SPECIALIZED EQUIPMENT SPECIFICATIONS Fenn R&D Institute (FRDI) Fenn College of Engineering, Cleveland State University

Name:	Du Pont Instruments 912 Differential Scanning Calorimeter	
Description/Use:	measures temperature and heat flow associated with material transitions	
	that are caused by phase changes, melting, oxidation, etc	
User fee:	Call, Email	
Fee basis:	per sample	
Contact Person:	Prof. Jorge E. Gatica, (216) 523-7274, j.gatica@csuohio.edu	

DETAILED DESCRIPTION:

The 912 Differential Scanning Calorimeter (DSC) measures temperature and heat flow associated with material transitions that are caused by phase changes, melting, oxidation, other heat-related changes. Measurement is of a reference temperature and the differential temperature for each sample. Using these measurements, transition temperatures and flow data are then determined mathematically each sample by the programmer.

OPERATION:

The system is not automated. The heating rate and starting/ending temperatures of the DSC are set by the operator. Trained assistants or technicians perform the experiments. Experimental protocol can be adjusted to requirements.

SPECIFICATIONS:

912 C	ell Base Module		
	Dimensions:	L 30 cm; H 14 cm; W 45 cm	
	Weight:	18 lb	
	Power:	±5.6 V DC; ±15 V DC supplied by programmer; 115 V AC	
		heater voltage	
	E Curve Linearity:	±2.5 % deviation (-100 to 500 °C)	
DSC			
	Dimensions:	D 13 cm; H 19 cm	
	Weight:	5 lb	
	Calorimetric Precision:	± 1 % (Δ H imbalance < 4:1)	
	Baseline:	400 μ W (ambient to 500 °C)	
	Noise:	$5 \mu\text{W}$ (rms) (ambient, no sample)	
	Maximum Sensitivity:	10 μW	
	Maximum Dynamic Gas Purge: 200 mL/min		
	Temperature Range:	-170 to 650 °C (inert atm above 600 °C)	
	Sample Size:	0.5 to 100 mg (nominal)	
	Sample Volume:	10 mm ³ in hermetic pans	

Differential Thermocouples:	Chromel-constantan
Sample Thermocouple:	Chromel-alumel
Control Thermocouple:	Platinel® II
Baseline Drift:	(ambient-200 °C) = 20 μ W, (-100-100 °C) = 60 μ W
	(ambient-600 °C) = 400 μ W