized

learning method described earlier in Section 4.3.1. Given below is the algorithm for

implementation of the controller.

1. Decide the number of feedback samples of the measurement m to be used as

the control input to the RBF and the number of control outputs (n) from the

y(k)Neural Network
 Controller

 Plant ξ(k)r(k) u(k)

 68

neuro-controller (In this case n = 1, RBF output = M, the magnitude of control

inputs ua, ub).

2. Define RBF network with c hidden layer neurons, m input and n output

neurons.

3. Simulate the stepper motor system from time 0 to tf, with initial states given

by xB0B, using a nominal controller (open loop), to get an m dimensional input

space P

m
P for the RBF controller. S

4. Define the activation functions (Gaussians) with centers vBjB and their widths σBj,B

both with m dimensions, where j varies from 1 through c.

5. Initialize the network weights randomly.

6. Choose a suitable learning rate η.

7. Now, place the RBF-NN in feedback to deliver control magnitude (M) where

the out of phase control signals are ua = M cos (Nr.ωBdB); ub = M sin (Nr.ωBdB).

8. Simulate the system for a small amount of time (0:tf) , acquire the

measurement vector y and compute tracking error ξ (= r – y).

9. Evaluate a cost function J(ξ) 1. || || 2. || ||ξ ξλ λ+= + .Where, 1λ and 2λ are

chosen arbitrarily as weighting factors.

10. If this is not the first iteration, compare current J (ξ) with previous one, and

perform learning rate update using bold driver technique given in 4.10 as

follows, where k1,k2 are typically chosen as k1 = 1.1, k2 = 0.5

new = k1 . if J < 0

 = k2 . if J > 0
old

old

η η
η

∇
∇

11. If J < ε∇ , weights converged , GoTo END

 69

12. For each weight wBiB perturb it by a small amount ∆wBiB, and simulate the system

for entire time length again to get (ξ).Compute numerical partial differential ˆ
iJ

i

i

J
w
∆
∆

 and thus the weight updates using gradient descent described earlier in

this chapter given by, . i
inew iold

iold

JW W
W

η= +
∆

∆
.

13. Go To 8.

14. END

As, it can be noticed from the algorithm except for the learning rate parameter settings

and a choice of suitable subspace S P

m
P for deciding the input vectors , which can be easily

done by using any nominal control there are no other tuning parameters required in this

procedure. Such a controller once trained can be used in on-line mode with final

converged weights which exhibits robustness for external disturbances, so long as the

errors remain bounded with in S P

m
P. Also, the Gaussian nature of the activation functions

(g(x) 0 as x ∞) ensures that the RBF control outputs remain bounded even if there

are large errors.

The next chapter presents results for various settings of the RBF, the effect of choice of

m, c and various weight initializations.

CHAPTER V ...70
RESULTS AND CONCLUSIONS...70

5.1 INTRODUCTION..70
5.2 PERFORMANCE ANALYSIS OF RBF-NEURO CONTROLLERS ...71

5.2.1 Neuro-Control vs. Open Loop Control ...73
5.3 CONCLUSIONS ...90
5.4 FUTURE WORK...91

Fig. 5.1(a) Open loop response of PMS plant... 74
Fig. 5.1(b) Open loop response of PMS plant .. 74
Fig. 5.2 Reduction of cost function... 76
Fig. 5.3 Adaptation in weights.. 77
Fig. 5.4(a) Change in RMS error (% of max. error) ... 78
Fig. 5.4(b) Change in RMS error, [Fig. 5.4(a)]50 to 100 iterations................................. 78
Fig. 5.5 Adaptation of control surface .. 79
Fig. 5.6(a) Neuro Controller response of PMS plant .. 80
Fig. 5.6(b) Open loop vs. RBF Neuro Control .. 80
Fig. 5.7(a) Effect of random initialization on cost (J) of the controller............................ 82
Fig. 5.7(b) Effect of random initialization on RMS error (J) of the controller................. 83
Fig. 5.8(a) Effect of number of neurons on performance of the controller 84
Fig. 5.8(b) [Fig. 5.8.(a)] Iterations 50 to 300... 84
Fig. 5.8(c) RBF NN control surface.. 85
Fig. 5.9(a) PD Control .. 86
Fig. 5.9(b) Open loop vs. RBF Neuro Control ... 86
Fig. 5.10 RBF Neuro Controller vs. PD Control with zero mean, white measurement

noise .. 87
Fig. 5.11(a) PD Controller (ωd = 4 rad/sec) .. 88
Fig. 5.11(b) Neuro Controller (ωd = 4 rad/sec) ... 89
Fig. 5.11(c) [Fig 5.11(a),(b)] Time scale 0.4 to 0.48 seconds .. 89

69

 70

Chapter V

RESULTS AND CONCLUSIONS

5.1 Introduction

In this work a direct adaptive controller based on a radial basis function neural network

has been developed for control of a PMS motor. Such a controller, once trained offline,

learns the inverse plant dynamics and can be used to control the non-linear plant (PMS),

better than traditional PD controllers used in the industry. This controller never considers

any modeling parameters as design criteria, and therefore offers an edge over

conventional controllers in that it doesn’t require repeated tuning of the controller for

different tracking trajectories.

Initially in this chapter the performance of the RBF-Neuro controller trained with various

configuration changes to learn the inverse plant dynamics of the PMS motor is analyzed.

All configurations are compared with a standard open loop controller. An analysis of the

 71

weight and control surface adaptation in all the configurations is also presented. Later,

the best configuration setting is chosen and the performance is compared with a classic

PD controller tuned for two different trajectories. Finally, the robustness of the neuro-

controller is demonstrated by adding external disturbances other than those for which the

controller has been trained.

The following criteria are used as performance index for analysis purpose,

1. Maximum peak error

2. Steady state error

3. RMS error

Additionally, for the comparison of different settings of neuro-controllers the cost

function J(ξ) 1. || || 2. || ||ξ ξλ λ+= is used as the performance index.

5.2 Performance Analysis of RBF-Neuro Controllers

In this section a neuro-controller placed in the feedback loop is trained initially as

described in Chapter IV. The RBF parameters, such as number of centers, and their

distribution and weight initializations, are varied and their effect on the response of the

controller is studied. This study is limited to single dimensional input and hidden layered

neurons of the RBF. That is, the RBF has only one input neuron providing tracking error

delayed by one time step ((1)kξ −).

 72

The following simulation parameters are used consistently throughout the study,

Simulation parameter Value Units

Initial time (t0) 0 Sec

Final time (tf) 1.9 Sec

Simulation time step (dt) 0.0001 Sec

Control time step (dtCntrl) 0.001 Sec

Integration method used Rectangular N/A

T Table II. Simulation specs

A PMS motor with the following characteristics is used consistently for all simulations

presented in this chapter. The initial condition is chosen to be xB0B = [-0.183, 5, 0, 0.119] in

all cases, where x signifies the state vector i.e., the displacement, angular velocity and the

currents in windings B, A respectively.

Motor parameter symbol Value Units

Rotor load Inertia J 3.6 * 10^-6 N.m.s^2/rad

Viscous friction B 1 * 10^-4 N.M.s^2/rad

External Load torque Tl 5 * 10^-4 V.s/rad
(Square wave)
Self inductance L 0.001 H
of windings
Resistance in R 8.4 Ohms
phase windings
Number of rotor teeth Nr 50

Table III. PMS motor simulation specs

As explained in Chapter III, field oriented control derives the maximum theoretical

performance from the PM stepper motor. The field-oriented control method involves

having sinusoidal voltage applied to phases such that they meet the 90° phase difference

 73

requirement of the currents, and position the stator magnetic field vector 90° ahead of the

rotor flux vector. Thus, to provide out of phase winding currents to both phases, the

control inputs are chosen to be sinusoid in nature, where the control input (M) will be

magnitude of these winding currents. The control inputs are given by Equation 5.1 below.

ua = M * cos (Nr.ωBtB)

ub = M * sin (Nr.ωBtB) 5.1

U5.2.1 Neuro-Control vs. Open Loop Control

Originally stepper motors were designed for operation in open-loop configuration, to

provide precise position control with an integer number of steps, without any sensors for

feedback [41]. Thus, for a given constant velocity trajectory a simple open loop controller

can be easily obtained as per Equation 5.1. Fig. 5.1 shows the open loop response of the

PMS system for a constant velocity trajectory of ωBd B= 5 rad/sec. A square wave external

load torque with a magnitude of 5*10^−4 was chosen as the external disturbance input

[refer to Table III] . The control inputs are chosen as follows,

ua = 1 * cos (Nr.ωBdB)

ub = 1 * sin (Nr.ωBdB)

 74

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
RmsErr = 0.096061; Enorm = 4.1872; IntegralErr = 12.2966

Time (secs)

A
ng

. v
el

oc
ity

,w
(ra

d/
se

c)

velProfile
openloop

TFig. 5.1(a) Open loop response of PMS plant

0.4 0.45 0.5 0.55 0.6
1.5

2

2.5

3

0.4 0.45 0.5 0.55 0.6

4.8

5

5.2

5.4

0.4 0.45 0.5 0.55 0.6
-0.1

-0.05

0

0.05

0.1

0.4 0.45 0.5 0.55 0.6
-0.1

-0.05

0

0.05

0.1

Displacement (rad) Ang. Velocity (rad./sec)

Current windingB (A) Current in WindingA (A)

Time (secs) Time (secs)

Time (secs) Time (secs)

 Fig. 5.1(b) Open loop response of PMS plant

 75

It can be clearly noticed that such an open loop control such a response is not desirable in

presence of external disturbances. This necessitates the need for a closed loop controller.

Although it is simple to implement a classic PD controller, to overcome the burden of

tuning each time an adaptive RBF Neuro Controller that learns the inverse plant

dynamics is trained. The neuro controller is then trained as described in Chapter IV for

the same velocity trajectory (ωBd B= 5 rad/sec) with the parameters given in Table IV.

RBF parameters Value

Input neurons 1

Output neurons 1

Hidden neurons 18

Input space ±2

Basis centers Distributed equidistantly, overlapping each other
between -2 to 2 (including both boundaries)

Basis Radius 0.5*(4/17) ≈ 0.1177

Bias 1

Table IV. RBF-Neuro Controller – [Config. 16, Table V]

As mentioned, in this control method the input to the RBF is the tracking error. So, based

on open loop control and knowledge of plant dynamics an input space is assumed a priori

and the RBF-NN activation function centers are distributed uniformly in this space (refer

to Table IV). The hidden layer neuron prototype vectors are distributed evenly in the

input space, and weights are initialized with random numbers. Weighting in the cost

function is chosen as 1λ = 0.2, 2λ = 0.8 such that ∆ξ has more weight in the error

function. Also, the perturbation value for computing the partial differential is chosen

consistently to be 0.1% of the original value.

 76

Fig. 5.2 shows the reduction in the cost function after optimization performed by using

the bold driver gradient descent algorithm. Fig. 5.3 shows the adaptation of weights. It

can be seen that after a considerable number of iterations the weight values start to

converge to the best possible solution using the gradient descent algorithm.

0 50 100 150 200 250 300
1

1.5

2

2.5

Iter #

C
O

S
T

(J
)

 Fig. 5.2 Reduction of cost function

 77

0 50 100 150 200 250 300
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Iter #

W
ei

gh
t V

al
ue

 Fig. 5.3 Adaptation in weights

The learning of the controller during the training process can be best judged by looking at

the change in the RMS value of the tracking error shown in Fig. 5.4. Fig. 5.5 shows the

response of RBF controller for the input space it has been defined for, both before and

after trainingT. It is worth noting that for values of tracking error outside the input space

(±2 in this configuration of the RBF, refer Table IV) the output of the RBF controller is

M = 1, thus acting as a nominal open loop controller.T

 78

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 R
M

S
 E

rr
,%

 o
f M

ax

Iter #
 Fig. 5.4(a) Change in RMS error (% of max. error)

50 100 150 200 250 300

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

Iter #

N
or

m
al

iz
ed

 R
M

S
 E

rr
,%

 o
f M

ax

 Fig. 5.4(b) Change in RMS error, [Fig. 5.4(a)]50 to 100 iterations

 79

-3 -2 -1 0 1 2 3
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Input space (tracking error)

O
ut

pu
t o

f R
B

F

intial surface
converged surface

 Fig. 5.5 Adaptation of control surface

Finally, as a comparison between the open loop controller and the RBF controller, Fig.

5.6(a) shows a plot of neuro-controller response, while Fig. 5.6(b) shows the response of

both open loop [refer to Fig. 5.1(a)] and RBF-neuro control methods. It can be seen that

steady state, RMS and peak errors are all reduced in case of the later, thus justifying the

use of the neuro-controller.

 80

-0.5 0 0.5 1 1.5 2
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Time (secs)

A
ng

. v
el

oc
ity

,w
(ra

d/
se

c)

RBF Neuro Control : RmsErr = 0.0267; Enorm = 1.1617; IntegralErr = 9.0192

Vel Profile
RBF Neuro control

 Fig. 5.6(a) Neuro Controller response of PMS plant

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6 RBF Neuro Control : RmsErr = 0.0267; Enorm = 1.1617; IntegralErr = 9.0192

Time (secs)

A
ng

. v
el

oc
ity

 w
 (r

ad
/s

ec
)

Trajectory
RBF Neuro Control
Open loop

Open Loop Control : RmsErr = 0.0961; Enorm = 4.1872; IntegralErr = 12.2966

 Fig. 5.6(b) Open loop vs. RBF Neuro Control

[Time scale 0.4 to 0.48 seconds]

 81

Now, to evaluate the effect of RBF parameters such as weight initializations and the

number of hidden layer neurons, each of the parameters is varied as shown in Table V

thus giving rise to a variety of configurations.

RBF Configuration #Hidden neurons Matlab random number seed

for weight initialization

1 5 -99

2 5 777

3 5 -1

4 5 0

5 10 -99

6 10 777

7 10 -1

8 10 0

9 15 -99

10 15 777

11 15 -1

12 15 0

13 18 -99

14 18 777

15 18 -1

16 18 0

Table V. RBF Neuro Controller Configurations

 82

0 10 20 30 40 50 60 70
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Iter #

C
O

ST
 (J

)

 Fig. 5.7(a) Effect of random initialization on cost (J) of the controller

To notice the effect of different weight initialization on the controller performance, the

configurations with same number of neurons are grouped together and RMS error and

Cost functions are shown in Fig. 5.7 (a), Fig. 5.7 (b) for configurations 13 through 16. It

can be clearly seen that except for difference in the path the controller takes to converge,

so long as the number of neurons is same the final RMS errors in each of these cases is

same. Similar analysis can be done with other number of hidden neurons. This shows the

robustness of the RBF training procedure. In spite of the highly nonlinear error surface,

the training procedure converges to the same configuration regardless of the initialization

values.

 83

0 20 40 60 80 100 120 140
0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Iter #

R
M

S
Er

r

 Fig. 5.7(b) Effect of random initialization on RMS error (J) of the controller

To notice the effect of number of neurons on the controller performance, the

configurations with the same random initializations (configurations 4, 8, 12, and 16 from

Table 5.4) are grouped together and cost functions optimizations are shown in Fig.

5.8(a), Fig. 5.8(b). It can be seen that as the number of neurons increases, the cost

convergence and hence performance of the controller improved. Also, Fig.5.8(c) shows

the control surface for all the configurations which shows that a robust control surface as

the number of neurons increases both within and outside the input boundaries of the

RBF-NN. Thus, the controller with maximum number of neurons (18) is chosen for

comparison with a classical PD controller in the next section.

 84

0 50 100 150 200 250 300
1

2

3

4

5

6

7

Iter #

C
O

ST
 (J

)

5
10
15
18

 Fig. 5.8(a) Effect of number of neurons on performance of the controller

50 100 150 200 250 300
1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

Iter #

C
O

ST
 (J

)

5
10
15
18

 Fig. 5.8(b) [Fig. 5.8.(a)] Iterations 50 to 300

 85

-3 -2 -1 0 1 2 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Input space (tracking error)

O
ut

pu
t o

f R
B

F

18
10
15
5

 Fig. 5.8(c) RBF NN control surface

 [1-d for various number of Hidden layer neurons]

U5.2.2 Neuro-Controller vs. PD-Controller

Initially the operating conditions are chosen to be xB0B = [-0.183, 5, 0, 0.119] as stated

earlier for open loop control, where x signifies the state vector i.e., the displacement,

angular velocity and the currents in windings B, A respectively. All other plant

parameters as specified in Table 5.1. A neuro-controller with 18 hidden layer neurons is

trained to learn the inverse plant dynamics in Configuration 16 given by Table 5.4. A PD

controller is then tuned by trial and error to obtain fixed gains. An additional tuning

parameter Ks, a constant additive gain, was needed to amplify the gain and drive the

stepper and required tracking velocity. The tuned fixed gains for a desired tracking

velocity of ωBd B= 5 rad/sec are,

Ks = 0.8, Kp = 0.63, Kd = 1.8*10^−4

 86

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
PD Control : RmsErr = 0.041277; Enorm = 1.7992; IntegralErr = 11.0794

Time (secs)

A
ng

. v
el

oc
ity

 w
 (r

ad
/s

ec
)

Vel Profile
PD control

 Fig. 5.9(a) PD Control

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6 PD Control : RmsErr = 0.041277; Enorm = 1.7992; Integral Err = 11.0794

Time (secs)

A
ng

. v
el

oc
ity

 w
 (r

ad
/s

ec
)

Vel Profile
RBF neuro control
PD control

RBF Neuro Control : RmsErr = 0.0267; Enorm = 1.1617; Integral Err = 9.0192

 Fig. 5.9(b) Open loop vs. RBF Neuro Control

 [Time scale 0.4 to 0.48 seconds]

 87

0.4 0.6 0.8 1 1.2 1.4 1.6

4.98

4.985

4.99

4.995

5

5.005

RBF Neuro Control :RmsErr = 0.026653; Enorm = 1.1618; IntegralErr = 9.0211
PD Control :RmsErr = 0.044008; Enorm = 1.9183; IntegralErr = 12.2859

Fig. 5.10 RBF Neuro Controller vs. PD Control with zero mean, white

measurement noise

Fig. 5.9(a) shows the trajectory tracking of a PD controller, while Fig. 5.9(b) shows a

comparison of trajectory tracking by both PD and RBF neuro controllers. It can be seen

that the peak and steady state errors are both reduced considerably in case of the neuro-

controller. Adding white noise to the measurements considerably deteriorates the

performance of the PD controllers. However, due to its smooth interpolating surface and

Gaussian activation functions, the RBF neuro controller still tracks the trajectory

effectively as shown in Fig. 5.10. Fig. 5.11 shows the performance of both the controllers

for different trajectories other than those they were tuned for.

 88

The RBF controller can be seen to track well due to its nonlinear nature, as long as the

error inputs to the network are within the training bounds. However, PD controller gains

have to be tuned again to derive optimum performance. Tuned gains used are :

Ks = 0.5, Kp = 0.58, Kd = 1.8*10^−4.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
3.6

3.8

4

4.2

4.4

4.6

4.8

5
RmsErr = 0.047796; Enorm = 2.0834; IntegralErr = 5.5808

Time (secs)

A
ng

. v
el

oc
ity

,w
(ra

d/
se

c)

 Fig. 5.11(a) PD Controller (ωd = 4 rad/sec)

 89

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time (secs)

A
ng

. v
el

oc
ity

,w
(ra

d/
se

c)

RmsErr = 0.043304; Enorm = 1.8876; IntegralErr = 4.3788

 Fig. 5.11(b) Neuro Controller (ωd = 4 rad/sec)

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

RBF Neuro Cntrl : RmsErr = 0.043071; Enorm = 1.8774; IntegralErr = 4.3778

PD Cntrl : RmsErr = 0.046262; Enorm = 2.0165; IntegralErr = 5.8609

Trajectory
RBF Neuro Control
PD Cntrl

Fig. 5.11(c) [Fig 5.11(a),(b)] Time scale 0.4 to 0.48 seconds

 90

5.3 Conclusions

It can be seen that for any given trajectory, the RBF controller tuned within a limited sub-

space learns the nonlinear dynamics of the plant and thus exhibits robustness to external

disturbances and measurement noise. Given adequate training data the RBF controller

learns the plant dynamics for the entire subspace and exhibits robustness throughout the

operation range. They best way of operation for the current version of the controller is to

use it in conjunction with a nominal controller to drive the plant to this limited error

subspace where the RBF controller can then act as a compensating controller. The idea

here has been to propose a new and efficient adaptive control that would reduce the

burden of the control engineer to retune gain parameters. Listed below are the advantages

and disadvantages of using the RBF neural network for control of a PMS motor.

Advantages

1. Auto tuning capability for a given tracking error subspace

2. Robustness to external noise disturbances

3. Provides nominal control for errors outside the input subspace, ensuring safe

operation of the controller.

Disadvantages

1. No model information has been used

2. Complex controller mathematical model.

3. Requires large training time.

4. No proof of stability. More complex as the dimensions of the ANN increases.

5. Current model still offline, even though on-line version is possible.

 91

6. Limited to single dimensional prototype vectors due to computational burden.

However, it has to be noted that some disadvantages of the neuro-controller like the proof

of stability, using prior knowledge of system dynamics are unavoidable like any other

model free method such as a PD or a PID controller. It has been shown that the RBF-

neuro controller is a robust controller which provides a adequate control even when the

tracking error is outside the error subspace for which it has been trained, thus ensuring

safe operation of the system unlike the derivative based methods.

5.4 Future work

Much work has already been done to learn nonlinear plant dynamics in feed forward

mode for system identification and then use the inverse model to control the system. The

current work is only a preliminary step towards automatic direct adaptive control using

radial basis function neural networks for PMS motors. However, with a little more effort,

by making the optimization routines more efficient, this work could be extended to make

an on-line version of this neuro-controller, thus making it comparable to other adaptive

control techniques. Also, a detailed stability analysis such as a Lyaponov analysis could

be done. The other possible extension is to increase the number of delayed feedback

samples input to the RBF controller (increasing the input dimensions of the RBFNN) and

thus make it more robust.

1
Arbib, Michael A. “Brains, Machines, and Mathematics: Second Edition” Springer-Verlag, New York, NY,
1987.

2
Bose, N. K. and Liang, P. ``Neural Network Fundamentals with Graphs, Algorithms, and
Applications''. McGraw-Hill, New York, NY, 1996.

3
Broomhead,D.S and Lowe,D. (1988), "Multivariable interpolation and adaptive networks",Complex
systems2,321-355.

4
Brown, R.H., Rutchi, T.L., and Feng, X., "Artificial Neural Networks identification partially known dynamic
non-linear systems", Procs. of the 32nd Conference on Decision an Control, Vol.4,pp.3694-9,1992

5 Cairo L. Nascimento Jr., 1994, “Artificial Neural Networks in Control and Optimization”, PhD. Dissertation.

6
Chen,F. and Khalil,K.H (1992), "Adaptive control of a class of nonlinear systems using neural networks",IEEE
Trans. on Automatic Control, vol.40,no.5,791-801.

7
Christopher M. Bishop, “Neural Networks for Pattern Recognition: Second Edition”, Oxford University Press,
New York, 1995.

8 DARPA Neural Network Study 1988, AFCEA International press

9
De Silva, C.W and Lee,T.H., "Knowledge-Based Intelligent Control", Measurements and Control, vol.28(2),
pp. 102-113, April 1994.

10
De Silva, C.W., Fakreddine, O. Karray., "Learning and Adaptation in complex dynamic systems", Intelligent
control applications and industrial applications, CRC Press 1999.

11 De Silva, C.W., Intelligent Control : Fuzzy Logic Apllications., CRC Press 1995.
12 Desilva,C.W., "Intelligent Control",Fuzzy Logic contrl Applications, CRC Press,1995.

13
Douglas W.J ., "Control of Stepping Motors" (online tutorial),THE UNIVERSITY OF IOWA, Department of
Computer Science.

14
Edgar N. Sanchez, Alexander G.Loukianov, Ramon A.Feilx, "Dynamic Triangular Neural Controller for
Stepper Motor Trajectory Tracking", IEEE transactions on Systems MAN and Cybernatics.

15
Filippidis, A. and Jain .L.C,"Intelligent control techniques", Intelligent control applications and industrial
applications, CRC Press 1999.

16
Gumma.S, Vasarla.J, Choudary.S.G, Choudary.T.Rao, 2001, “A Character Recognition system using
Artificial Neural Networks”, Bachelors Thesis.

17 Gupta, M. and Rao, H., Neural-Control Systems theory and Applications, Newyork press, 1994

18
Kawato,M. (1990),"Computational schemes and neural network models for formation and contorl of multijoint
arm trajectory", Neural Networks for Control,T.Miller et. al(Eds) MIT Press,Cambridge,MA,1990

19

Khalid,M.(1990), "A neural network controller for temperature control system," IEEE Control

magazine, Vol.12,No.3, pp.58-64,1992.

20 Kiyoshi Kawaguchi, 2000, “A multithreaded software model for backpropagation neural network applications”

21
Narendra,K.S and Mukopadhyay, S., "Adaptive Control Using Neural Networks and Approximate Models",
IEEE Trans on Neural Networks,Vol.8,No.3,pp.475-485,1997

22

Narendra,K.S and Parthasarathy,M. (1990) "Identification and control using neural network
models :design and stability analysis,Tech. report 91-09-01,Dept. of Elect. Eng. Sys.,Univ.S.
California.

23 Paul Acaarnley,"Stepping Motors a guide to theory and practice", 4E 2002, McGraHill.

24
Polycarapo,M. and Ioannou,P.A (1991), "Adaptive control of unknown plant dynamics using neural networks
IEEE Trans. on systems,Man, andCybernatics,vol.24,no.7,pp.971-98.

25 Postion control of PM stepper motor using neural networks, GangFeng

26
Psaltis,D.,Sideris A., and Yamamura,A.A., "A multi-layered neural network controller," IEEE Intl. Conf on
Neural Networks, VOl.3,pp. 1926-31,SanFransico,CA,1993

27
Rjorgensne,C.C. and Scheley,S. (1990),"A neural network nbaseline problem for control of aircraft flare and
touching down" Neural Networks for Control,T.Miller et. al(Eds) MIT Press,Cambridge,MA,1990

28 Robert E. King, "Computational Intelligence in Control Engineering", Marcel Dekker,Inc.,1999

29
Sadegh,N. (1993),"Aperceptron network for functional identification and control of nonlinear systems", IEEE
Trans. on Neural Networks,vol4,no.6,pp.982-988.

30
Samad,T., "Neurocontrol:concepts and applications",IEEE Intl. Conf. on Systems,Man and
Cybernatics,vol.1,pp.369-74,Chicago,IL,1992

31
Sarle, W.S., ed. (1997), “Neural Network FAQ, part 1 of 7: Introduction”, periodic posting to the Usenet
newsgroup. [comp.ai.neural-nets]

32
Simon Fabri, Visakan Kadrikamanathan, "Dyanamic Structure Neural Networks for Stable Adaptive Control o
Nonlinear Control Systems"

33
Simon, D., and Feucht,D., “DSP-Based Field-Oriented Step Motor Control,” SHARC International DSP
Conference, Boston, MA, pp. 303-309, September 2001.

34
Simon,D., "Get Your Motor Running", Embedded Systems ProgrammingEmbedded Systems Programming,
vol. 16, no.5, pp. 20-26, May 2003

35
Simon,D., “Training Radial Basis Neural Networks with the Extended Kalman Filter,” Neurocomputing, vol.
48, pp. 455-475, October 2002.

36
Sofge,D.A. and White,D.A. (1990),"Neural network based process optimization and control," Proc. of the 29t
Conf. on Decision and Control,1990.

37
Thibult,J. and Gradjean,B.P.A., " Neural Networks in process control - a survey " Advanced Control of
Chemical Process,pp.251-60,1992.

38
Tipsuwanpron. V., Piyarat .W. and Tarasantisuk.C., "Identification and Contrl of Brushless DC mottors using
on-line Tranined Artifical Nerual Networks", Proceeding of the power conservation conference, osaka,2002.

39
Werbos,P.J., "An overview of neural networks for control", IEE Control Systems Magazine,Vol.11,ISS.1,pp
40-41,1991.

40
Wu, Q.M., Stanely, K.,De Silva, C.W., Jain .L.C,"Neural control systems an applications", Intelligent control
applications and industrial applications, CRC Press 1999.

41
Zribi,M. and Chiasson, J.,"Position control of PM stepper motor by Exact linearization", IEE transactions of
automatic control vol.36. No.5,May 1991.

42 Zurada, Jacek M. “Introduction to Artificial Neural System”, West Publishing Company, St. Paul, MN, 1992.

APPENDIX

SOFTWARE LISTING

===

 M.file,function,"offLineTraining"

===

function offLineTraining(nc,randCase,fileName)

global initTraj

format short e;

% record all command line activites

cd results

 diary(fileName)

cd ..

% Cost fn for optimization

COSTFN = '.2*norm(errVec) + .8*norm(diff(errVec))';

fprintf('\n The costfn for this trial is: \n \t E = %s \n',COSTFN);

% -------------------- Initalize Control parameters ---------------- %

% Intialize rbf,centers and parameters

rbf = rbfInit(randCase,nc);

% Command window info. display ...

 92

fprintf('\n This trial is for %d inputs to RBF in feedback :

\n',rbf.nin);disp(rbf);

fprintf('\n');disp(rbf.w2);

% ------------------ Initialize system parameters --------------------

%

 sys = specs; % get system specs

 Wd = 5; % angular velocity to be tracked

 tf = 1.9; % final time

 Y0 = [-.0183;Wd(1);0;0.119];

 fd = 10^3; % control frequncy

 dtCntrl = 1/fd; % desired freq. rad/sec

 trajWd = [];

 fprintf('Wd = %s \t tf = %2.2f \t fd = %d \n',num2str(Wd),tf,fd);

% ---------------- Construct Profile vector --------------------------

%

velProfile = Wd*ones(size(0:dtCntrl:tf-dtCntrl));

Wt = sys.Nr*Wd(1);Wtvec = [];

Evec = [];

% Bold driver grad. descent parameters

k_up = 1.2;k_down = .5;NumSplits = 1;

fprintf('eta_k = %f \t k_up = %2.2f \t k_down = %2.2f

\n',rbf.eta,k_up,k_down);

fprintf('\n');

% TRAIN RBF until error converges

 93

iter = 1;EEvec = [];allData = [];allWeights = [];CONVG = [];

while(1)

 % -- %

 % Start clock for this iteration:

 T0 = clock;

 % do intial simulation to get standarad error, i.e,oldW

 % :::: SYSTEM SIMULATION START ::::

 runNeuroCntrlPlant;

 % :::: SYSTEM SIMULATION END ::::

 % above script updates closed loop plant output to errVec

 E = eval(COSTFN);

 Evec = [Evec;E];

 % check E for convergence

 if (iter > 1)

 % if five consecutive errors match up to 'n'th decimal place,

 % declare, CONVERGED ...

 if (length(Evec) > 5)

 CONVG = round(diff(Evec(end-5:end)).*10^5);

 else

 CONVG = 99; % dummy value

 end

 if ((iter > 300) | (CONVG == 0))

 94

 fprintf('\n\tRBF-NN CONVERGED at ITER # : %d !!\n ',iter);

 diary off;

 break;

 end

 Elast = Evec(end-1);

 % Bold Driver Grad. Descent Algorithm

 if (Evec(end) > Elast)

 % increase in error, so restore prev weights

 rbf.w2 = oldW;

 E = Elast;

 Evec = Evec(1:end-1); % remove Maxima

 % decrese step size

 rbf.eta = rbf.eta * k_down;

 NumSplits = NumSplits + 1;

 fprintf('\n \t This is LOCAL MINIMUM ...\n ');

 disp(rbf.w2);

 else

 % if in correct direction increase step size

 rbf.eta = rbf.eta * k_up;

 end

 end

% ------------------ TRANING PHASE --------------------- %

% copy old weights

 oldW = rbf.w2;

 tempW = zeros(size(oldW));

 doE = zeros(size(oldW));doW = zeros(size(oldW));

 95

% Adjust weights one after the other

 for ro = 1:rbf.nhidden

 for col = 1:rbf.nout

 % copy weights

 tempW = oldW;

 % change ith weight

 tempW(ro,col) = oldW(ro,col)+ (rbf.gradient * oldW(ro,col));

 % copy new weights

 rbf.w2 = [];rbf.w2 = tempW;

 % :::: SYSTEM SIMULATION START ::::

 runNeuroCntrlPlant;

 % :::: SYSTEM SIMULATION END ::::

 % Error with Weights(ro,col) changed:

 delE = eval(COSTFN);

 doE(ro,col) = (delE - E)./(tempW(ro,col) - oldW(ro,col));

 end

 end

% update new weights with GRADIENT DESCENT

 rbf.w2 = oldW - rbf.eta*(doE);%./doW);

 T1 = clock;Tlap = etime(T1,T0);

 allWeights = [allWeights oldW];

 if iter < 2

 fprintf('------------------------------------ ...

 --\n');

 96

 fprintf('Iter# \t CstFn eta_k ENORM ...

 ERMS EINTEG iTime \n');

 fprintf('------------------------------------ ...

 --\n');

 end

 ENORM = norm(errVec);ERMS = sqrt(mean(errVec.^2));EINTEG =

trapz(errVec);

 fprintf(' %-3d. %10.5f %10.5e %10.5f %10.5f %10.5f ...

 %10.5f\n',iter,Evec(end),rbf.eta,ENORM,ERMS,EINTEG,Tlap);

 allData = [allData;iter,Evec(end),rbf.eta,ENORM,ERMS];

 iter = iter + 1;

end

disp(rbf.w2);

% If we are here means the rbf converged. So, run final simulation

runNeuroCntrlPlant; % script

figure;

subplot(221)

plot(initTraj);grid;

subplot(222)

plot(allData(:,4));grid;

subplot(223)

plot([velProfile trajWd errVec]);grid;

subplot(224)

plot(Kpvec);grid;

cd results

myFig = strcat(fileName,'_finalView.fig');

 97

saveas(gcf,myFig);

save(fileName,'allWeights','allData','rbf','Evec', ...

 'velProfile','sys','Wd','tf','fd','Y0');

cd ..

===

 M.file,function,"specs"

===

function sys = specs

% given motor specs

sys.Km = 0.05; %(V.s/rad),motor torque constant

sys.Nr = 50; % number of rotor teeth

sys.B = 5 * 10^(-4); %(N.M.s^2/rad),viscous friction

sys.J = 3.6 * 10^(-6); %(N.m.s^2/rad), Rotor load Inertia

sys.L = 0.001 ; %(H), self inductance in each of the phase

windings

sys.R = 8.4; %(Ohms),Resistance in each of the phase

windings

sys.Tl = 3*10^-4;

% external torque distrubance

sys.dtdistr = .4;

sys.tdistr = sys.dtdistr; % torque disturbance

 98

==

 M.file,function,"rbfInit"

==

function rbf = rbfInit(randCase,nc)

global initTraj

% ---- Radial Basis Function Neural Net, intializations ---------- %

rbf.nin = 1; % no.of inputs to the RBF neural network

rbf.nhidden = nc^rbf.nin;

 % no.of hidden layerd neurons

rbf.nout = 1; % no.of outputs from the RBF

rbf.c = []; % the centers of the RBF (hidden neurons)

 % (nhidden,nin)

rbf.wi = []; % width (ro), of the Gaussian

 % (nin,nhidden)

rbf.b2 = zeros(1,rbf.nout);

 % bias for second layer of the RBF

 % (1,nout)

rbf.w2 = [];

 % weight matrix for second layer of the RBF

 % (nhidden,nout)

rbf.gradient = 0.001; % petrubation introduced in weights to calculate

 % the partial diff.

rbf.eta = 0.01;

 99

% -- %

% run nominal control simulation (openloop/PD control)

runNominalCntrl;

% get initial vector

initTraj = trajWd;

errVec = velProfile - trajWd;

if rbf.nin <= 1

 xMax = 2; %max(e);

 xMin = -2; %min(e);

 eMax = [eMax xMax];eMin = [eMin xMin];

else

 errdlg('This controller works only for 1-d, currently');

 return;

end

% put centers sparesely between eMin:eMax

Centers = [];Radius = [];

for i = 1:rbf.nin

 if nc <= 1

 Centers(:,i) = (eMax(i) + eMin(i))/2;

 Radius(i,:) = ones(1,rbf.nhidden).*(abs(eMax(i) - eMin(i))/2);

 continue;

 end

 interval = abs(eMax(i) - eMin(i))/(nc-1);

 dInt = [dInt interval];

 Centers(:,i) = (eMin(i):interval:eMax(i))';

 Radius(i,:) = ones(1,nc).*(interval/2);

 100

 end

if rbf.nin <= 1

 rbf.c = Centers;

 rbf.wi = Radius;

 figure;

 subplot(211)

 plot(e,'r.');hold on;grid on;

 N = length(e);

 index = [];errBars = [];

 index = repmat(1:N,rbf.nhidden,1);

 errBars = repmat(rbf.c,1,N);

 plot(index',errBars');

else

 errdlg('This controller works only for 1-d, currently');

 return;

end

subplot(212)

plot([velProfile trajWd]);grid;

switch randCase

 case 1

 rand('seed',555);

 case 2

 rand('seed',-99);

 case 3

 rand('seed',-100);

 case 4

 rand('seed',777);

 101

 case 5

 rand('seed',1);

 case 6

 rand('seed',-1);

 otherwise

 rand('seed',0);

 end

rbf.b2 = ones(1,rbf.nout);

rbf.w2 = zeros(rbf.nhidden,rbf.nout);

nw2 = (rbf.nhidden*rbf.nout);

random = randn(1,nw2)*(10^0);

rbf.w2 = reshape(random,rbf.nhidden,rbf.nout);

rbf.w2 = rbf.w2./nw2;

return;

 102

==

 M.file,function,"rbffwd"

==

function [a, z, n2] = rbffwd(rbf,inputs)

% inputs = inputs to the rbf neural net : (ndata,nin)

% a = output from the rbf

% z = activations from the first layer of rbf

% n2 = calculated squared norm matrix : (ndata,nhidden)

% rbf.nin = no.of inputs to the RBF neural network

% rbf.nhidden = no.of hidden layerd neurons

% rbf.nout = no.of outputs from the RBF

% rbf.c = the centers of the RBF (hidden neurons)

 : (nhidden,nin)

% rbf.wi = width (ro), of the Gaussian

 : (nin,nhidden)

% rbf.b2 = bias for second layer of the RBF

 : (1,nout)

% rbf.w2 = weight matrix for second layer of the RBF

 : (nhidden,nout)

[ndata, dime] = size(inputs);

if dime ~= rbf.nin

 errdlg('In consistent matrix size');

end

 103

% --------------- RBF = Only for Gaussian -------------------- %

 z = zeros(1,rbf.nhidden);

 for i = 1:rbf.nhidden

 % for each hidden node

 di2 = (rbf.c(i,:) - inputs)'; % Distance vector,

 % (nin x 1)

 wi2 = diag(rbf.wi(:,i)); % Co-variance Matrix,

 % (nin x nin)

 n2 = di2' * inv(wi2) * di2 ; % ~x~ function of x

 % (1 x [nin x nin] x [nin x nin] x 1)

 z(i) = exp(-0.5 * n2); % guassian activation : (1 x 1)

 end

% -- %

% network outputs %(ndata, nout)

a = z*rbf.w2 + ones(ndata, 1)*rbf.b2;

 104

==

 M.file,function,"extrapolate"

==

function [nextY0] = extrapolate(t0,t1,Y0,sys,Va,Vb)

% $$$$$$$$$ Nonlin sim. $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

dt = 1/10^4; % sampling frequency 10kHz

% Y0(1) : Displacement (rad)

% Y0(2) : Angular Velocity (rad/sec)

% Y0(3) : Current in winding B (Amps)

% Y0(4) : Current in winding A (Amps)

for t = t0+dt:dt:t1

% simplfy calc.

 s = sin(sys.Nr*Y0(1));

 c = cos(sys.Nr*Y0(1));

 % non linear system eqns %+ ThetaNoise*randn

 dy = [Y0(2);

 (- Y0(4) * s * sys.Km + Y0(3)* c * sys.Km . . .

 - sys.B*Y0(2) - sys.Tl)/sys.J;

 (-sys.R*Y0(3) - sys.Km* c * Y0(2) + Vb)/sys.L;

 (-sys.R*Y0(4) + sys.Km* s * Y0(2) + Va)/sys.L];

% use Euler inegration

 Y0 = Y0 + dy*dt;

 105

 Y0(1) = mod(Y0(1),2*pi);

end

nextY0 = Y0;

==

 M.file,script,"runNominalCntrl"

==

% script runs PMS model given by the m-file specs.m

% select open loop //PD control

type = 'P'; % use 'open' alternatively

% PD with noise (Mag)

Kp = .63;

Kd = 1.8*10^-4;

iProf = 1;

% ------------------ Initialize system parameters ------------------- %

Wd = [5]; % desired angular velocity

sys = specs; % get system specs

sys.Tl = abs(sys.Tl); % system Torque intializations

sys.tdistr = sys.dtdistr; % torque disturbance

% system timing paramters and noise

tf = 1.9; % final time

Y0 = [-.0183;Wd(1);0;0.119]; % sys. initial conditions

fd = 10^3; % control frequncy

dtCntrl = 1/fd; % desired freq. rad/sec

trajWd = [];Yvec = [];Kpvec =[];Tvec =[];

% ---------------- Construct Profile vector ------------------------- %

velProfile = Wd*ones(size(0:dtCntrl:tf-dtCntrl));

Wt = sys.Nr*Wd(1);Wtvec = [];

 106

% cntrl @ t = t0

Mag = 1;Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);

% misc. intializations

enew = 0;eold = enew;compen = 0;

Measurement = 0;MeasNoise = 0.01;

Controls = []; velMeasure = [];

rand('seed',0);

for tt = 0:dtCntrl:tf-dtCntrl

% ------------ get the Measurement ------------------- %%

% calculate the error from Refernce and Measurement

 Measurement = Y0(2) + (MeasNoise*rand);

 enew = velProfile(iProf) - Measurement;

 Kpvec = [Kpvec;compen];

 Yvec = [Yvec;Y0'];

 velMeasure = [velMeasure; Y0(2)-Measurement];

 Wtvec = [Wtvec;Wt];

 Controls = [Controls; Va Vb];

 trajWd = [trajWd;Y0(2)];

% for every 'tdist', GENERATE Ext. torque disturbance

 if tt >= sys.tdistr

 % change

 sys.tdistr = (round(tt./sys.dtdistr)*sys.dtdistr) + sys.dtdistr;

 sys.Tl = -sys.Tl;

 end

 107

% ------------- Extrapolate system ---------------------- %%

% time,current states,control,system parameters : gives interated error

 [Y0] = extrapolate(tt,tt+dtCntrl,Y0,sys,Va,Vb);

% Get Control for next time step from MEASUREMENTS @ tt

switch type

 case 'open'

 % ----------- openloop ---------------------- %

 Wt = sys.Nr * Wd(1);

 Ks = .8;

 Mag = Ks;

 case 'P'

 % ----------- p control --------------------- %

 Wt = sys.Nr * velProfile(iProf);

 Ks = .8;

 Mag = Kp*enew + (Kd *(enew-eold)/dtCntrl)+ Ks;

 end % // end case

 % determined controls for next time step

 Va = Mag*cos(Wt*(tt+dtCntrl));

 Vb = Mag*sin(Wt*(tt+dtCntrl));

 eold = enew;

 Tvec = [Tvec;tt];

 iProf = iProf + 1;

end

errVec = velProfile - trajWd;

 108

ENORM = norm(errVec);ERMS = sqrt(mean(errVec.^2));EINTEG =

trapz(errVec);

% plot trajectory tracking

figure;

plot(Tvec,[velProfile trajWd])%,'-r-.');

title(['RmsErr = ' num2str(ERMS) '; Enorm = ' num2str(ENORM) ';

IntegralErr = ' num2str(EINTEG)]);

grid;legend('velProfile','trajectory',0);

xlabel('Time (secs)');

ylabel('Ang. velocity,w(rad/sec)');

% plot controls

figure;

subplot(211)

plot(Tvec,Controls(:,1));

grid;title('Control input ua');

subplot(212)

plot(Tvec,Controls(:,2));

grid;title('Control input ub');

% plot states

figure;

subplot(221)

plot(Tvec,Yvec(:,1));grid;

title('Displacement (rad)');

xlabel('Time (secs)');

 109

subplot(222)

plot(Tvec,Yvec(:,2));grid;

title('Ang. Velocity (rad./sec)');

xlabel('Time (secs)');

subplot(223)

plot(Tvec,Yvec(:,3));grid;

title('Current windingB (A)');

xlabel('Time (secs)');

subplot(224)

plot(Tvec,Yvec(:,4));grid;

title('Current in WindingA (A)');

xlabel('Time (secs)');

% clear variables

clear enew iProf Wt dWt maxWd deadBand dRPM Wd sys Y0 tt tf fd dtCntrl

===

 M.file,script,"runNeuroCntrlPlant"

===

% ------------------ Initialize system parameters --------------------

% system Torque intializations

 sys.tdistr = sys.dtdistr; % torque disturbance

 sys.Tl = abs(sys.Tl);

 Y0 = [-.0183;Wd(1);0;0.119]; % intial state vector

 trajWd = [];Yvec = [];Kpvec =[];Tvec =[];errVec = [];

 Wt = sys.Nr*Wd(1);Wtvec = [];

 110

% cntrl @ t = t0

Mag = 1;Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);

% misc. intializations

enew = 0;eold = enew;compen = 0;

Measurement = 0;MeasNoise = 0.01;

Mag = 1; % rbf.b2 : just the bias *****

% cntrl @ t = t0

Va = Mag*cos(Wt*0);Vb = Mag*sin(Wt*0);

enew = 0;eold = enew;compen = 0;

% misc. initializations %

eBuff = zeros(1,rbf.nin+1);

Measurement = 0;MeasNoise = 0.01;

rand('seed',0);

iProf = 1;

% RBF control (closed loop), vel tracking

for tt = 0:dtCntrl:tf-dtCntrl

% ------------ get the Measurement ------------------- %%

 % calculate the error from Refernce and Measurement

 Measurement = Y0(2) + (MeasNoise*rand);

 enew = velProfile(iProf) - Measurement;

 111

 Yvec = [Yvec;Y0'];

 Wtvec = [Wtvec;Wt];

 Magvec = [Magvec;Mag];

 trajWd = [trajWd;Y0(2)];

 % --- FIFO buffer ---%

 eBuff = [eBuff(2:end) enew];

 % for every 'tdist', GENERATE Ext. torque disturbance

 if tt >= sys.tdistr

 % change

 sys.tdistr = (round(tt./sys.dtdistr)*sys.dtdistr) + sys.dtdistr;

 sys.Tl = -sys.Tl;

 end

 % ------------- Extrapolate system ---------------------- %%

 % time,current states,control,system parameters

 [Y0] = extrapolate(tt,tt+dtCntrl,Y0,sys,Va,Vb);

 % Get Control for next time step from MEASUREMENTS @ tt

 % wait 'rbf.nin' control steps until buffer fills

 if (round(tt/dtCntrl) >= (rbf.nin+1))

 a = rbffwd(rbf,eBuff(1:end-1));

 % Tracking error is input to the RBF

 Mag = a; % RBF output directly used as control magnitude

 end

 Wt = sys.Nr*velProfile(iProf); % standard OpenLoop Velocity

 Va = Mag*cos(Wt*(tt+dtCntrl));

 Vb = Mag*sin(Wt*(tt+dtCntrl));

 112

 eold = enew;

 Tvec = [Tvec;tt];

 iProf = iProf + 1;

end

 113

